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Outline

• Introduction
• Division by digit recurrence and pipelining
• Use of different memory elements to pipeline the algorithm in

static CMOS
• Use of pass-transistor logic
• Domino clocking techniques for the algorithm
• comparison and conclusion
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Introduction

• SRT Division is very popular division algorithm used in current
microprocessors.

• It is named for D. Sweeny, J. E. Robertson and K. D. Tocher.
• This dissertation shows different ways to pipeline SRT division

algorithm.
• Simulation results are compared to find out the fastest possible

implementation.
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What current microprocessors use?

Processor Division Algorithm Connectivity

DEC 21164 Alpha AXP SRT Adder-Coupled
Hal Sparc64 SRT Independent
HP PA7200 SRT Independent
HP PA8000 SRT Multiplier-accumulate-c/p
IBM RS/6000 Power2 Newton-Raphson Integrated
Intel Pentium SRT Adder-coupled
Intel Pentium Pro SRT Independent
Mips R8000 Multiplicative Integrated
Mips R10000 SRT Multiplier-coupled
PowerPc 604 SRT Integrated
PowerPc 620 SRT Integrated
Sun SuperSparc Goldschmidt Multiplier-integrated
Sun UltraSparc SRT Independent
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Division by Digit Recurrence

• x = q · d + rem
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Division by Digit Recurrence

• x = q · d + rem

• Divisor is normalized, i.e. 1

2
≤ d < 1 for fractional division.
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Division by Digit Recurrence

• x = q · d + rem

• Divisor is normalized, i.e. 1

2
≤ d < 1 for fractional division.

• For normalized fractional divisor the quotient is in the range
0 < q < 2
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Division by Digit Recurrence

• x = q · d + rem

• Divisor is normalized, i.e. 1

2
≤ d < 1 for fractional division.

• For normalized fractional divisor the quotient is in the range
0 < q < 2

• wi+1 = r · wi − qi+1 · d

where w0 = x
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Division by Digit Recurrence

• x = q · d + rem

• Divisor is normalized, i.e. 1

2
≤ d < 1 for fractional division.

• For normalized fractional divisor the quotient is in the range
0 < q < 2

• wi+1 = r · wi − qi+1 · d

where w0 = x

• Consists of n iterations, each iteration produces one digit of the
quotient.
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Division by Digit Recurrence (continued)

• qi+1 is selected such that wi+1 is bounded.
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Division by Digit Recurrence (continued)

• qi+1 is selected such that wi+1 is bounded.
• qi+1 = QST (r · wi, d) . . . Quotient Selection Table
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Division by Digit Recurrence (continued)

• qi+1 is selected such that wi+1 is bounded.
• qi+1 = QST (r · wi, d) . . . Quotient Selection Table

• q = q[n] = q[0] +
∑n

i=1
qir

−i
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Division by Digit Recurrence (continued)

• qi+1 is selected such that wi+1 is bounded.
• qi+1 = QST (r · wi, d) . . . Quotient Selection Table

• q = q[n] = q[0] +
∑n

i=1
qir

−i

• Quotient is formed by concatenation of quotient bits.
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Division by Digit Recurrence (continued)

• qi+1 is selected such that wi+1 is bounded.
• qi+1 = QST (r · wi, d) . . . Quotient Selection Table

• q = q[n] = q[0] +
∑n

i=1
qir

−i

• Quotient is formed by concatenation of quotient bits.
• On-the-fly conversion is used for redundant quotient digit set.
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Basic SRT Division Algorithm
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Pipelining

• Pipelining is a technique used to create clock cycle times for
arithmetic data-paths.

• Usually, memory elements like flip-flops, transparent latches and
pulsed latches are used to impose sequencing.

• Pipelining techniques also vary with different logic gate family.
• Intelligent pipelining technique can improve performance greatly,

on the other hand poor pipelining introduces large sequencing
overheads.
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Pipelining with Flip-Flops
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Pipelining with Flip-Flops
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Pipelining with Latches
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Pipelining with Latches
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Pipelining with Pulsed Latches
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Pipelining with Pulsed Latches
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Use of Pass Transistor Logic

• Static multiplexors are replaced with transmission gate
multiplexors, a well-known application of pass transistor logic.

• The algorithm now needs a 5-1 multiplexor instead of a 4-1
multiplexor.

• The time periods are now,
1.6ns for sequencing using Flip-Flops,
1.7ns for sequencing using Latches and
1.4ns for sequencing using Pulsed Latches.

• The implementation with flip-flops is faster than the one with
latches in this case.
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Using Domino Logic

• Designers prefer domino logic for high-performance systems.
• Domino logic is considered twice as fast as the static CMOS logic,

but this is often not the case.
• Requirement of dual-rail domino gates, remedies for

charge-sharing problem and clocking techniques used limit the
speed.

• Traditional domino clocking has large sequencing overhead.
• Overlapping clocks can be used to hide sequencing overheads,

as shown ahead.
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Traditional Domino Clocking
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Traditional Domino Clocking
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Skew Tolerant Domino Clocking
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Constraints

• te =
Tc

N
+ thold + tskew

• tp = tprech + tskew

• Tc = te + tp

• toverlap =
N−1

N
Tc − tprech − tskew1 =

thold + tskew2 + tborrow
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Skew Tolerant Domino Implementation
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Skew Tolerant Domino Implementation
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Comparison

Sequencing method Time Period, Number of devices
Tcns(FO4) (p-mos,n-mos)

Skew-tolerant domino 1.1 (6.2) 1052 (264, 788)
Pulsed Latches (xmux) 1.4 (7.9) 1096 (548, 548)
Pulsed Latches 1.6 (9) 964 (482, 482)
Flip-Flops (xmux) 1.6 (9) 1140 (570, 570)
Traditional domino 1.6 (9) 1932 (704, 1228)
Transparent Latches (xmux) 1.7 (9.6) 1360 (680, 680)
Transparent Latches 1.8 (10.1) 1228 (614, 614)
Flip-Flops 2 (11.2) 1008 (504, 504)
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Conclusions

• Speed improves significantly with a better pipelining approach.
• Skew tolerant domino is the fastest implementation, yet has very

few devices used.
• Alternatively, a pulsed latch implementation with transmission

gates offers high clock frequency.
• Design complexity may also be an important factor while choosing

a sequencing method.
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