
Discussion 2
STATE MACHINES AND AVR ASSEMBLY

CMPE 311 / FALL 2015

DR. MOHSENIN & MR. SMITH

GTAS: RUTHVIK KUKKAPALLI , AMEY KULKARNI

UTAS: JASON KLIMEK, ALI AHMAD

Slides by Ali Ahmad

Objectives
 Learn the basics of the design, structure and construction of state machines.

 Learn some basic AVR Assembly Commands:
◦ LDI, RCALL, RJMP etc.

◦ Code required for initializing I/O ports

◦ Reading I/O pins, writing to them as well as reading specific bits in a register.

 Design and implement a simple state machine using AVR Assembly and the ATMEL IDE.

AVR Assembly Commands
◦ AVR Assembly allows you to “map” registers – making variable names point to a specific register. Use

the .DEF command for this:
◦ .DEF PORTDEF = R22

◦ LDI (LoaD Immediate) Allows you to load a fixed value or constant into a register.
◦ LDI PORTDEF, 0b11111111

◦ MOV (MOVe) Allows you to copy a value from one register to another register.
◦ .DEF NEWREG = R23

◦ MOV NEWREG, PORTDEF

◦ RCALL Calls a subroutine and can be returned to.
◦ STATE0:

 RCALL READINPUT

◦ RJMP Jumps to a subroutine (typically can’t be returned to.)
◦ LOOPFOREVER:

 RJMP LOOPFOREVER

AVR Assembly Commands (Compare and Specific Jumps)

◦ CP (ComPare) Sets a flag that allows you to do different kinds of jumps. ONLY WORKS WITH REGISTERS
◦ CP PORTDEF, NEWREG

◦ BREQ Jumps if CP set Equal Flag.
◦ CP PORTDEF, NEWREG

 BREQ LOOPFOREVER

◦ BRNE Jumps if CP set Not Equal Flag.

◦ BRSH Jumps greater equal (unsigned)

◦ BRLO Jumps if less (unsigned)

AVR Assembly Commands (Port/Register Conditionals)

◦ SBRC Sets flag if register bit clear.
◦ SBRC PORTDEF, 7

 RJMP LOOPFOREVER

◦ SBRS Sets flag if register bit set
◦ SBRC PORTDEF, 7

 RJMP LOOPFOREVER

◦ SBIC Sets flag if port pin clear

◦ SBIS Sets flag if port pin set

◦ Many of the simple commands needed for this discussion can be found at this webpage. For a
more thorough explanation see the website.

http://www.avr-asm-tutorial.net/avr_en/beginner/index.html

Initializing I/O Ports
 Use the DDRx and PORTx registers to initialize ports as I/O. They are initialized with the OUT
command.

 To initialize a pin as an input, make sure the DDR (Direction Register) for that pin number is set to
0 then activate the pull up resistor for that pin by writing a logic 1 to the PORT bit for that pin.

◦ LDI PORTDEF, 0b00000001 ;Assuming DDRB0 == 0

 OUT PORTB, PORTDEF ;Activates pullup for Port B, pin 0

To initialize a pin as an output, write a logic 1 to the DDR register for that pin bit.

◦ LDI PORTDEF, 0b00000001

 OUT DDRD, PORTDEF ;Port D, pin 0 is an output now

Refer to section 13.2 in the AVR datasheet for more details.

Peripheral definitions (Joystick and Piezo PORT/PIN definitions are in the User Guide. See sections 3.5/3.10

State Machine Structure for Today
 The State Machine you are going to design will have 3 simple states:

◦ State 1 – Rest State – pressing button turns on LED goes to State 2

◦ State 2 – LED On – pressing button beeps and goes to State 3

◦ State 3 – LED On (Beeped) – pressing button turns off LED and Resets to State 1

The partial code is provided. Think about how you need to set up your code to produce the desired results.

 Considerations:
◦ The switch buttons are imperfect. Sometimes pressing the button once may trigger as 2 presses and your state

machine may look like it’s not working properly. Test it out before deciding your code is wrong.

◦ Look at how the stack is initialized and figure out how that works on your own. It allows you to return to
previous methods if you do a RCALL.

Let us know if you need any help! 

