
2. Linear Algebraic Equations
Many physical systems yield simultaneous

algebraic equations when mathematical functions
are required to satisfy several conditions
simultaneously. Each condition results in an
equation that contains known coefficients and
unknown variables. A system of ‘n’ linear
equations can be expressed as

AX = C (1)
Where ‘A’ is a ‘n x n’ coefficient matrix, ‘C’ is

‘nx1’ right hand side vector, and ‘X’ is an ‘n x 1’
vector of unknowns.

Gauss elimination, Gauss-Jordan and LU
decomposition methods are direct elimination
methods.



2.1 Gauss elimination method:
This method comprises of two steps:

(i) Forward elimination of unknowns
(ii) Back substitution

(2a)
(2b)
(2c)

……………………………………………
……………………………………………

(2n)



Forward elimination of unknowns:
The first step is designed to reduce the set of   

equations to an upper triangular system.
Multiply Eq. (2a) by a21/a11. This gives

(3)

Modify Eq. (2b) by subtracting Eq. (3) from Eq. (2b). 
Now the equation is in the form

(4a)

Or a’22 x2 + …………..+ a’2n xn= c’2 (4b)
Prime indicates that the elements have been 
changed from their original values.
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Similarly, Eq. (2c) can be modified by multiplying 

Eq. (2a) with       and subtracting from Eq. (2c)

and the nth equation can be modified by multiplying

Eq. (2a) by       and subtract from Eq. (2n)

Following are the modified system of equations
a11 x1 + a12 x2 + a13 x3 + ……  + a1n xn = c1 (5a)

a’22 x2 + a’23 x3 + …… + a’2n xn  = c’2 (5b)
a’32 x2 + a’33 x3 + …… + a’3n xn  = c’3 (5c)                           

.………………………     ………………

.………………………     ………………
a’n2 x2 + a’n3 x3 + …… + a’nn xn  = c’n (5n)
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Repeat the above process to eliminate the
second unknown from Eq. (5c) to the last
equation. This process yield

a11x1 + a12x2 + a13 x3 + …….+ a1n xn  = c1 (6a)
a’22x2 + a’23x3 + …    + a’2nxn  = c’2 (6b)

a’’33 x3 + …   + a’’3nxn  = c’’3 (6c)

……………… …….. …………
a’’n3 x3 + ……+ a’’nn xn= c’’n (6n)

Double prime indicates that the elements have
been modified twice.



The problem can be continued to eliminate xn-1
term from nth equation. At this stage the 
system of equation has been transformed to 
upper triangular system as shown below.

a11 x1 + a12 x2 + a13 x3 + ……………….+ a1n xn = c1

a’22 x2 + a’23 x3 + ………………+ a’2n xn= c’2

a’’33 x3 + ……………..+ a’’3n xn= c’’3
………                …………

a(n-1)
nn xn= c(n-1)

n

- (7)



The above step can be algorithmically written 
as

(8)

(9)

k= 2, 3, 4, 5,………………. , n (10a)
i= k, k+1, k+2, …………….., n (10b)
j= k, k+1, k+2, …………….., n (10c)
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Back substitution:
The solution x can be obtained by considering the 
Eqn. (7) and writing for xn

(11)

This can be back substituted into (n-1)th equation to 
solve for xn-1. The procedure for evaluating the 
remaining x’s can be symbolically represented as

(12)

for i = n–1, n–2, n–3, ……., 1
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Example2.1:
Solve using Gauss elimination method

Forward elimination:
Elimination of 1st unknown x1 :
Multiply first row by 1/2 and subtract to second row; no 

operation is required on third row since       = 0 already:(1)
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Elimination of 2nd unknown x2 :
Multiply 2nd row by 2/3 and subtract from 

third row;

Backward substitution:
(1/3) x3 = 3 x3 = 9

(3/2) x2 + x3 = 3/2 x2 = – 5
2x1 + x2 = 1 x1 = 3
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On the method:
No of multiplication and divisions:  

No of additions and subtractions:  

(13)

3 2 33
3 3

N N N N+ −
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3 3
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≈



2.2 Pitfalls of elimination methods:
Although many systems of equations can be
solved by Gauss-elimination method, there are
some pitfalls with these methods.

(a) Division by Zero.
During both the elimination and backward
substitution phase, it is possible that a division by
zero could occur.

2x2 + 3 x3 =   8
4 x1 + 6 x2 + 7 x3 = –3
2 x1 +    x2 + 6 x3 =   5

Normalization of first row (a21/a11) involves division
by a11= 0. Problems also can arise when a
coefficient is very close to zero. Pivoting
techniques (discussed later) can partially avoid
these problems.



(b) Round-off errors:
Computer can support a limited number of
significant digits, round off errors can occur and it
is important to consider this, when evaluating the
results. This is particularly important when large
number of equations are to be solved.

(c) Ill –conditioned system:
Well conditioned systems are those where a
small change in one or more of the coefficients
results in a similar small change in solution.
.



• Ill conditioned systems are those where a small
change in coefficients result in large changes in
the solution. Ill conditioning also can be
interpreted as a wide range of answers can
approximately satisfying the equations. As
round-off errors can induce small changes in the
coefficients, these artificial changes can lead to
large solution errors for ill-conditioned systems,
as illustrated in the following example.



Example 2.2:
Solve the following system of equations.

(a) x1 + 2x2 =10 (b) x1 + 2x2 =10
1.1x1 + 2x2 = 10.4             1.05x1 + 2x2 = 10.4

Compare the results.
Solution:
Using Cramer’s rule
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1
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1(2) 2(1.1)
x −
= =

−
2
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1(2) 2(1.1)

x −
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−

1
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x −
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−
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−

Now the solution to Example 2.2(a) can be 
written as

Now, Example 2.2(b) is with a small change of the coefficient 
a21 from 1.1 to 1.05. This will cause a dramatic change in 
results



Substituting the values x1 = 8 and x2 = 1 into Example 
2.2(a)

8+2(1) = 10    ≈ 10

1.1(8) +2(1)  = 10.8 ≈ 10.4

Although, x1=8 and x2=1 is not the true solution to the 
original problem, the error check is too close enough to 
possibly mislead you into believing that your solutions 
are adequate. This situation can mathematically be 
characterized in following general form.

a11 x1 + a12 x2 = c1 (3)

a21 x1 + a22 x2 = c2 (4)



From the above two equations, x2 can be written as

If the slopes are nearly equal,

Or cross multiplying,
a11 a22 ≈ a21a12

Which can also expressed as
a11 a22 – a21a12≈0 (7)

Now, recall a11a22 – a12a21 is the determinant of
a two dimensional system.

Hence, a general conclusion can be that an ill-conditioned
system is one with a determinant close to zero.
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Effect of scale on the determinant:
Example 2.3:
Evaluate the determinant for the following system.
(a) 3x1 + 2x2 =18 (b)      x1 + 2x2 =10

–x1 + 2x2 = 2 1.1x1 + 2x2 = 10.4
(c)    Repeat (b) but with Eqs. Multiplied by10
Solution:
(a)Determinant, D = 3(2) – (–1)(2)  =  8

So, it is well conditioned system.
(b) Determinant, D = 1(2) – (1.1)(2) = –0.2

It is ill conditioned system.



(c) Now multiply equations in (b) with 10
10x1 + 20x2 = 100
11x1 + 20x2 = 104

Determinant, D = 10(20) – (11)(20) = – 20
The above example shows the magnitude

of the coefficients interjects a scale effect
that complicates the relationship between
system condition and determinant size.
One way to partially circumvent this

difficulty is to scale the equations so that
the maximum element in any row is
equal to 1.



Example 2.4:
Scale the equation in example 2.3

(a)  x1 + 0.667x2 = 6
–0.5x1 +          x2 = 1

D=1(1) – (0.5)(0.667) = 1.333
(b) For ill conditioned system

0.5x1 + x2 = 5
0.55x1 + x2 = 5.2

D = 0.5(1) – 0.55(1) = –0.05
(c) 0.5x1 + x2 = 5

0.55x1 + x2 = 5.2
Scaling changes the system to the same form as 
in (b) and the determinant is also -0.05. Thus, the 
scale effect is removed.



2.3 Techniques for improving solutions:
(a) Use of extended precision:

The simplest remedy for ill conditioning is to use
more significant digits in the computations, also
called extended precision or high precision. The
price is higher computational costs.

(b) Pivoting:
(i) Problems occur when a pivot element is zero

because the normalization step leads to division
by zero.

(ii) Problems may also arise when a pivot element
is close to zero. When the magnitude of pivot
element is small compared to the other
elements, then round off errors can occur.



Partial pivoting: Before the rows are
normalized, they can be swapped so that the
largest element is brought to the pivot
element. This is called partial pivoting.

Complete pivoting: If both columns and rows
are searched for the largest element and
then switched to the pivot position, it is
called complete pivoting.



Example 2.5 (Partial pivoting)
Use Gauss elimination to solve

0.0003x1 + 3.0000x2 = 2.0001
1.0000x1 + 1.0000x2 = 1.0000

Solution:
Multiply first equation by (1/0.0003) yields

x1 +10000x2 =6667
Eliminating x1 from the second equation

– 9999x2 = – 6666
Or       x2 =   2/3

Substituting back into the first equation



Due to subtractive cancellation, the result is very 
sensitive to the number of significant digits

Significant 
digits

x2 x1 % relative error 
for x1

3 0.667 -3.00 1099

4 0.6667 0.0000 100

5 0.66667 0.30000 10

6 0.666667 0.330000 1

7 0.6666667 0.3330000 0.1



Now, if the equations in Example 2.5 are solved in 
reverse order, the row with largest pivot element is 
normalized.
1.0000x1 +1.0000x2 = 1.0000
0.0003x1 + 3.0000x2 =2.0001

Elimination and substitution yield x2 = 2/3
and 

This is much sensitive to the number of significant digits.

Significant 
digits

x2 x1 % relative 
error for x1

3 0.667 0.333 0.1
4 0.6667 0.3333 0.01
5 0.66667 0.33333 0.001
6 0.666667 0.333333 0.0001
7 0.6666667 0.3333333 0.00001



(c) Scaling:
When some coefficients are very large than others, round
off errors can occur. The coefficients can be standardized
by scaling.

Solve the following set of equations by Gauss elimination and
pivoting strategy.

2x1 + 100,000 x2 = 100,000
x1 + x2 = 2

(a) Without scaling, forward elimination
2x1 + 100,000 x2 = 100,000

– 49,999 x2 = – 49,998
By back substitution

x2 = 1.00
x1 = 0.00



(b) Scaling transform the original equation to 
0.00002 x1 + x2 = 1

x1 +  x2 = 2
Put the greater value on the diagonal (pivoting)

x1 + x2 = 2
0.00002 x1 + x2 = 1

Forward elimination yields
x1 +               x2 = 2

0.99998 x2 = 0.99996
Solving x1 = x2 =1

Scaling leads to correct answer.



(c) Pivot, but retain the original coefficients
x1+ x2 = 2

2 x1+ 100,000x2 = 100,000
Solving we get x1 = x2 = 1

From the above results, we can observe
that scaling is useful in determining whether
pivoting is necessary, but the equations
themselves did not require scaling to arrive
at a correct result.



Example 2.6:
A team of three parachutists is connected by
a weightless cord shown in figure, while
free-falling at a velocity of 5m/s. Calculate
the tension in each section of cord and the
acceleration of the team, given the following
data.

Parachutist Mass, 
kg

Drag coefficient, 
kg/s

1 70 10

2 60 14

3 40 17



The free body diagram of each of the three 
parachutists is shown in the figure  



Using Newton’s second law 
m1g – T – c1v        = m1a   ;  m1a + T      = m1g - c1v            
m2g + T – c2v – R = m2a   ;            m2a –T+ R = m2g - c2v
m3g       – c3v + R = m3a   ; m3a      - R = m3g - c3v
The three unknowns are a, T and R. 

Solving  

a  =  8.604  m/s2

T =  34.42 N
R =  36.78 N



2.4. L U Decomposition Methods:
Consider the system of equations

[A] {X} = {C} (1)
Rearranging

[A] {X} – {C} =0 (2)
Suppose that Eq. (1) can be re expressed as
an upper triangle with 1 as diagonal
elements.
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It is similar to the manipulation that occurs
in the first step of Gauss elimination. Eq. (3)
can be expressed as

[U] {X} – {D} =0 (4)
Assume that there is a lower diagonal matrix

(5)[ ]

11

21 22

31 32 33

41 42 43 44

l     0     0    0
l     l     0    0

L =
l     l     l    0
l     l     l    l

 
 
 
 
 
 



[L] has the property that when Eqn. (4) is pre-
multiplied by it, Eqn. (2) is the result.

i.e., [L] {[U] {X} – {D}}  =  [A] {X} – {C} (6)

From the matrix algebra,
[L] [U] = [A] (7)

And     [L]{D} = {C} (8)

Eqn. (7) is referred to as LU decomposition of [A].



2.5. Crout Decomposition:
Gauss elimination involves two major
steps: Forward elimination and backward
substitution. Forward elimination step
comprises the bulk of the computational
effort. Most efforts have focused on
economizing this step and separating it
from the computations involving the right-
hand-side vector. One of the most
improved methods is called Crout
decomposition.

[L] [U] = [A]



For a 4 X 4 matrix

(9)

1. Multiply rows of [L] with first column of [U]
and equate with RHS 

l11 = a11 l21 = a21

l31 = a31 l41 = a41

Symbolically  li1 = ai1 for i = 1, 2,….,n   (10) 
First column of [L] is merely the first 
column of [A].

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44
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           0       0       0      1
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2. Multiply first row of [L] by the columns of [U]
and equate with RHS

l11 = a11 l11u12 = a12

l11u13 = a13 l11u14 = a14

or 

Symbolically 

for j = 2, 3, ……, n (11)
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12

11

au =
l

13
13

11

au =
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l
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11

j
j
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=



3.Similar operations are repeated to evaluate 
remaining column of [L] and the rows of [U].
Multiply second through fourth rows of [L] by 
second column of [U], to get
l21u12 + l22 = a22

l31u12 + l32 = a32

l41u12 + l42 = a42

Solving for l22, l32 and l42 and representing 
symbolically 
li2 = ai2 - li1 u12 for i =2, 3, ……… , n (12)



4.The remaining unknowns on the 2nd row of 
[U] can be evaluated by multiplying the 
second row of [L] by the third and fourth 
columns of [U] to give
l21u13 + l22u23 = a23

l21u14 + l22u24= a24

which can be solved for

which can be expressed symbolically as

for j = 3, 4, …………,n (13)

23 21 13
23

22

a l uu
l
−

=
24 21 14

24

22

a l uu
l
−

=

2 21 1
2

22

j j
j

a l uu
l
−
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5.The process can be repeated to evaluate the 
other elements. General formulae that result 
are

li3 = ai3- li1u13 - li2u23 for i = 3,4,………….,n  (14)

for j = 4,5, …………,n  (15)

li4 = ai4- li1u14-li2u24-li3u34 for i = 4,5, ………….,n   (16)

and so forth.

3 31 1 32 2
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j j j
j
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Inspection of Eqn. (10) through (16) leads
to the following concise formulae for
implementing the method.

li1 = ai1 for i = 1, 2, 3, ………….,n (17)

for j = 2, 3, …………,n (18)1
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For j = 2, 3, ……., n ─ 1,

for i = j, j + 1, …………,n     (19) 

for k = j + 1, j + 2…………,n (20)

and

(21)
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Back substitution step:
In Gauss elimination, the transformations

involved in forward elimination are
simultaneously performed on the coefficient
matrix [A] and the right hand side vector {C}.

In Crout’s method, once the original matrix
is decomposed, [L] and [U] can be employed
to solve for {X}. This is accomplished in two
steps.



Step1:
Determine {D} for a particular {C} by forward 

substitution.

(22)

for i = 2,3,4,…, n (23)
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Step 2:
Eqn.(4) can be used to compute ‘X’ by back 

substitution
xn = dn (24)

for i = n─1, n─2,…,1   (25)
ij j

n

i i
j=i+1

x = d - u x∑



Example 2.7
Solve the following system of equations by 
Crout’s  LU decomposition method.

2 x1 ─  5 x2 +     x3 =   12
─  x1 +   3 x2 ─     x3 =  ─ 8

3 x1 ─  4 x2 +  2 x3 =    16
Solution:

According to Eq.(17), the first column of [L] 
is identical to the first column of [A]:
l11 = 2 l21 = −1    l31 = 3



Eqn.(18) can be used to compute the first row 
of [U]:

The second column of [L] is computed with 
Eqn.(19)
l22 = a22− l21 u12 = 3 − (−1) (−2.5) = 0.5 
l32 = a32− l31 u12 = −4 − (3) (−2.5) = 3.5 

12
12

11

a 5u = = = 2.5
l 2

−
−

13
13

11

a 1u = = = 0.5
l 2



Eqn. (20) is used to compute the last element 
of [U],

and Eqn.(21) can be employed to determine 
the last element of [L],
l33 = a33− l31 u13− l32 u23 = 2 − 3(0.5) −3.5 (−1) =4

Thus, the LU decomposition is 

It can be easily verified that the product of 
these two matrices is equal to the original 
matrix [A].

23 21 13
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Then, 

The forward substitution procedure of Eqn. 
(22) and (23) can be used to solve for

1

2

3

2 0 0 12
1 0.5 0 8

3 3.5 4 6

d
d
d

     
    − = −    
         

1

11

1
c 12d = = 6
l 2

=
2 21 1

2
22

c l d 8 ( 1)6d = = = 4
l 0.5
− − − −

−

3 31 1 32 2
3

33

c l d l d 16 3( 6) 3.5( 4)d = = = 3
l 4

− − − + − −



The second step is to solve Eqn. (4), which for the 
present problem has the value.

The back substitution procedure of Eqs. (24) and 
(25) can be used to solve for
x3 = d3 = 3
x2 = d2- u23 x3 = -4 - (-1) 3 = ─1
x1 = d1- u12 x2- u13 x3 = 6 - (-2.5)(-1) -0.5( 3) =2

1

2

3

1 2.5 0.5 6
0 1 1 4
0 0 1 3

x
x
x

−     
    − = −    
         



These values can be verified by substituting 
them into original equations.
2 x1 - 5 x2 +    x3 =   12
2(2)-5(-1)+(3)      =   12    

Thus the value are verified.



2.6. Cholesky’s Decomposition
Many engineering application yield

symmetric coefficient matrix. i.e., aij = aji for
all i and j. In other words [A] = [A]T. They
offer computational advantages because
only half the storage is needed and in most
cases, only half the computational time
is required for their solution. One of the
most popular approaches is Cholesky
decomposition.

A = [B][B]T (1)



In Eq.(1) resulting triangular factors are the
transpose of each other.

(2)

Because of the symmetry, it is sufficient if
we consider the six elements shown in the
matrix [A].

11 11 11 12 13

21 22 21 22 22 23

31 32 33 31 32 33 33

0 0
0 0

0 0

a sym b b b b
a a b b b b
a a a b b b b

     
     =     
          



Expanding the matrices, the relationship between 
[A] and [B] takes the form of the following.
a11 = (b11)2

a12 = b11b12

a13 = b11 b13

a22 = (b12)2 + (b22)2

a23 = b12 b13+ b22 b23 (3)

11 11b = a
12

12
11

ab =
b
13

13
11

ab =
b

2
22 22 12b = a - b

2 2
33 33 13 23b = a b b− −

2 2 2
33 13 23 33a = b +b +b

23 1321
23

22

a b b
b

b
−

=



Hence the elements of matrix [B] can be 
determined by the general formulae



When  [A] = [B] [B]T, then
[B] [B]T {x} ={f} (4)

Pre-multiplying both sides by [B]−1

We have [B]T {x} =[B]−1{f} (5)

Let  [B]−1 {f}  = {y}

or    f  =  [B] {y} (6)



Since { f } and [B] are known, { y } can be 
computed by forward substitution

(7)

f1 = b11y1

f2 = b21 y1 + b22 y2 (8)

f3 = b31 y1+ b32y2 + b33 y3

11

21 22

31 32 33 3 3

1 1

2 2

0 0
0

b y f
b b y f
b b b y f

     
     =    
         

1

11

1
fy =

b
2 21 1

2
22

f b yy
b
−

=

3 31 1 32 2
3

33

f b y b yy
b

− −
=



or symbolically,

as  bik = bki (9)

having computed {y}, {x} can be computed by 
back substitution as following.

1

11

1
fy =

b



[B]T {x} = {y} (10)

(11)

Using the method of backward substitution {x}
can be determined (i.e.)

(12)

(13)

n
n

nn

yx
b

=



2.7. Gauss-Seidel Method

This is a method of successive
approximations. The unknown variables are
assumed to have zero values to start with.
More and more correct values are then
obtained in subsequent iterations.



Example:
Solve the following system of equations by 

Gauss-Seidel iteration.
10 x1 +   2 x2 +       x3 =       9
2 x1   + 20 x2 ─   2 x3 = ─ 44

─2 x1 +   3 x2 + 10  x3 =     22
Solution:

(1)
(2)

(3)

2 3
1

(9 2 )
10
x xx − −

=

1 3
2

( 44 2 2 )
20

x xx − − +
=

1 2
3

(22 2 3 )
10
x xx + −

=



or
for i = 1 to n, j = 1 to n except i.

Where    B is right hand side matrix

A is coefficient matrix.
To start with let x(0)

1 = x(0)
2 = x(0)

3 = 0. 
Substituting 

x(0)
2 = x(0)

3 = 0 in Eqn. (1), we get x(1)
1 = 0.90

ij j

i
ii

B A x
x

A

−
=

∑



Substituting                and             in Eq.(2) 
we get x2 = -2.29

Substitute already calculated x2 and x1 in 
Eq.(3) we get x3 = 3.07.

Note that new values of x1 are used in place 
of old values as soon as they are available. 
This method converges faster.

(()) (())
2 3 0x x= =(1)

1 0.90x =

(1)
1 0.90x = (0)

3 0x =(1)
2 2.20 0.90 2.29x = − − = −

(1)
1 0.90x = (1)

2 2.29x = −
(1)
3 2.20 0.18 0.69 3.07x = + + =

(1)
1 0.90x =



The values of {X} for different iterations are 
tabulated below:

Iteration 0 1 2 3 4

x1 0 0.90 1.05 1.00 1.00
x2 0 -2.29 -2.00 -2.00 -2.00
x3 0 3.07 3.01 3.00 3.00

We can note that there is no variation in {X}
values from 3rd to 4th iteration up to second 
decimal. Hence iterations are stopped. It is 
possible to get accuracy for more decimal places 
as required.
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SYSTEMS OF NONLINEAR EQUATIONS

and

are two simultaneous nonlinear equations with
two unknowns, x and y. They can be expressed
in the form



Thus, the solution would be the values of x and
y that make the functions u(x, y) and v(x, y)
equal to zero. Solution method (i) one – point
iteration and (ii) Netwon – Raphson

(i) One point iteration for Nonlinear System

Problem statement: Use one–point iteration to
determine the roots of Eq.(1). Note that a
correct pair of roots is x = 2 and y = 3. Initiate
the computation with guesses of x = 1.5 and y
= 3.5.



Solution: Equation (1a) can be solved for

)2(10 2

1 a
y

xx
i

i
i

−
=+

and Eq (1b) can be solved for 

)2(357 2
1 byxy iii −=+

Note that we will drop the subscripts for the
remainder of the example.



On the basis of the initial guesses, Eq (2a) can
be used to determine a new value of x:

21429.2
5.3

)5.1(10 2

=
−

=x

This result and the value of y = 3.5 can be
substituted into Eq. (2b) to determine a new
value of y:

y = 57 – 3(2.21429) (3.5)2 = - 24.37516

Thus, the approach seems to be diverging. This
behavior is even more pronounced on the
second iteration



( )

709.429)37516.24()20910.0(357

20910.0
37516.24
21429.210

2

2

=−−−=

−=
−
−

=

y

x

Obviously, the approach is deteriorating.



Now we will repeat the computation but with the original equations set up in a
different format. For example, an alternative formulation of Eq. (1a) is

x
yy

isbEqofand

xyx

3
57

)1(.

10

−
=

−=

Now the results are more satisfactory:



98340.2
)0246.2(3

04955.357

02046.2)04955.3(94053.110

04955.3
)94053.1(3

86051.257

94053.1)86051.2(17945.210

86051.2
)17945.2(3

5.357

17945.2)5.3(5.110

=
−

=

=−=

=
−

=

=−=

=
−

=

=−=

y

x

y

x

y

x

Thus, the approach is converging on the true values of x = 2 and y = 3.



Shortcoming of simple one – point iteration: Its convergence often depends on

the manner in which the equations are formulated. Additionally, divergence can

occur if the initial guesses are insufficiently close to the true solution.

11 <
∂
∂

+
∂
∂

<
∂
∂

+
∂
∂

y
v

y
uand

x
v

x
u

These criteria are so restrictive that one – point iteration is rarely used in practice



(ii) Newton – Raphson 

( ) )3()()()( '
11 iiiii xfxxxfxf −+= ++

where xi is the initial guess at the root and xi+1 is the point at which the slope

intercepts the x axis. At this intercept, f(xi+ 1 ) by definition equals zero and Eq. (3)

can be rearranged to yield

( )
( ) )4('1

i

i
ii xf

xfxx −=+

which is the single – equation form of the Newton–Raphson method.

The multiequation form is derived in an identical fashion.
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Just as for the single-equation version, the root estimate corresponds to the

points at which ui+1 and vi+1 equal zero. For this situation, Eq. (5) can be

rearranged to give
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Because all values subscripted with i’s are known (they correspond to the latest

guess or approximation), the only unknowns are xi+1 and yi+1. Thus, Eq. (6) is a

set of two linear equations with two unknowns. Consequently, algebraic

manipulations (for example, Cramer’s rule) can be employed to solve for

)7(

)7(
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The denominator of each of these equations is formally referred to as the

determinant of the Jacobian of the system.

Equation (7) is the two-equation version of the Newton – Raphson method.

Example: Roots of Simultaneous Nonlinear Equations

Problem Statement: Use the multiple – equation Netwon – Raphon method to

determine roots of Eq. (1). Note that a correct pair of roots is x = 2 and y = 3.

Initiate the computation with guesses of x = 1.5 and y = 3.5.

Solution: First compute the partial derivatives and evaluate them at initial

guesses
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Thus, the determinant of the Jacobian for the first iteration is

6.5(32.5) – 1.5 (36.75) = 156.125



The values of the functions can be evaluated at the initial guesses as

u0 = (1.5)2 + 1.5 (3.5) – 10 = – 2.5

v0 = 3.5 + 3 (1.5) (3.5)2 – 57 = 1.625

These values can be substituted into Eq. (7) to give

84388.2
125.156

)5.6(625.1)75.36(5.25.3

03603.2
125.156

)5.6(625.1)5.32(5.25.1

1

1

=
−−

−=

=
−−

−=

y

and

x

Thus, the result are converging on the true values of x1 = 2 and y1 = 3. The

computation can be repeated until an acceptable accuracy is obtained.



The general case of solving n simultaneous nonlinear equations

f1 (x1, x2, …….., xn) = 0

f2 (x1, x2,…….., xn) = 0 (8)
.
.
.

fn (x1, x2, …….., xn) = 0

The solution of this system consists of the set of x values that simultaneously

result in all the equations equaling zero.

A Taylor series expansion is written for each equation. For example, for the lth

equation
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where the first subscript, l, represents the equation or unknown and the second

subscript denotes whether the value or function in question is at the present value

(i) or at the next value (i +1).

Equations of the form of (9) are written for each of the original nonlinear

equations. Then, as was done in deriving Eq. (6) from (5) , all f l,i+1 terms are set

to zero as would be the case at the root and Eq. (9) can be written as
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Notice that the only unknowns in Eq. (10) are the xl,i+1 terms on the right – hand

side. All other quantities are located at the present value (i) and, thus, are given at

any iteration. Consequently, the set of equations generally represented Eq. (10)

(that is, with l = 1,2,……,n) constitutes a set of linear simultaneous equations

that can be solved by methods elaborated.



Matrix notation can be employed to express Eq. (10) concisely. The partial

derivatives can be expressed as
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Using these relationships, Eq. (10) can be represented concisely as 

[ ] { } { }ii WXZ =+1

The initial and final values can be expressed in vector form as

{ } [ ]inii
T

i fffF ,,2,1 .......=

Finally , the function values at i can be expressed as 

{ } { } [ ]{ }iii XZFW +−=

where

)12(



Equation (12) can be solved using a technique such as Gauss elimination. This

process can be repeated iteratively to obtain refined estimates.

It should be noted that there are two major shortcomings to the forgoing

approach. First, Eq. (12) is often inconvenient to evaluate. Therefore, variations

of the Newton Raphson approach have been developed to circumvent this

dilemma.

The second shortcoming of the multiequation Newton – Raphson method is that

excellent initial guesses are usually required to unsure convergence.
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