L e

ANSL /) TEEE

STUDENT

sTD 754 — 1985

colf?

An American National Standard

IEEE Standard for
Binary Floating-Point Arithmetic

1. Scope

1.1 Implementation Objectives. It is intended
that an implementation of a floating-point system
conforming to this standard can be realized en-
tirely in software, entirely in hardware, or in any
combination of software and hardware. It is the
environment the programmer or user of the sys-
tem sees that conforms or fails to conform to
this standard. Hardware components that require
software support to conform shall not be said to
conform apart from such software.

1.2 Inclusions. This standard specifies

(1) Basic and extended floating-point number
formats

(2) Add, subtract, multiply, divide, square root,
remainder, and compare operations

(3) Conversions between integer and floating-
point formats .

(4) Conversions between different floating-
point formats .

(5) Conversions between basic format floating-
point numbers and decimal strings

(6) Floating-point exceptions and their han-
dling, including nonnumbers (NaNs)

1.3 Exclusions. This standard does not specify
(1) Formats of decimal strings and integers
(2) Interpretation of the sign and significand

fields of NaNs :

(3) Binary <+ decimal conversions to and from
extended formats

2. Definitions

biased exponent. The sum of the exponent and
a constant (bias) chosen to make the biased ex-
ponent’s range nonnegative.

binary floating-point number. A bit-string char-
acterized by three components: a sign, a signed
exponent, and a significand. Its numerical value,
if any, is the signed product of its significand and
two raised to the power of its exponent. In this
standard a bit-string is not always distinguished
from a number it may represent.

denormalized number. A nonzero floating-point
nureber whose exponent has a reserved value,
usually the format’s minimum, and whose ex-
plicit or implicit leading significand bit is zero.

destination. The location for the result of a bi-
nary or unary operation. A destination may be ei-
ther explicitly designated by the wuser or
implicitly supplied by the system (for example,
intermediate results in subexpressions or argu-
ments for procedures). Some languages place the
results of intermediate calculations in destina-
tions beyond the user's control. Nonetheless, this
standard defines the result of an operation in
terms of that destination’s format and the oper-
ands’ values.

exponent. The component of a binary floating-
point number that normally signifies the integer

ANSI/IEEE
Std 754-1985

power to which two is raised in determining the
value of the represented number. Occasionally
the exponent is called the signed or unbiased ex-
ponent.

fraction. The field of the significand that lies to
the right of its implied binary point.

mode. A variable that a user may set, sense,
save, and restore to control the execution of sub-
sequent arithmetic operations. The default mode
is the mode that a program can assume to be in
effect unless an explicitly contrary statement is
included in either the program or its specifica-
tion. The following mode shall be implemented:
rounding, to control the direction of rounding er-
rors. In certain implementations, rounding preci-
sion may be required, to shorten the precision of
results.

The implementor may, at his option, implement
the following modes: traps disabled/enabled, to
handle exceptions.

NaN. Not a number, a symbolic entity encoded
in floating-point format. There are two types of
NaNs (6.2). Signaling NaNs signal the invalid op-
eration exception (7.1) whenever they appear as
operands. Quiet NaNs propagate through almost
every arithmetic operation without signaling ex-
ceptions.

result. The bit string (usually representing a
number) that is delivered to the destination.

significand. The component of a binary floating-
point number that consists of an explicit or im-
plicit leading bit to the left of its implied binary
point and a fraction field to the right.

shall. The use of the word shall signifies that
which is obligatory in any conforming implemen-
tation.

should. The use of the word should signifies that
which is strongly recommended as being in keep-
ing with the intent of the standard, although ar-
chitectural or other constraints beyond the scope
of this standard may on occasion render the rec-
ommendations impractical.

status flag. A variable that may take two states,
set and clear. A user may clear a flag, copy it, or
restore it to a previous state. When set, a status

IEEE STANDARD FOR

flag may contain additional system-dependent in-
formation, possibly inaccessible to some users.
The operations of this standard may as a side
effect set scme of the following flags: inexact re-
sult, underflow, overflow, divide by zero, and in-
valid operation.

user. Any person, hardware, or program not it-
self specified by this standard, having access to
and controlling those operations of the program-
ming environment specified in this standard.

3. Formats

This standard defines four floating-point for-
mats in two groups, basic and extended, each
having two widths, single and double. The stand-
ard levels of implementation are distinguished by
the combinations of formats supported.

3.1 Sets of Values. This section concerns only
the numerical values representable within a for-
mat, not the encodings. The only values repre-
sentable in a chosen format are those specified
by way of the following three integer parameters:

p = the number of significand bits (preci-

sion)

E . = the maximum exponent
Fn = the minimum exponent

Each format's parameters are given in Table L
Within each format only the following entities
shall be provided:

Numbers of the form (—1)*2¢(bg*bby =+, ;)

where
s=0orl
E = any integer between E_;, and E,..,
inclusive
b,’ =0orl

Two infinities, +® and —=
At least one signaling NaN
At least one quiet NaN

The foregoing description enumerates some
values redundantly, for example, 2°(1-<0) =
2'(0-1) = 22(0+01) = --- . However, the encod-
ings of such nonzero values may be redundant
only in extended formats (3.3). The nonzero val-
ues of the form =2%min(Q «b b, -+ b,_) are called
denormalized. Reserved exponents may be used
to encode NaNs, o, =0, and denormalized num-

ANSI/IEEE

BINARY FLOATING-POINT ARITHMETIC Std 754-1986
Table 1
Summary of Format Parameters
Format
Parameter Single Double

Single Extended Double Extended
P 24 = 32 53 = 64
E rax +127 = +1023 +1023 > +16383
Ein o ~-126 = —1022 ~1022 < —16382
~ Exponent bias TO L1 ERDLX +127 unspecified +1023 unspecified
/ Exponent width in bits 8 = 11 11 = 15
(Format width in bits 32 > 43 64 > 79

N EXPoNERNT BIAS TV doyyul TI26 +lo22

bers. For any variable that has the value zero, the
sign bit s provides an extra bit of information.
Although all formats have distinct representa-
tions for +0 and —0, the signs are significant in
some circumstances, such as division by zero,
and not in others. In this standard, 0 and « are
written without a sign when the sign is not im-
portant.

3.2 Basic Formats. Numbers in the single and
double formats are composed of the following
three fields: '

(1) 1-bit sign s

(2) Biased esponent e = E-+bias

(3) Fraction f =+ bby -+ by

The range of the unbiased exponent E shall in-
clude every integer between two values Ep;, and
Foax, inclusive, and also two other reserved val-

ues Epin—1to encode £0 and denormalized num-
bers, and Epn,c+1 to encode +» and NaNs. The
foregoing parameters are given in Table 1. Each
nonzero numerical value has just one encoding.
The fields are interpreted as follows:

3.2.1 Single. A 32-bit single format number X
is divided as shown in Fig 1. The value v of X is
inferred from its constituent fields thus

() If e = 255 and f # 0, then v is NaN regard-
less of s

@) Ife =25 and f = 0, thenv = (—1)’w

(3) If 0 < e < 255, then v (—Ds2¢7527(1s)

(4)Ife=0 and f # 0, then v = (—1)*2725(0 -)
(denormalized numbers)

(5) If e = 0 andf = 0, thenv = (=1)%0 (zero)

3.2.2 Double. A 64-bit double format number
X is divided as shown in Fig 2. The value v of X
is inferred from its constituent fields thus

Fig 1
Single Format

msb means most significant bit
lsb means Jeast significant bit

1 8 23 . widths
s e f

msb Isb msb Isb . .. order

Fig 2
Double Format

1 1 52 . widths
s e f

msb Isb msb Isb . . order

ANSI/IEEE
Std 764-1986

(1) f e = 2047 and f # 0, then v is NaN regard-
less of s

(2)Ife=2047 and f = 0, thenv = (=1)’x

(3) If 0 < e < 2047, then v = (=1 20719 (1 1)

A Ife=0andf# 0, thenv = (=1)*271922(0 - /)
(denormalized numbers)

(®)Ife =0andf = 0, thenv = (-1)%0 (zero)
3.3 Extended Formats. The single extended and
double extended formats encode in an implemen-
tation-dependent way the sets of values in 3.1
subject to the constraints of Table 1. This stand-
ard allows an implementation to encode some
values redundantly, provided that redundancy be
transparent to the user in the following sense: an
implementation either shall encode every non-
zero value uniquely or it shall not distinguish re-
dundant encodings of nonzero values. An
implementation may also reserve some bit strings
for purposes beyond the scope of this standard.
When such a reserved bit string occurs as an op-
erand the result is not specified by this standard.

An implementation of this standard is not re-
quired to provide (and the user should not as-
sume) that single extended have greater range
than double.

3.4 Combinations of Formats. All implementa-
tions conforming to this standard shall support
the single format. Implementations should sup-
port the extended format corresponding to the
widest basic format supported, and need not sup-
port any other extended format.?

4. Rounding

Rounding takes a number regarded as infinitely
precise and, if necessary, modifies it to fit in the
destination’s format while signaling the irexact
exception (7.5). Except for binary-<—decimal
conversion (whose weaker conditions are spec-
ified in 5.6), every operation specified in Section
5 shall be performed as if it first produced an
intermediate result correct to infinite precision
and with unbounded range, and then rounded
that result according to one of the modes in this
sectinn.

The rounding modes affect all arithmetic oper-
ations except comparison and remainder. The

3Q0nly if upward compatibility and speed are important is-
sues should a system supporting the double extended format
also support single extended.

10

IEEE STANDARD FOR

rounding modes may affect the signs of zero
sums (6.3), and do affect the thresholds beyond

which overflow (7.3) and underflow (7.4) may be
signaled.

4.1 Round to Nearest. An implementation of this
standard shall provide round to nearest as the
default rounding mode. In this mode the repre-
sentable value nearest to the infinitely precise re-

-sult shall be delivered; if the two nearest

representable values are equally near, the one
with its least significant bit zero shall be deliv-
ered. However, an infinitely precise result with
magnitude at least 2°max(2—27?) shall round to «
with'no change in sign; here E,, and p are de-
termined by the destination format (see Section

3) unless overridden by a rounding precision
mode (4.3).

4.2 Directed Roundings. An implementation
shall also provide three user-selectable directed
rounding modes: round toward +%, round
toward —<o, and round toward 0.

When rounding toward + the result shall be

the format's value (possibly +») closest to and
no less than the infinitely precise result. When
rounding toward —o the result shall be the for-
mat's value (possibly —«) closest to and no
greater than the infinitely precise result. When
rounding toward O the result shall be the for-
mat’s value closest to and no greater in magni-
tude than the infinitely precise result.
APBLIES TO CPERATINS) nppsTINATIOR" S TRESULTY
4.3 Rounding Precision. Normally, a result is
rounded to the precision of its destination. How-
ever, some systems deliver results only to double
or extended destinations. On such a system the
user, which may be a high-level language com-
piler, shall be able to specify that a result be
rounded instead to single precision, though it
may be stored in the double or extended format
with its wider exponent range.! Similarly, a sys-
tem that delivers results only to double extended
destinations shall permit the user to specify
rounding to-single or double precision. Note that
to meet the specifications in 4.1, the result cannot
suffer more than one rounding error.

*Control of rounding precision is intended to allow systems
whose destinations are always double or extended to mimic,
in the absence of over/underflow, the precisions of systems
with single and double destinadons. An implementadon
should not provide operations that combine double or ex-
tended operands to produce a single resuit, nor operations
that combine double extended operands to produce a double
result, with only one rounding.

BINARY FLOATING-POINT ARITHMETIC

5. Operations

All conforming implementations of this stand-
ard shall provide operations to add, subtract,
multiply, divide, extract the square root, find the
remainder, round to integer in floating-point for-
mat, convert between different floating-point for-
mats, convert between floating-point and integer
formats, convert binary <-decimal, and com-
pare. Whether copying without change of format
is considered an operation is an implementation
option. Except for binary -+ decimal conversion,
each of the operations shall be performed as if it
first produced an intermediate result correct to
infinite precision and with unbounded range, and
then coerced this intermediate result to fit in the
destination’s format (see Sections 4 and 7). Sec-
tion 6 augments the following specifications to
cover =0, =, and NaN; Section 7 enumerates
exceptions caused by exceptional operands and
exceptional results.

5.1 Arithmetic. An implementation shall provide
the add, subtract, multiply, divide, and remainder
operations for any two operands of the same for-
mat, for each supported format; it should also
provide the operations for operands of differing
formats. The destination format (regardless of
the rounding precision control of 4.3) shall be at
least as wide as the wider operand’s format. All
results shall be rounded as specified in Section 4.

When y # 0, the remainder r = 2 REM v is
defined regardless of the rounding mode by the
mathematical relation r = 2 — y X n, where n is
the integer nearest the exact value z/y; whenever
|n—x/y|= §, then m is even. Thus, the re-
mainder is always exact. If r = 0, its sign shall
be that of x. Precision control (4.3) shall not
apply to the remainder operation.

7ot

Mmﬁ.&:’r’?ﬂj’ﬂ(ﬁ&Z Square Root. The square root operation
w 940" shall be provided in all supported formats. The
,o,;,w‘n‘{f result is defined and has a positive sign for all
sio#T 4 operands = 0, except that /=0 shall be —~0. The
A f% F 3 destination format shall be at least as wide as
';w";/,q!"‘: " the operand’s. The result shall be rounded as

o s v0 specified in Section 4.

V-0 %

5.3 Floating-Point Format Conversions. It
shall be possible to convert floating-point num-
bers between all supported formats. If the con-
version is to a narrower precision, the result

11

ANSI/IEEE
Std 764-1985

shall be rounded as specified in Section 4. Con-
version to a wider precision is exact.

5.4 Conversion Between Floating-Point and
Integer Formats. It shall be possible to convert
between all supported floating-point formats and
all supported integer formats. Conversion to in-
teger shall be effected by rounding as specified
in Section 4. Conversions between floating-point
integers and integer formats shall be exact unless
an exception arises as specified in 7.1

5.5 Round Floating-Point Number to Integer
Value. It shall be possible to round a floating-
point number to an integral valued floating-point
number in the same format. The rounding shall
be as specified in Section 4, with the understand-
ing that when rounding to nearest, if the differ-
ence between the unrounded operand and the
rounded result is exactly one half, the rounded
result is even.

5.6 Binary - Decimal Conversion. Conversion
between decimal strings in at least one format
and binary floating-point numbers in all sup-
ported basic formats shall be provided for num-
bers throughout the ranges specified in Table 2.
The integers M and N in Tables 2 and 3 are such
that the decimal strings have values +M X 10*¥V,
On input, trailing zeros shall be appended to or
stripped from M (up to the limits specified in
Table 2) so as to minimize N. When the destina-
tion is a decimal string, its least significant digit
should be located by format specifications for
purposes of rounding.

When the integer M lies outside the range
specified in Tables 2 and 3, that is, when M = 10°
for single or 10Y for double, the implementor
may, at his option, alter all significant digits after
the ninth for single and seventeenth for double
to other decimal digits, typically 0.

Conversions shall be correctly rounded as
specified in-Section 4 for operands lying within

Table 2
Decimal Conversion Ranges

Decimal to Binary Binary to Decimal

F

ormat Max M Max N Max M Max N
Single -1 99 -1 53
Double 107-1__ 999 107—1 340

ANSI/IEEE
Std 754-1985

the ranges specified in Table 3. Otherwise, for
rounding to nearest, the error in the converted
result shall not exceed by more than 0.47 units in
the destination’s least significant digit the error
that is incurred by the rounding specifications of
Section 4, provided that exponent over/under-
flow does not occur. In the directed rounding
modes the error shall have the correct sign and
shall not exceed 147 units in the last place.

Conversions shall be monotonic, that is, in-
creasing the value of a binary floating-point num-
ber shall not decrease its value when converted
to a decimal string; and increasing the value of a
decimal string shall not decrease its value when
converted to a binary floating-point number.

When rounding to nearest, conversion from bi-
nary to decimal and back to binary shall be the
identity as long as the decimal string is carried to
the maximum precision specified in Table 2,
namely, 9 digits for single and 17 digits for dou-
blesd

If decimal to binary conversion over/under-
flows, the response is as specified in Section 7.
Over/underflow and NaNs and infinities encoun-
tered during binary to decimal conversion should
be indicated to the user by appropriate strings.
NaNs encoded in decimal strings are not spec-
ified in this standard.

To avoid inconsistencies, the procedures used
for binary - decimal conversion should give the
same results regardless of whether the conver-

Table 3
Correctly Rounded Decimal Conversion Range

Decimal to Binary Binary to Decimal

Format

ormaf Max M Max N Max M Max N
Single 1°—1 13 -1 13
Double 07-1 27 0i-1 27

5The properties specified for conversions are implied by er-

ror bounds that depend on the format (single or double) and
the number of decimal digits involved: the 0.47 mentioned is
a worst-case bound only. For a detailed discussion of these
error bounds and economical conversion algorithms that ex-
ploit the extended format, see COONEN, JEROME T. Contri-
butions to a Proposed Standard for Binary Floating-Point
Arithmetic. Ph.D. Thesis, University of California, Berkeley,
CA, 1984.

IEEE STANDARD FOR

sion is performed during language translation (in-
terpretation, compilation, or assembly) or during
program execution (run-time and interactive in-
put/output).

5.7 Comparison. It shall be possible to compare
floating-point numbers in all supported formats,
even if the operands’ formats differ. Comparisons
are exact and never overflow nor underflow.
Four mutually exclusive relations are possible:
less than, equal, greater than, and unordered.
The last case arises when at least one operand is
NaN. Every NaN shall compare unordered with
everything, including itself. Comparisons shall ig-
nore the sign of zero (so +0 = —0).

The result of a comparison shall be delivered
in one of two ways at the implementor’s option:
either as a condition code identifying one of the
four relations listed above, or as a true-false re-
sponse to a predicate that names the specific
comparison desired. In addition to the truefalse
response, an invalid operation exception (7J1)
shall be signaled when, as indicated in Table 4,
last column, unordered operands are compared
using one of the predicates involving < or > but
not ? (Here the symbol ? signifies unordered).

Table 4 exhibits the twenty-six functionally dis-
tinct useful predicates named, in the first column,
using three notations: ad hoc, FORTRAN-like, and
mathematical. It shows how they are obtained
from the four condition codes and tells which
predicates cause an invalid operation exception
when the relation is unordered. The entries T
and F indicate whether the predicate is true or
false when the respective relation holds.

Note that predicates come in pairs, each a log-
ical negation of the other; applying a prefix such
as NOT to negate a predicate in Table 4 reverses
the true/false sense of its associated entries, but
leaves the last column’s entry unchanged.

Implementations that provide predicates shall
provide the first six predicates in Table 4 and
should provide the seventh, and a means of log-
ically negating predicates.

8There may appear to be two ways to write the logical
negaton of a predicate, one using NOT explicitly and the
other reversing the relational operator. For example, the log-
ical negadon of (X = Y) may be written either NOT(X = Y) or
(X?<>Y); in this case both expressions are functionally
equivalent to (X # Y). However, this coincidence does not oc-
cur for the other predicates. For example, the logical nega-
tion of (X <Y) is just NOT(X <Y), the reversed predicate
(X ?7>=7Y) is different in that it does not signal an invalid
operation exception when X and Y are unordered.

BINARY FLOATING-POINT ARITHMETIC

. ANSI/IEEE

Std 754-1985
Table 4
Predicates and Relations
Predicates Relations Exception
Greater Less Invalid If
Ad hoc FORTRAN Math Than Than Equal Unordered Unordered
= EQ. = F F T F No
7> NE. * T T F T No
> .GT. > T F F F Yes
>= .GE. = T F T F Yes
< LT. < F T F F Yes
<= LE. B F T T F Yes
? unordered F F F T No
<> 1G. T T F F Yes
<=D> LEG. T T T Yes
7> UG. T F F T No
7> = UGE. T F T T No
2< UL. F T F T No
7<= JULE. F T T T No
- 7= UE. F F T T No
NOT(>) F T T T Yes
NOT(>=) F T F T Yes
NOT(<) T F T T Yes
NOT(<=) T F F T Yes
NOT(?) T T T F No
NOT(<>) F F T T Yes
NOT(<=>) F F F T Yes
NOT(2>) F T T F No
NOT(?>=) F T F F No
NOT(?<) T F F No
NOT(?<=) T F F F No
NOT(?=) T T F F No

6. Infinity, NaNs, and Signed Zero

6.1 Infinity Arithmetic. Infinity arithmetic shall
be construed as the limiting case of real arithme-
tic with operands of arbitrarily large magnitude,
when such a limit exists. Infinites shall be inter-
preted in the affine sense, that is, —<(every
finite number)< +co.
" Arithmetic on « is always exact and therefore
shall signal no exceptions, except for the invalid
operations specified for ® in 7.1. The exceptions
that do pertain to « are signaled only when

(1) o« is created from finite operands by over-
flow (7.3) or division by zero (7.2), with corre-
sponding trap disabled

(2) « is an invalid operand (7.1).

6.2 Operations with NaNs. Two different kinds
of NaN, signaling and quiet, shall be supported in
all operations. Signaling NaNs afford values for
uninitialized variables and arithmetic-like en-

13

hancements {(such as complex-affine infinities or
extremely wide range) that are not the subject of
the standard. Quiet NaNs should, by means left
to the implementor’s discretion, afford retrospec-
tive diagnostic information inherited from invalid
or unavailable data and results. Propagation of
the diagnostic information requires that informa-
tion contained in the NaNs be preserved through
arithmetic operations and floating-point format
conversions.

Signaling NaNs shall be reserved operands that
signal the invalid operation exception (7.1) for
every operation listed in Section 5. Whether
copying a signaling NaN without a change of for-
mat signals the invalid operation exception is the
implementor’s option.

Every operation involving a signaling NaN or
invalid operation (7.1) shall, if no trap occurs and
if a floating-point result is to be delivered, deliver
a quiet NaN as its resuit.

Every operation involving one or two input
NaNs, none of them signaling, shall signal no ex-
ception but, if a floating-point result is to be de-

ANSI/IEEE
Std 754-1986

livered, shall deliver as its result a quiet NaN,
which should be one of the input NaNs. Note
that format conversions might be unable to de-
liver the same NaN. Quiet NaNs do have effects
similar to signaling NaNs on operations that do
not deliver a floating-point result; these opera-
tions, namely comparison and conversion to a
format that has no NaNs, are discussed in 5.4,
5.6, 5.7, and 7.l

6.3 The Sign Bit. This standard does not inter-
pret the sign of an NaN. Otherwise, the sign of a
product or quotient is the exclusive or of the op-
erands’ signs; the sign of a sum, or of a differ-
ence z — y regarded as a sum xz + (— y), differs
from at most one of the addends™signs, and the
sign of the result of the round floating-point num-
ber to integral value operation is the sign of the
operand. These rules shall apply even when oper-
ands or results are zero or infinite.

When the sum of two operands with opposite
signs (or the difference of two operands with
like signs) is exactly zero, the sign of that sum
(or difference) shall be + in all rounding modes
except round toward -, in which mode that
sign shall be —. However, z + z =2 — (— z)
retains the same sign as x even when x is zero.

Except that 3/—0 shall be —0, every valid
square root shall have a positive sign.

IEEE STANDARD FOR

7.1 Invalid Operation. The invalid operation ex-
ception is signaled if an operand is invalid for
the operation to be performed. The result, when
the exception occurs without a. trap, shall be a
quiet NaN (6.2) provided the destination has a
floating-point format. The invalid operations are

(1) Any operation on a signaling NaN (6.2)

(2) Addition or subtraction—magnitude sub-
traction of infinites such as, (+®) + (—)

(3) Multiplication—0x

(4) Division—0/0 or /e

(5) Remainder-— z REM y, where y is zero or
z is infinite

(6) Square root if the operand is less than zero

(7) Conversion of a binary floating-point num-
ber to an integer or decimal format when over-
flow, infinity, or NaN precludes a faithful repre-
sentation in that format and this cannot other-
wise be signaled

(8) Comparison by way of predicates involving
< or >, without ?, when the operands are unor-
dered (5.7, Table 4)

7.2 Division by Zero. If the divisor is zero and
the dividend is a finite nonzero number, then the
division by zero exception shall be signaled. The
result, when no trap occurs, shall be a correctly

signed « (6.3).

Te/‘:yfﬂ‘l\{:’{}j‘ B/Ijlaﬂﬁ"’ CSQRTC@*-&;{'):'ﬁ**‘:J{

< 1S PLWAYS PosiTWE) TVS EVEN o = o
Ti(s 1€ A voALlD 3,(7“)”'“5 RogT
T . Exceptions

AL RESULES RBE (v RIGHT HaLF PLANE

7.3 Overflow. The overflow exception shall be
signaled whenever the destination format's
largest finite number is exceeded in magnitude

There are five types of exceptions that shall be
signaled when detected. The signal entails setting
a status flag, taking a trap, or possibly doing
both. With each exception should be associated a
trap under user control, as specified in Section 8.
The default response to an exception shall be to
proceed without a trap. This standard specifies
results to be delivered in both trapping and non-
trapping situations. In- some cases the result is
different if a trap is enabled.

For each type of exception the implementation
shall provide a status flag that shall be set on any
occurrence of the corresponding exception when
no corresponding trap occurs. It shall be reset
only at the user’s request. The user shall be able
to test and to alter the status flags individually,
and should further be able to save and restore all
“five at one time.

The only exceptions that can coincide are in-
exact with overflow and inexact with underflow.

14

by what would have been the rounded floating-
point result (Section 4) were the exponent range
unbounded. The result, when no trap occurs,
shall be determined by the rounding mode and
the sign of the intermediate result as follows:

(1) Round to nearest carries all overflows to «
with the sign of the intermediate result

(2) Round toward 0 carries all overflows to the
format’s largest finite number with the sign of
the intermediate result

(38) Round toward —« carries positive over-
flows to the format's largest finite number, and
carries negative overflows to —

(4) Round toward +<« carries negative over-
flows to the format's most negative finite num-
ber, and carries positive overflows to +

Trapped overflows on all operations except
conversions shall deliver to the trap handler the
result obtained by dividing the infinitely precise
result by 2% and then rounding. The bias adjust «
is 192 in the single, 1536 in the double, and

BINARY FLOATING-POINT ARITHMETIC

3x2"?% in the extended format, when n is the
number of bits in the exponent field.” Trapped
overflow on conversion from a binary floating-
point format shall deliver to the trap handler a
result in that or a wider format, possibly with the
exponent bias adjusted, but rounded to the des-
tination's precision. Trapped overflow on decimal
to binary conversion shall deliver to the trap han-
dler a result in the widest supported format, pos-
sibly with the exponent bias adjusted, but
rounded to the destination’s precision; when the
result lies too far outside the range for the bias
to be adjusted, 2 quiet NaN shall be delivered in-
stead.

7.4 Underflow. Two correlated events contribute
to underflow. One is the creation of a tiny non-
zero result between =2¥™" which, because it is
so tiny, may cause some other exception later
such as overflow upon division. The other is ex-
traordinary loss of accuracy during the approxi-
mation of such tiny numbers by denormalized
numbers. The implementor may choose how
these events are detected, but shall detect these
events in the same way for all operations. Tini-
ness may be detected either

() After rounding—when a nonzero result
computed as though the exponent range were
unbounded would le strictly between =2£™n

(2) Before rounding—when a nonzero resuit
computed as though both the exponent range
and the precision were unbounded would lie
strictly between +2Fmin

Loss of accuracy may be detected as either

(3) A denormalization loss—when the deliv-
ered result differs from what would have been
computed were exponent range unbounded.

(4) An inexact result—when the delivered re-
sult differs from what would have been com-
puted were both exponent range and precision
unbounded (This is the condition called inexact
in 7.5).)

When an underflow trap is not implemented, or
is not enabled (the default case), underflow shall
be signaled (by way of the underflow flag) only
when both tininess and loss of accuracy have
been detected. The method for detecting tininess
and loss of accuracy does not affect the deliv-
ered result which might be zero, denormalized,
or £25™" When an underflow trap has been imple-

"The bias adjust is chosen to translate over/underflowed
values as nearly as possible to the middie of the exponent
range so that, if desired, they can be used in subsequent
scaled operations with less risk of causing further exceptions.

15

ANSI/TIEEE
Std 754-1986

mented and is enabled, underflow shall be sig-
naled when tininess is detected regardless of loss
of accuracy. Trapped underflows on all opera-
tions except conversion shall deliver to the trap
handler the result obtained by multiplying the
infinitely precise result by 2% and then rounding.
The bias adjust « is 192 in the single, 1536 in the
double, and 3 X 2% in the extended format,
where n is the number of bits in the exponent
field.® Trapped underflows on conversion shall be

handled analogously to the handling of overflows
on conversion.

7.5 Inexact. If the rounded result of an opera-
tion is not exact or if it overflows without an
overflow trap, then the inexact exception shall be
signaled. The rounded or overflowed result shall
be delivered to the destination or, if an inexact
trap occurs, to the trap handler.

8. Traps

A user should be able to request a trap on any
of the five exceptions by specifying a handler for
it. He should be able to request that an existing
handler be disabled, saved, or restored. He should
also be able to determine whether a specific trap
handler for a designated exception has been en-
abled. When an exception whose trap is disabled
is signaled, it shall be handled in the manner
specified in Section 7. When an exception whose
trap is enabled is signaled the execution of the
pregram in which the exception occurred shall
be suspended, the trap handler previously spec-
ified by the user shall be activated, and a result,
if specified in Section 7, shall be delivered to it.

8.1 Trap Handler. A trap handler should have
the capabilities of a subroutine that can returm a
value to be used in lieu of the exceptional opera-
tion’s result; this result is undefined unless deliv-
ered by the trap handler. Similarly, the flag(s)
corresponding to the exceptions being signaled
with their associated traps enabled may be un-
defined unless set or reset by the trap handler.

8Note that a system whose underlying hardware always
traps on underflow, producing a rounded, bias-adjusted resuit,
shall indicate whether such a result is rounded up in magni-
tude in order that the correctly denormalized result may be
produced in system software when the user underflow trap is
disabled.

ANSV/IEEE
Std 754-1985

When a system traps, the trap handler should
be able to determine

(1) Which exception(s) occurred on this opera-
tion

(2) The kind of operation that was being per-
formed

(3) The destination’s format

(4) In overflow, underflow, and inexact excep-
tions, the correctly rounded result, including in-

16

IEEE STANDARD FOR

formation that might not fit in the destination’s
format

(5) In invalid operation and divide by zero ex-
ceptions, the operand values

8.2 Precedence. If enabled, the overflow and un-

derflow traps take precedence over a separate in-
exact trap.

