
1 

Homework 2: Song Composer Using Terminal 

 

 

 

 

Summary 
Your assignment is to create a terminal-based program that allows a user to 

enter songs, along with a title and author, and play them back. You will interact 

with the AVR Butterfly through a terminal program running on a PC.  

NOTE: UART code in C will be provided. 
 

 

 

 

 

1 Main Menu 

Upon boot-up, the menu seen in Figure 1 should appear. 

 

Figure 1: Main Menu 

1.1 Main Menu Option 1: List Songs 

If option 1 is selected from the main menu, a list of stored songs should be shown 
(see Figure 2). Then the user should be returned to the main menu. 

 



2 

Figure 2: List Menu 

1.2 Main Menu Option 2: Play Song 

If option 2 is selected from the main menu, the user should is given a menu to 
choose a song by either searching titles or providing the song number (see Figure 
3). After the song is selected, the song number and title should be printed. The 
program should then return to the Main Menu. 

 

Figure 3: Song Menu 

If option 1 is selected, the user should be prompted for a song number 
corresponding to the number found in the list menu (Section 1.1). 

 

If option 2 is selected, the user should be prompted for the title. 

 

 

1.2.1 Search Behavior 

For option 2 in the Play Song Menu, the song selection should be done as follows: 

• Treat the user input string a series of whitespace-separated tokens called the query 
string. 

• Treat the stored titles as series of whitespace-separated tokens called the database 
string. 

• Determine if a matching token is found in the database string for each of the tokens 
in the query string. 

• Count matches for repeated tokens in the query string, but not repeated tokens in 
the database string. 

• Create a function to find the number of query tokens that match a token in a database 
string. 

• Perform all matching as case-insensitive. 
• Automatically select the song with the BEST match and continue by printing the song 

information (number and title) and playing the song. 



3 

 
Example function: MatchScore( <query string (user)>, <database string (stored)>); 

MatchScore("hello there", "Hello") returns 1 
MatchScore("hello there", "Hello hello") returns 1 
MatchScore("hello hello there", "Hello") returns 2 
MatchScore("hello hello there", "Hello hello") returns 2 
MatchScore("hello hello there", "Hello hello theRe") returns 3 
 

1.3 Main Menu Option 3: Create Song 

If option 3 is selected from the main menu, the user should be able to create a song. 
This does not change the number of stored songs that will be fixed to 4. This 

function simply allows overwriting of song 0, 1, 2 or 3 (user choice). The user 
should be prompted for a song title: 

 

and then the song itself: 
 

 
 

The user-input encoding for the song is as follows: 

<letter><quarters><letter><quarters><letter><quarters><letter><quarters> 

• The letter may be uppercase or lower case ABCDEFG or R 
• A,B,C,G,D,E,F,and G correspond to tone to be played 
• R corresponds to a rest (silence) 
• Quarters should be a number from 0 to 31 representing the number of 

quarter-seconds to play the note or rest. 
• The user simply presses enter to finish. 
• Once the user enters the song, it must be stored more compactly in order to 

save memory. Each letter-number pair should be stored as a single byte, using 
the following encoding: 

A 0b000 

B 0b001 

C 0b010 

D 0b011 

E 0b100 

F 0b101 

G 0b110 



4 

R 0b111 

• The letter encoding should be stored in the upper 3 bits of each byte 
• The quarters value should be stored in the lower 5 bits of each byte 
• The end of the stored song must be indicated with a zero-length-rest, which 

is just 0b11100000 
• The user does not need to provide R0 to indicate the end of the song, you must 

append that yourself to the of the store, compacted song array. 
 

1.3.1 Example 1 

For the user-provided string: B2A2R1C2  
The song stored should be: 
 

0b00100010 

0b00000010 

0b11100001 

0b01000010 

0b11100000 –> terminating note automatically appended 

 

1.3.2 Example 2 

For the user-provided string: B2A2R1C2R0C2R1 

The last two notes are omitted. The song stored should be: 
0b00100010 
0b00000010 

0b11100001 

0b01000010 

0b11100000 –> terminating ”note.” After this I don’t care 

0b01000010 I don’t care if the notes following an R0 are stored or not 

0b11100001 

0b11100000 Likewise, I don’t care if you append an R0 or not if the user already 
provided one 

2 Necessary include files for this project: 

#include <avr/io.h> 

#include <util/delay.h> 



5 

#include <inttypes.h> 

#include <ctype.h> 

#include <stdio.h> 

#include <string.h> 

#include "U0_UART.h"    //to direct standard I/O to AVR UART – UART code in C will be provided   

3 Useful debug macros 

#ifdef MYDEBUG 

#define DEBUG_PRINTF(...) printf(__VA_ARGS__) 

#define DEBUG_PRINTENTER(...) printf("Entering Function %s\n",__func__) 

#define DEBUG_PRINTEXIT(...) printf("Leaving Function %s\n",__func__) 

#else 

#define DEBUG_PRINTF(...) 

#define DEBUG_PRINTENTER(...) 

#define DEBUG_PRINTEXIT(...) 

#endif 

 

4 Functions/Procedures You Must Write 

You will lose points if you do not write and use the following functions in your code. 

4.1 Find and replace CR or LF 

void StripEOL(char string[],int n); 

StripEOL looks through up to n characters of string searching for ’\n’ or ’\r.’ Once it is 
found, the search should stop and the character should be replaced with ’\0’ The user input 
string can be passed through this before further process. 

4.2 Menu Function 

uint8_t DisplayMenu(const char menu[]); 

DisplayMenu displays a menu, prompts user for input, and returns selection. The 
parameter menu should be string of ’\n’-delimited substrings. The first one is the title and 
the remaining ones correspond to selection choices. The function must check user input. 
If an invalid selection is made the user should be reprompted. 

Example: userChoice = DisplayMenu(Main Menu\nCreate Song\nPlay Song\nList 
Songs\n); in this case userChoice should be assigned a value from 1 to 3. 



6 

4.3 List Songs Function 

void ListSongs(char songTitle[NUMBER_OF_SONGS][MAX_TITLE_LENGTH]); 

ListSongs prints an organized list of songs. 

4.4 Play Song Function 

Must be finished for week 1 submission. 

void PlaySong(uint8_t song[]); 

For week one, at least implement printing the ascii letter and number such as 
this:∗A2∗∗B2∗∗R2∗ 

PlaySong plays stored song with ending indicated by 0. Each byte should be 3 bits for note 
letter and 5 bits for duration. The notes can be 0-6 for notes A-G or 7 for a REST (as seen in 
Section 1.3) The duration is 0 through 31 and corresponds to the number of quarter-seconds 
of duration for the note or silence. The end of the string is indicated by a zero duration of silence 
(0b11100000). 

4.5 Pack/Unpack Note Functions 

Must be finished for week 1 submission. 

uint8_t PackNote (char letterASCII, uint8_t duration); 

PackNote takes input provided in songString and packs information into 
song bytes as described in Section 1.3. Note that the letter is not stored as ASCII.  

uint8_t UnpackNoteLetterASCII (uint8_t packedNote);  

UnpackNoteLetterASCII returns ASCII character of packed note. 

uint8_t UnpackNoteDuration (uint8_t packedNote); 

UnpackNoteDuration returns duration of packed note. 

4.6 Song Store Function 

Must be finished for week 1 submission. 

void StoreSong(uint8_t song[],const char songString[]); 

StoreSong takes ASCII input provided in songString and packs information into song 
bytes. SongString should be note-duration pairs such as B2A2G3R1B10R0A20G30. Lower-
case notes should also be accepted. R corresponds to silence. Any zero-length-silences R0 
indicate the end of the song. Notes following an R0 should not be stored. Storage format 
must be compatible with PlaySong function and adhere to other descriptions in this 
document (see Section 1.3 for more detail). 

4.7 Play Note Functions 

Must at least print for week 1 submission. 

void PlayNote(uint8_t letterASCII, uint8_t quarters); 



7 

For week one, at least implement printing the ascii letter and number such as this: ∗A2∗ 

You’ll need functions to play notes for variable duration. Here are example constants 
for a G note: 

#define FREQ_G4_HZ 392 

#define HALFPERIOD_G4_US 1276 //delay in microseconds 

See http://www.phy.mtu.edu/∼suits/notefreqs.html for frequencies of other notes. 

Here is play note pseudo-code: 

1. Declare integers numIterations and halfPeriodMicroseconds 

2. Based on the ASCII letter, assign halfPeriodMicroseconds and numIterations. The 

number of iterations can be computed from the period and delay as 
(freq/4)∗quarters 

3. Repeat this for numIterations times: 

{ set port B pin 5 low 
delay for 
halfPeriodMicroseconds set 
port B pin 5 high delay for 
halfPeriodMicroseconds 

} 

4.8 Matching Function 

int MatchScore(const char countQueryString [],const char database[]); 

MatchScore treats the contents of countQueryString and database as whitespace-
delimited tokens. It returns a count of the number of tokens from countQueryString that 
can be found at least once database. All queries should be treated as case-insensitive. For 

more information see Section 1.2.1. 

5 Useful Stuff for Top of Code 

#define PORTB5_SPEAKER_MASK 0b00100000 

#define USER_LINE_MAX 128 

char userLine[LINE_MAX]; 

#define NUMBER_OF_SONGS 4 

#define MAX_SONG_LENGTH 64 

#define NOTE_A 0 

#define NOTE_B 1 

#define NOTE_C 2 

#define NOTE_D 3 



8 

#define NOTE_E 4 

#define NOTE_F 5 

#define NOTE_G 6 #define 
NOTE_R 7 

char songTitle [NUMBER_OF_SONGS][STR_LENGTH]={"Title1","Title2","Title3","Title4"}; char 

song[NUMBER_OF_SONGS][MAX_SONG_LENGTH] = 

{{(NOTE_B<<5)+2 ,(NOTE_A<<5) +2,(NOTE_G<<5) +2 },{NOTE_R<<5},{NOTE_R<<5},{NOTE_R<<5}}; 

// some initial song with notes 

const char menuMain[] = "Main Menu\nCreate Song\nPlay Song\nList Songs\n"; const char 
menuPlay[] = "Play Menu\nSearch By Title\nNumber\n"; 

See Discussion 6 notes for how to store constant strings in program memory. 

6 User I/O from terminal 

Add this to code outside main or other function: 

include "U0_UART.h" /// to direct the standar I/O to AVR UART -- UART code in C will be provid extern FILE uart_stream; // 

defined in U0_UART.c -- stream that //scanf and printf will use Add this to main: 

stderr = stdout = stdin = &uart_stream; /* Redirecting the standard I/O */ UARTInit(); /* Initial 

UART */ Example to grab number: 

if (fgets(userLine,10,stdin)!=NULL) { sscanf(userLine,"%d",&userNum); 

} 

Example to grab string with spaces into row of 2-D array: 

//songTitle is a 2D char array and userLine is a char array 

fgets(userLine,LINE_LENGTH_MAX,stdin); stripEOL(userLine,LINE_LENGTH_MAX); 

strcpy(songTitle[userNum],userLine); 

 

7 Week 1 Submission 

Implement: 
• uint8_t PackNote (char letterASCII, uint8_t duration); 

• uint8_t UnpackNoteLetterASCII (uint8_t packedNote); 

• uint8_t UnpackNoteDuration (uint8_t packedNote); 

• void StoreSong(uint8_t song[],const char songString[]); 

• void PlayNote(uint8_t letterASCII, uint8_t quarters); 
(For week 1, create a print version that prints the note and duration. e.g. 
PlayNote(A,2) prints ∗A2∗) 

• void PlaySong(uint8_t song[]); 
(For week 1, create a print version that prints the note and duration. e.g. 
PlaySong(songPacked) prints ∗A2∗∗B2∗∗R2∗) 



9 

 
Code such as following should work: 

char songASCII[] = A2B2R2; //a valid user input string uint8_t 

songPacked [10]; void StoreSong(songPacked,songASCII); void 
PlaySong(songPacked); 

Prints: *A2**B2**R2* 

Submit the week1 report, and library functions with a music.h file and a music.c as a 
tar file using the following command. 

submit cmpe311A proj2_sub1 <glusername>.tar 

8 Final Submission 

Submit the final report, Makefile, and library functions with a music.h file and a music.c as 
a tar file using the following command. 

submit cmpe311A proj1_sub2 <glusername>.tar 

Final report must include a usage manual, project description, and any ambiguities you 
resolved. Separate final report submissions can be made using the following command. 

submit cmpe311A proj1_sub2 <report name>.pdf 


