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Turbulence models

• A turbulence model is a computational procedure to close the 
system of mean flow equations.

• For most engineering applications it is unnecessary to resolve the 
details of the turbulent fluctuations. 

• Turbulence models allow the calculation of the mean flow without
first calculating the full time-dependent flow field.

• We only need to know how turbulence affected the mean flow.
• In particular we need expressions for the Reynolds stresses.
• For a turbulence model to be useful it:

– must have wide applicability,
– be accurate,
– simple,
– and economical to run.
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Common turbulence models

• Classical models. Based on Reynolds Averaged Navier-Stokes 
(RANS) equations (time averaged):
– 1. Zero equation model: mixing length model.
– 2. One equation model: Spalart-Almaras.
– 3. Two equation models: k-ε style models (standard, RNG, 

realizable), k-ω model, and ASM.
– 4. Seven equation model: Reynolds stress model.

• The number of equations denotes the number of additional PDEs 
that are being solved.

• Large eddy simulation. Based on space-filtered equations. Time 
dependent calculations are performed. Large eddies are explicitly 
calculated. For small eddies, their effect on the flow pattern is 
taken into account with a “subgrid model” of which many styles 
are available.
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Prediction Methods

l η = l/ReL
3/4

Direct numerical simulation (DNS) 

Large eddy simulation (LES)

Reynolds averaged Navier-Stokes equations (RANS)
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Boussinesq hypothesis

• Many turbulence models are based upon the Boussinesq 
hypothesis.
– It was experimentally observed that turbulence decays unless there 

is shear in isothermal incompressible flows.
– Turbulence was found to increase as the mean rate of deformation

increases.
– Boussinesq proposed in 1877 that the Reynolds stresses could be 

linked to the mean rate of deformation.

• Using the suffix notation where i, j, and k denote the x-, y-, and z-
directions respectively, viscous stresses are given by:

• Similarly, link Reynolds stresses to the mean rate of deformation:
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Turbulent viscosity

• A new quantity appears: the turbulent viscosity µt.

• Its unit is the same as that of the molecular viscosity: Pa.s.
• It is also called the eddy viscosity.

• We can also define a kinematic turbulent viscosity: νt = µt/ρ. Its 
unit is m2/s.

• The turbulent viscosity is not homogeneous, i.e. it varies in space.
• It is, however, assumed to be isotropic. It is the same in all 

directions. This assumption is valid for many flows, but not for all 
(e.g. flows with strong separation or swirl).
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• The turbulent viscosity is used to close the momentum equations.
• We can use a similar assumption for the turbulent fluctuation 

terms that appear in the scalar transport equations.

• For a scalar property φ(t) = Φ + ϕ’(t):

• Here  Γt is the turbulent diffusivity.
• The turbulent diffusivity is calculated from the turbulent viscosity, 

using a model constant called the turbulent Schmidt number 
(AKA Prandtl number) σt:

• Experiments have shown that the turbulent Schmidt number is 
nearly constant with typical values between 0.7 and 1.
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Flow around a cylinder

• The flow is stable for Reynolds numbers below ~40.
• For higher Reynolds numbers the flow is unstable.
• This animation shows the flow pattern for Re = 1000.
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Time average streamlines (kg/s) - Re = 1000
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Effective viscosity (kg/m-s) - Re =1000
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These animations show the flow pattern as a function of Reynolds number.
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These animations show the flow pattern as a function of Reynolds number.
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These animations show the flow pattern as a function of Reynolds number.
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These animations show the flow pattern as a function of Reynolds number.
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These animations show the flow pattern as a function of Reynolds number.



16

These animations show the flow pattern as a function of Reynolds number.
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Predicting the turbulent viscosity

• The following models can be used to predict the turbulent 
viscosity:
– Mixing length model. 
– Spalart-Allmaras model.

– Standard k-ε model.
– k-ε RNG model.
– Realizable k-ε model.
– k-ω model.

• We will discuss these one by one.



18

Mixing length model

• On dimensional grounds one can express the kinematic turbulent 
viscosity as the product of a velocity scale and a length scale:

• If we then assume that the velocity scale is proportional to the
length scale and the gradients in the velocity (shear rate, which 
has dimension 1/s):

we can derive Prandtl’s (1925) mixing length model:

• Algebraic expressions exist for the mixing length for simple 2-D 
flows, such as pipe and channel flow.

)()/()/( 2 msmsmt lϑν ∝

y

U

∂
∂∝ lϑ

y

U
mt ∂

∂= 2
lν



19

Mixing length model discussion

• Advantages:
– Easy to implement.
– Fast calculation times.
– Good predictions for simple flows where experimental correlations 

for the mixing length exist.

• Disadvantages:
– Completely incapable of describing flows where the turbulent length 

scale varies: anything with separation or circulation.
– Only calculates mean flow properties and turbulent shear stress.

• Use:
– Sometimes used for simple external aero flows.
– Pretty much completely ignored in commercial CFD programs today.

• Much better models are available.
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Spalart-Allmaras one-equation model

• Solves a single conservation equation (PDE) for the turbulent 
viscosity:
– This conservation equation contains convective and diffusive 

transport terms, as well as expressions for the production and 
dissipation of νt.

– Developed for use in unstructured codes in the aerospace industry. 

• Economical and accurate for:
– Attached wall-bounded flows.
– Flows with mild separation and recirculation.

• Weak for:
– Massively separated flows.
– Free shear flows.
– Decaying turbulence.

• Because of its relatively narrow use we will not discuss this model 
in detail.
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The k-ε model

• The k-ε model focuses on the mechanisms that affect the 
turbulent kinetic energy (per unit mass) k. 

• The instantaneous kinetic energy k(t) of a turbulent flow is the 
sum of mean kinetic energy K and turbulent kinetic energy k:

• ε is the dissipation rate of k.
• If k and ε are known, we can model the turbulent viscosity as:

• We now need equations for k and ε.
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Mean flow kinetic energy K

• The equation for the mean kinetic energy is as follows:

• Here Eij is the mean rate of deformation tensor.
• This equation can be read as:

– (I) the rate of change of K, plus
– (II) transport of K by convection, equals
– (III) transport of K by pressure, plus
– (IV) transport of K by viscous stresses, plus
– (V) transport of K by Reynolds stresses, minus
– (VI) rate of dissipation of K, minus
– (VII) turbulence production.

( ) ( )
( ) )()()()()()(

).''(.2''2)(

VIIVIVIVIIIIII

EuuEEuuEPdivKdiv
t

K
ijjiijijjiij ρµρµρρ −−−−+−=+

∂
∂

UUUU



23

Turbulent kinetic energy k

• The equation for the turbulent kinetic energy k is as follows:

• Here eij ’ is fluctuating component of rate of deformation tensor.
• This equation can be read as:

– (I) the rate of change of k, plus
– (II) transport of k by convection, equals
– (III) transport of k by pressure, plus
– (IV) transport of k by viscous stresses, plus
– (V) transport of k by Reynolds stresses, minus
– (VI) rate of dissipation of k, plus
– (VII) turbulence production.
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Model equation for k

• The equation for k contains additional turbulent fluctuation terms, 
that are unknown. Again using the Boussinesq assumption, these 
fluctuation terms can be linked to the mean flow.

• The following (simplified) model equation for k is commonly used.

• The Prandtl number σk connects the diffusivity of k to the eddy 
viscosity. Typically a value of 1.0 is used.
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Turbulent dissipation

• The equations look quite similar.
• However, the k equation mainly contains primed quantities, 

indicating that changes in k are mainly governed by turbulent 
interactions.

• Furthermore, term (VII) is equal in both equations. But it is 
actually negative in the K equation (destruction) and positive in 
the k equation: energy transfers from the mean flow to the 
turbulence.

• The viscous dissipation term (VI) in the k equation
describes the dissipation of k because of the work done by the 
smallest eddies against the viscous stresses.

• We can now define the rate of dissipation per unit mass ε as:
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Dissipation rate - analytical equation

• The analytical equation for ε is shown below. Because of the 
many unknown higher order terms, this equation can not be 
solved, and simplified model equations need to be derived.
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• A model equation for ε is derived by multiplying the k equation by 
(ε/k) and introducing model constants.

• The following (simplified) model equation for ε is commonly used.

• The Prandtl number σε connects the diffusivity of ε to the eddy 
viscosity. Typically a value of 1.30 is used.

• Typically values for the model constants C1ε and C2ε of 1.44 and 
1.92 are used. 

Model equation for ε
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Calculating the Reynolds stresses from k and ε

• The turbulent viscosity is calculated from:

• The Reynolds stresses are then calculated as follows:

• The (2/3)ρkδij term ensures that the normal stresses sum to k.
• Note that the k-ε model leads to all normal stresses being equal, 

which is usually inaccurate.
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k-ε model discussion

• Advantages:
– Relatively simple to implement.
– Leads to stable calculations that converge relatively easily.
– Reasonable predictions for many flows.

• Disadvantages:
– Poor predictions for:

• swirling and rotating flows,
• flows with strong separation,

• axisymmetric jets,

• certain unconfined flows, and
• fully developed flows in non-circular ducts.

– Valid only for fully turbulent flows.
– Simplistic ε equation.
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More two-equation models

• The k-ε model was developed in the early 1970s. Its strengths as 
well as its shortcomings are well documented.

• Many attempts have been made to develop two-equation models 
that improve on the standard k-ε model.

• We will discuss some here:
– k-ε RNG model.
– k-ε realizable model.
– k-ω model.
– Algebraic stress model.
– Non-linear models.
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Improvement: RNG k- ε

• k-ε equations are derived from the application of a rigorous 
statistical technique (Renormalization Group Method) to the 
instantaneous Navier-Stokes equations.

• Similar in form to the standard k-ε equations but includes:
– Additional term in ε equation for interaction between turbulence 

dissipation and mean shear.
– The effect of swirl on turbulence.
– Analytical formula for turbulent Prandtl number.
– Differential formula for effective viscosity.

• Improved predictions for:
– High streamline curvature and strain rate.
– Transitional flows.
– Wall heat and mass transfer.

• But still does not predict the spreading of a round jet correctly.
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• Turbulent kinetic energy:

• Dissipation rate:

• Equations written for steady, incompressible flow without body 
forces.
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Improvement: realizable k-ε

• Shares the same turbulent kinetic energy equation as the 
standard k-ε model.

• Improved equation for ε.
• Variable Cµ instead of constant.
• Improved performance for flows involving:

– Planar and round jets (predicts round jet spreading correctly).
– Boundary layers under strong adverse pressure gradients or 

separation.
– Rotation, recirculation.
– Strong streamline curvature.
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• Distinctions from standard k-ε model:
– Alternative formulation for turbulent viscosity:

where                                is now variable.

• (A0, As, and U* are functions of velocity gradients).

• Ensures positivity of normal stresses:  
• Ensures Schwarz’s inequality:

– New transport equation for dissipation rate, ε:
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• Eddy viscosity computed from.

Realizable k- ε Cµ equations
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• Boussinesq viscosity relation:

• Normal component:

• Normal stress will be negative if: 
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k-ω model

• This is another two equation model. In this model ω is an inverse 
time scale that is associated with the turbulence.

• This model solves two additional PDEs:
– A modified version of the k equation used in the k-ε model.
– A transport equation for ω.

• The turbulent viscosity is then calculated as follows:

• Its numerical behavior is similar to that of the k-ε models.
• It suffers from some of the same drawbacks, such as the 

assumption that µt is isotropic.

ω
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Algebraic stress model

• The same k and ε equations are solved as with the standard k-ε
model.

• However, the Boussinesq assumption is not used.
• The full Reynolds stress equations are first derived, and then 

some simplifying assumptions are made that allow the derivation 
of algebraic equations for the Reynolds stresses.

• Thus fewer PDEs have to be solved than with the full RSM and it 
is much easier to implement.

• The algebraic equations themselves are not very stable, however,
and computer time is significantly more than with the standard k-ε
model.

• This model was used in the 1980s and early 1990s. Research 
continues but this model is rarely used in industry anymore now 
that most commercial CFD codes have full RSM implementations 
available.
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Non-linear models

• The standard k-ε model is extended by including second and 
sometimes third order terms in the equation for the Reynolds 
stresses.

• One example is the Speziale model:

• Here f(…) is a complex function of the deformation tensor, 
velocity field and gradients, and the rate of change of the 
deformation tensor.

• The standard k-ε model reduces to a special case of this model 
for flows with low rates of deformation.

• These models are relatively new and not yet used very widely.
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Reynolds stress model

• RSM closes the Reynolds-Averaged Navier-Stokes equations by 
solving additional transport equations for the six independent 
Reynolds stresses.
– Transport equations derived by Reynolds averaging the product of

the momentum equations with a fluctuating property.
– Closure also requires one equation for turbulent dissipation.
– Isotropic eddy viscosity assumption is avoided.

• Resulting equations contain terms that need to be modeled.
• RSM is good for accurately predicting complex flows.

– Accounts for streamline curvature, swirl, rotation and high strain 
rates.

• Cyclone flows, swirling combustor flows.
• Rotating flow passages, secondary flows.

• Flows involving separation.
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Reynolds stress transport equation

• The exact equation for the transport of the Reynolds stress Rij:

• This equation can be read as:
– rate of change of                   plus
– transport of Rij by convection, equals
– rate of production Pij, plus
– transport by diffusion Dij, minus
– rate of dissipation εij, plus
– transport due to turbulent pressure-strain interactions πij, plus
– transport due to rotation Ωij.

• This equation describes six partial differential equations, one for 
the transport of each of the six independent Reynolds stresses.
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Reynolds stress transport equation

• The various terms are modeled as follows:
– Production Pij is retained in its exact form.
– Diffusive transport Dij is modeled using a gradient diffusion 

assumption.
– The dissipation εij, is related to ε as calculated from the standard ε

equation, although more advanced ε models are available also.

– Pressure strain interactions πij, are very important. These include 
pressure fluctuations due to eddies interacting with each other, and 
due to interactions between eddies and regions of the flow with a 
different mean velocity. The overall effect is to make the normal 
stresses more isotropic and to decrease shear stresses. It does not 
change the total turbulent kinetic energy. This is a difficult to model 
term, and various models are available. Common is the Launder 
model. Improved, non-equilibrium models are available also.

– Transport due to rotation Ωij is retained in its exact form.
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RSM equations
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RSM equations continued
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• Characterize turbulence at inlets and outlets (potential backflow).
– k-ε models require k and ε.
– Reynolds stress model requires Rij and ε.

• Other options:
– Turbulence intensity and length scale.

• Length scale is related to size of large eddies that contain most of 
energy.

• For boundary layer flows, 0.4 times boundary layer thickness:  l ≈ 0.4δ99.

• For flows downstream of grids /perforated plates:  l ≈ opening size.

– Turbulence intensity and hydraulic diameter.
• Ideally suited for duct and pipe flows.

– Turbulence intensity and turbulent viscosity ratio.
• For external flows: 10/1 << µµ

t

Setting boundary conditions
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Comparison of RANS turbulence models

Model Strengths Weaknesses
Spalart-
Allmaras

Economical (1-eq.); good track
record for mildly complex B.L.
type of flows.

Not very widely tested yet; lack of submodels
(e.g. combustion, buoyancy).

STD k-εεεε

Robust, economical,
reasonably accurate; long
accumulated performance
data.

Mediocre results for complex flows with
severe pressure gradients, strong streamline
curvature, swirl and rotation. Predicts that
round jets spread 15% faster than planar jets
whereas in actuality they spread 15% slower.

RNG k-εεεε
Good for moderately complex
behavior like jet impingement,
separating flows, swirling
flows, and secondary flows.

Subjected to limitations due to isotropic eddy
viscosity assumption. Same problem with
round jets as standard k-ε.

Realizable
k-εεεε

Offers largely the same
benefits as RNG but also
resolves the round-jet
anomaly.

Subjected to limitations due to isotropic eddy
viscosity assumption.

Reynolds
Stress
Model

Physically most complete
model (history, transport, and
anisotropy of turbulent
stresses are all accounted for).

Requires more cpu effort (2-3x); tightly
coupled momentum and turbulence
equations.
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Recommendation

• Start calculations by performing 100 iterations or so with standard k-ε
model and first order upwind differencing. For very simple flows (no swirl 
or separation) converge with second order upwind and k-ε model.

• If the flow involves jets, separation, or moderate swirl, converge solution 
with the realizable k-ε model and second order differencing.

• If the flow is dominated by swirl (e.g. a cyclone or unbaffled stirred 
vessel) converge solution deeply using RSM and a second order 
differencing scheme. If the solution will not converge, use first order 
differencing instead.

• Ignore the existence of mixing length models and the algebraic stress 
model.

• Only use the other models if you know from other sources that somehow 
these are especially suitable for your particular problem (e.g. Spalart-
Allmaras for certain external flows, k-ε RNG for certain transitional flows, 
or k-ω).


