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(ABSTRACT)

The Streamline Upwind/Petrov-Galerkin (SU/PG) method is applied to higher-order
finite-element discretizations of the Euler equations in one dimension and the Navier-
Stokes equations in two dimensions. The unknown flow quantities are discretized on
meshes of triangular elements using triangular Bezier patches. The nonlinear residual
eqguations are solved using an approximate Newton method with a pseudotime term. The
resulting linear system is solved using the Generalized Minimum Residual algorithm with
block diagonal preconditioning.

The exact solutions of Ringleb flow and Couette flow are used to quantitatively
establish the spatial convergence rate of each discretization. Examples of inviscid flows
including subsonic flow past a parabolic bump on a wall and subsonic and transonic flows
past a NACA 0012 airfoil and laminar flows including flow past a a flat plate and flow past
a NACA 0012 airfoil are included to qualitatively evaluate the accuracy of the discretiza-
tions. The scheme achieves higher order accuracy without modification. Based on the test
cases presented, significant improvement of the solution can be expected using the higher-
order schemes with little or no increase in computational requirements. The nonlinear sys-
tem also converges at a higher rate as the order of accuracy is increased for the same num-
ber of degrees of freedom; however, the linear system becomes more difficult to solve.
Several avenues of future research based on the results of the study are identified, includ-
ing improvement of the SU/PG formulation, development of more general grid generation
strategies for higher order elements, the addition of a turbulence model to extend the
method to high Reynolds number flows, and extension of the method to three-dimensional

flows. An appendix is included in which the method is applied to inviscid flows in three



dimensions. The three-dimensional results are preliminary but consistent with the findings

based on the two-dimensional scheme.
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Chapter 1

Introduction

High-Reynolds-number Navier-Stokes computations for complex aerodynamic con-
figurations currently require vast amounts of computer resources for adequate resolution
of the flow field. Indeed, the demands are so great that it is often not possible to perform
complete and rigorous grid convergence studies for these configurations. State-of-the-art
methods rely on linear data distributions in mesh cells resulting in at best second order
accuracy. Methods based on higher order data distributions introduce additional computa-
tional complexity, but yield more accurate results, especially as the mesh is refined.
Higher order methods have the potential to achieve solutions of much higher quality on
coarser meshes compared to present state-of-the-art methods.

One of the most popular schemes for obtaining solutions on unstructured meshes is
the finite volume scheme, in which the governing equations are solved in integral form
over the discrete volumes formed by the cells of a mesh. Descriptions of various finite-vol-
ume schemes on unstructured meshes are given by Barth and Jesperson[1], Whitaker, et
al.[2], Jameson, et al.[3, 4, 5], and Mavriplis and Jameson[6]. Barth[7] presents a detailed
account of the implementation of finite volume schemes for the Euler and Navier-Stokes
equations using efficient edge-based data structures. Finite volume schemes generally
solve for quantities averaged over cells of the actual mesh in the case of cell-centered
schemes or over cells of a dual mesh in the case of vertex schemes. In any event, in order

to evaluate the residual, a polynomial data distribution must be reconstructed from these



averaged quantities.

To achieve second order accuracy (as in the foregoing references), a linear distribu-
tion can be reconstructed in a cell using data from the cell's immediate neighbors. In con-
trast, to achieve higher than second order accuracy, a higher order distribution must be
constructed in each cell, requiring information from more distant neighbors. This was
done by Barth and Frederickson[8] for quadratic reconstruction (and hence third order
accuracy). More recently, Hu and Shu[9] devised a fourth order scheme without expand-
ing the third order stencil by requiring averaged quantities to match in all cells of the sten-
cil. While these methods show promising results, extending them to even higher order
accuracy will require further expansion of the stencil to still more distant neighboring
cells. These stencils will be nonsymmetric in general and the reconstruction indices and
coefficients must be stored for every cell in contrast to finite-element methods, in which
interpolation coefficients are identical in every cell.

Halt[10] and Halt and Agarwal[11] used a variation of a finite volume scheme in
which higher order polynomial data distributions were constructed locally in each cell
using cell-averaged derivative information. To solve for the cell-averaged derivatives, the
governing equations were extended to include either derivatives or moments of the gov-
erning equations. Halt demonstrated that significant gains in accuracy as well as efficiency
could be achieved through the use of higher order methods. Halt also concluded that using
moments of the governing equations was more robust than using the derivative method.
Halt's moment method is similar to the Discontinuous Galerkin finite-element method
described later in this chapter.

An alternative to the finite-volume formulation is the finite-element method. In this
case, a polynomial data distribution is prescribed in each cell rather than reconstructing
the distribution from averaged quantities. Finite element theory is described in detail by
Zienkiewicz[12], Hughes[13], and Baker and Pepper[14]. In this method, the governing
equations are solved in weak form by forming an inner product of the residual and a set of
“trial” functions. As with finite difference and finite volume schemes, care must be taken

to produce a stable scheme for the Euler and Navier-Stokes equations.



Recently, a finite element method for solving hyperbolic systems, the “discontinuous
Galerkin” (DG) method, has gained considerable popularity. In this method, the solution is
allowed to have finite discontinuities at cell interfaces by prescribing independent sets of
polynomial coefficients in each element. A Riemann solver is used to compute a unique
flux at element interfaces and to provide an upwind formulation. Descriptions of the
method are given by Cockburn, et al.[15, 16, 17] and Bey[18]. Atkins and Shu[19] applied
the method to the linearized Euler equations, while Lowrie, et al.[20] and Bey and
Oden[21] applied the method to the Euler equations and Bassi and Rebay[22, 23] applied
the method to the Euler and Navier-Stokes equations.

A disadvantage of the DG method is that more unknowns are required to represent
the double-valued solution on cell boundaries. For orders of accuracy less than or equal to
4, the number of unknowns for the DG method is a factor of over 2 greater for triangles
and nearly 5 greater for tetrahedra than a comparable continuous formulation.

By enforcing a continuous solution, stabilization of the system by means of a Rie-
mann solver are precluded unless a discontinuous solution is somehow reconstructed. An
alternative is to add either an explicit stabilizing dissipation to the residual itself or to
modify the finite-element trial function. Brooks and Hughes[24] showed that these two
approaches are equivalent in one dimension. Methods of this type fall into the general cat-
egory of stabilized finite element methods. The theoretical basis for these methods will be
outlined briefly below.

Given an operatdr and a forcing functiofy the solutioru is sought which satisfies

Lu = f (1)
in a domaim subject to boundary conditions. Finite element methods solve equation 1 in

the weak form given by
Lu, vDI= Of, vO (2)

where equation 2 is satisfied for all trial function$he inner producta, bl is defined as

(&, b= é(b (h)dQ . 3)

In a stabilized finite element method, the variational statement is modified such that



consistency is preserved and stability is enhanced[25]. This preservation of consistency is
a key feature of stabilized methods allowing high order accuracy. The modified weak

statement is written as

[Lu, i+ ZIK [Lu-f, L'vG = Of, vO 4)

where K indexes the elementg, is a scaling parameter defined on each element, and

is another differential operator which may or may not coincide witfhe only require-

ment ont, is that it vanishes as the grid is refined. Note that the inner product in the sta-

bilizing term includes the entire residual.

In advective-diffusive systems, the Streamline Upwind/Petrov-Galerkin (SU/PG)
scheme results whdd  is equal to the advective part of the operator . This method is
presented in detail by Brooks and Hughes[24] and Hughes and Mallet[26, 27]. The
method has been applied to the compressible Euler and Navier-Stokes equations by Sou-
laimani and Fortin[29], Franca, et al.[30], and by Brueckner and Heinrich[31]. Carette, et
al.[32] and Paillere, et al.[33] applied the method using multidimensional upwinding tech-
niques and showed that in one dimension, the method derived in this way is identical to the
original SU/PG method derived in [26]. While the SU/PG method has been applied exten-
sively to linear data distributions in the literature, there seems to be no prior application of
the method to higher order discretizations.

If L' = L in equation 4, the method is referred to as Galerkin Least-Squares (GLS).
This method is described in detail by Hughes, et al.[28] for scalar advective-diffusive
equations and by Shakib, et al.[34, 35] for the Euler and Navier-Stokes equations. Since
the fundamental source of instability in the Euler and Navier-Stokes equations is the dom-
inance of the advective terms, it is unclear that the additional complexity of the GLS
method over the SU/PG method has any real benefit. Note, however, that for purely advec-
tive equations SU/PG and GLS are identical.

The SU/PG method would seem the most promising path to achieving a practical

higher order scheme. In the following chapters, the SU/PG method will be described in



detail and applied to higher order discretizations of inviscid flow in one dimension and
inviscid and viscous flows in two dimensions. An appendix is included in which the
method is applied to inviscid flows in three dimensions. The spatial convergence rate of
the method will be established for the two-dimensional scheme by performing grid refine-
ment studies and computing norms of the global solution error for Ringleb flow[36] and
Couette flow[37].



Chapter 2

The Streamline Upwind/Petrov-Galerkin
Method

2.1 Scalar Advection - One Dimension

Consider the steady-state scalar advection equation in one dimension:

a& =0 (5)

wherea is an advection speed auds the unknown solution. The Galerkin finite-element

discretization of this equation is unstable, so an artificial dissipation term with coefficient

k is added to stabilize the scheme, resulting in equation 6 below.

LU _ d
dx dx dx

(6)

Now consider a Galerkin formulation on the modified equation:

L
du d:-du _
Iw%—dx—&kﬁgjx =0 (7)
0
wherew is the Galerkin weight function. Integrating the artificial dissipation term by parts

yields the following:



L
Iwa@dx wk " Igwkdudx (8)

0

By stipulating that the dissipation coefficidnt vanishes at the boundaries, and
selecting the following form fok

k = ata 9)

wheret is a scaling parameter, the residual equation can be written in the following form:

I@v dx = 0 (10)

The effect of the artificial dissipation is seen to be equivalent to the addition of a perturba-
tion to the Galerkin weight function. The Euler-Lagrange equation corresponding to equa-
tion 10 is identical to equation 5; thus, the exact solution satisfies the residual equation and
the method is consistent.

It has been shown in reference 24 that the following form for the parameilér

yield a nodally exact solution to equation 5:

AV
T = m (11)

whereAx is the element size. For linear data on a uniform grid, the above definition of

results in the following discrete equation for node

| a

|_ui—1)+ (u|+1 u) =0 (12)

atlal
2

which is identical to the discretization of Courant, Isaacson and Reeves[38].

The following sections summarize the extension of this formulation to multiple
dimensions and to systems of equations. While the residual equation can be straightfor-
wardly extended to these cases, the form of the paramietemultidimensional equa-

tions and systems is rathel hocand still the subject of research (see e.g. 29, 32, 39).



2.2 Advective Systems - One Dimension

The extension of the SUPG scheme to one-dimensional systems is fairly straightfor-

ward. The governing equations can be written as
d _
Q=0 (13)

whereF is an advective flux vector which is, in general, a nonlinear function of the solu-
tion vectorQ. The flux JacobiaA is defined as a matrix whose elements are the deriva-

tives of the components of the flux vector with respect to the components of the solution

vector (i.e.A = dF/0Q ). The governing equations can now be written in quasi-linear

form as

do _
5 =0 (14)

The system can now be diagonalized by executing the matrix transformation

A= TAT, A = diaghy, ..., A,) (15)

whereA; are the eigenvalues of the Jacobian matardT andT™ are formed by its

right and left eigenvectors, respectively. The number of equations in the system is repre-

sented byn. The scalar SU/PG scheme is applied to each of the resubicegar equa-

tions, resulting im parameters; given by

_ Bx
T, = 2|)\i|. (16)

By applying the inverse matrix transformation, the residual equation becomes
- d rdF
w -
J’E{\H&Atmdx =0 (17)
0
where the parameters now matrix-valued and is given by

1 = T ldiagty, ..., 1)T = %XIAI_l. (18)



2.3 Scalar Advection - Multiple Dimensions

In multiple dimensions, the advection operator is formed as a dot product between

an advection vector and the solution gradient as in equation 19.

Ju
a— =20 19

X (19)
where repeated indices indicate summation over the spatial dimensions. The resulting

weak statement is:

z[[WJrW H}% BﬂQ - 0. (20)

As noted in reference 27, the direction of upwinding need not coincide with the
streamline and can, in fact, contain any component perpendicular to the gradient of the
solution. This leads to so-called “discontinuity capturing” operators[27]. Mizukami and
Hughes[40] used this fact to construct a scheme to solve the scalar advection-diffusion
problem with a linear interpolant on triangular elements that satisfies a maximum princi-
ple; however, this scheme has no extension to higher order interpolants, higher dimensions
or different element shapes. In fact, no optimal upwinding direction has been formulated
for these cases; thus, for simplicity, the upwind direction used in the current study coin-
cides with the advection vector. This leads to the following definition for the (scalar)
parameter:

1
08, L] 2
| j O
where the metric terma;/dx;  result from the element coordinate transformation and

form the multidimensional analog of the one-dimensional length Azale



2.4 Advective Systems - Multiple Dimensions

A multidimensional advective system of equations can be written in the following

form:
I F(Q =0 (22)
ox '

whereF; is thaex-component flux vector in thedirection and repeated indices denote

summation. As in the one-dimensional case, the system can be expressed in quasi-linear

form as follows:
A% - o (23)

whereA,; is the flux Jacobian matrix in thdirection. The SUPG weak statement is given

by

J;[w+ %Aj%}%a_ggm - 0. (24)

If the flux Jacobiang\, are simultaneously diagonalizable, the system can be written

as a set of scalar advection equations and the method of the previous section can be
employed. Unfortunately, this is not the case in general and either an approximate diago-
nalization must be used or a matrix-valued analog of equation 21 must be devised. Exam-
ples of the former can be found in [32], in which wave models and characteristic
decompositions are employed to allow the scalar SU/PG scheme to be used. The present
study follows the latter strategy as in [26], wherein the (matrix-valued) paramster

defined by:

0
(|0 (25)
O

where the metric termd;/dx;  are defined as in the previous section.

10



Chapter 3

Quasi-One-Dimensional Euler Equations

3.1 Governing Equations

The equations solved are the one-dimensional Euler equations in conservation form
with a source term to account for the variation of cross-sectional area. The equations can

be written as

0 _
5 F(Q = S(Q (26)
where
p pu pu
1dA
Q= |pul.F =lpu®+p| S= 25| pu’ (27)
P& puhy puh,

wherep is the density is the speed is the pressur@ is the internal energy per unit
massh is the enthalpy per unit magsjs the cross-sectional area, and a subscript “0”
indicates a stagnation condition.
The pressure is related to density and energy via the ideal-gas equation of state given
by
p=(y-1)pe (28)
wherey is the ratio of specific heats.

The equations are solved in nondimensional form by defining the following nondi-

11



mensional quantities:

xd = )—(, 0= —B,uD: -l—'l-,pD: __p_,TD: l,eD: %,hD: -%,
L Po1 Co1 Po1 To Coy Co1
A
Ad= 2 (29)
Ath

wherec is the speed of sound,,  is the minimum cross sectional area and the subscript
“01” indicates a stagnation condition upstream of the inflow boundary . The speed of
soundc under the ideal-gas assumption is defined by

2 _yp
2 = 30
o (30)

By substituting these expressions into the expressions for the inviscid and viscous

fluxes, the nondimensional inviscid flux vector and the source term vector can be written

as
ptul] ; ptut]
1
pLulh,U ptulh,
The nondimensional form of the ideal-gas equation of state is
pt = (y-1)pted (32)
while the definition of the nondimensional speed of sound is
C[F = VLD (33)
ol

In the remaining sections of this chapter, the superscript is omitted from the nondi-

mensional quantities for the sake of clarity.

3.2 Finite Element Formulation

Following the methodology of the previous section, the weak statement correspond-

ing to the governing equations above is

12



IE{V+%VAT%§—S%IX - 0. (34)

After integration of the Galerkin part of the flux term by parts, this statement becomes

XL
X

A fd Wi dx — fWSdX+IdW @'F ~sHix = 0 (35)

Xo

At the upstream boundary, total pressure and total temperature are specified while
density is evaluated just inside the boundary. At the downstream boundary, density and
velocity are evaluated on the interior while a back pressure is prescribed. These boundary

conditions are enforced weakly via the boundary flux term of equation 35.

3.3 Solution Methodology

The physical domainx [ [ x,, X, ] is divided uniformly into elements of ledgth

This results in a constant transformation to a local element coordinate system in which the
differential dx and the derivativd/dx are given by:

1d
dx = AXdE,% = &d_E (36)

where¢ is the barycentric coordinate in an element. The flow varigbk® approxi-

mated by a Bezier curve over each element given by:
n
QE) = Y QB(3) (37)
i=0

where theQ, are the discrete control points anch-'he are the univariate Bernstein poly-

nomials of degrea given by

B'(¢) = g'1-g)"' (38)

|'(n i)!

After writing the global integrals in equation 35 as a sum of element integrals and

13



substituting the above data representation and coordinate transformation, the weak state-
ment now becomes

BF|-+ _lﬁgiFdz—ls.sam&l%s nADid—F—SBiE =0 (39)
il g {d& ,([J {dx IMAAXE

The element integrals appearing in equation 39 are evaluated numerically via Gaussian
guadrature given by

1

J’f(E)dE z w; f(&;) (40)

i=1
where the weightsy, and ordinai§s are given in [12].
To obtain the solutio®, Newton’s method is applied to equation 39. First, the weak

statement is linearized about an initial solut@h to obtain a linear system of equations

in the following form:

RIAQ +R: = 0 41
30, Q+Ry = (41)
whereR; is thg-th weak statement evaluated on the initial solu@n  /&@d is the

update to the control poin@;’

The termdR;/0Q; is the Jacobian matrix of the system and is evaluated approxi-

mately by the following equation:

oR;
B

6Q, wAB g[ IdE AB,d¢ — IBJGQ Axdg + . (42)
1

dB; 0B,

j i

.fd SgnAT A € aQB %ﬁ}
Note that this Jacobian is approximate because the dependencies of the flux Jacobian

and the Jacobian of the source ted8/0Q ) on the solution var@laesnot included.

Hence the resulting iterate will not recover the quadratic convergence of Newton’s

14



method.
Because neighboring elements are coupled only through their shared interface, the

linear system represented by equation 41 is a block banded system with a maximum band-
width of 2n—1 3x3 blocks. This system is solved directly using banded Gaussian elimi-
nation to compute the solution updafed; . This process is repeated until the nonlinear

system represented by equation 39 is satisfied to a given tolerance.

3.4 Results

A converging-diverging nozzle with a quadratic area distribution and expansion ratio
of 3 was run with back pressures representing subsonic exit flow, supersonic exit flow, and
a case with a shock in the nozzle. The area distribution is given by

e _mxF x
Am =1+ -1 5[21} (43)

The solution can be obtained exactly using the well known isentropic flow and nor-
mal shock relations summarized in [42]. The procedure for computing the exact solution
begins by determining which of three possible flow regimes the flow is in. Given the
expansion ratio and assuming sonic flow at the throat, two possible exit Mach numbers are
computed using the following relation:

Y+l Y+l

O (y-1) S2(y-1)
A= AT G A < ) (44)

A O2 O
where M is the Mach number and a superscript “*” indicates a sonic condition. This rela-
tion is solved for the exit Mach number using Newton iteration to achieve the required pre-
cision. It is a simple matter to choose starting conditions that will yield either the subsonic
or the supersonic solution.

Next, the back pressure ratios required to produce these exit Mach numbers are com-

puted using the following relation:

15
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p _g,Y=1y20v !,
p_o_Ejr+ >-M°g = (V) (45)

The pressure ratios corresponding to the two exit Mach numbers divide the possible flows
into three regimes: for a back pressure greater than or equal to that of the subsonic solu-
tion, the flow will be entirely subsonic; for a back pressure less than or equal to the super-
sonic solution, the flow downstream of the throat will be entirely supersonic; for all other
values of back pressure, the flow will be sonic at the throat and will have either a normal
shock downstream of the throat or an overexpanded supersonic exit flow.

For the first two cases, the exact solution can be computed using the isentropic flow
relations in [42]. At the desired location, the area ratio is computed using equation 43. For
supersonic exit flow, the flow at the throat is sonic and the supersonic solution of equation
44 determines the Mach number as described above. For subsonic flow, the exit Mach

number is computed by substituting the back pressure into equation 45 and solving for the

Mach numbemM, . The area ratio is then computed using

AD _ AT e rrfhn fA(Mg)DﬁE"ﬁ‘D (46)

A, TR OA D

A~ 0A A, A0

where the first factor is the area ratio obtained by evaluating equation 44 at the exit Mach
number, the second factor is the constant expansion ratio, and the third factor is the area at
the desired location. After substituting equation 46 into equation 44 and solving for the
(subsonic) Mach number, the pressure at the desired location is obtained from equation 45.

The third case is solved by first assuming that a normal shock exists downstream of
the throat. Because the ratio of total pressures downstream and upstream of the shock is
equal to the ratio of the sonic-flow cross sectional areas upstream and downstream of the

shock, it can be shown that

Po e
f (M)f M) = HERLILe (47)
oMITAMI = B, TR,
This equation is solved via Newton iteration to obtain the exit Mach nuMper . The

location of the shock is determined by calculating the ratio of the total pressure upstream

16



and downstream of the shock:

Po2 _ PoerPo_ Po
= M) =S— 48
Po1 pr D[bm folMd HposH (48)

This ratio is also defined by the normal shock relation

1 Y

p—02 = y+1 y-1 (y+1)M2._ ot = M 49
Po1 [ZVMZ—(V—l)} Lv—l)lvl2+2} e “9

which is solved via Newton iteration for the upstream Mach number at the $figck,

Equation 44 now yields the area ratio at the shock. If this area ratio is less than the expan-
sion ratio, equation 43 is used to compute the location of the shock, otherwise, the shock is
downstream of the exit.

The solution upstream of the shock is now computed as previously described by
solving equation 44 for the (supersonic) Mach number. Downstream of the shock, the area
ratio must be adjusted to account for losses through the shock as follows:

AU _ 1DD _ EALE

N BA\B_ A0 gp(MS)DKD (50)
The subsonic solution of equation 44 gives the Mach number at the desired location. The
calculation of the pressure must also account for losses across the shock as follows:

E’gzjﬂz = g (MY (M) (51)

Three different values of back pressure were used representing the three flow
regimes described previously. The first case, at a back pressure ratio of 0.98, represents a
purely subsonic unchoked flow. The second case, at a back pressure of 0.28, represents
purely supersonic flow downstream of the throat. The final case, at a back pressure of 0.88,

represents a flow with a shock between the throat and exit. Several different orders of

accuracy were used and the integralltg:-d error in the pressure distribution defined by
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XL

L® = [Ip(x) - PO "dx (52)

Xo
wherep is the exact solution, was calculated for several different grid sizes.

The first case is a purely subsonic flow resulting from a back pressure ratio of 0.98.
Figure 1 shows the integrated norm of the pressure error versus the number of degrees of
freedom in the problem. Design accuracy was verified up to 9th order (beyond this point
64-bit floating point numbers lack sufficient precision to resolve the spatial convergence
rate of the scheme). Note that up to about degree 5 (order of accuracy 6) there are signifi-
cant gains to increasing the order of accuracy as the 6th order result can be up to 5 orders
of magnitude more accurate than the 2nd order result. Also note that for linear data the
scheme is superconvergent and results in a 3rd order solution.

Figure 2 shows pressure error for a case with supersonic exit flow. Note that for lin-
ear data the scheme is no longer superconvergent, but otherwise the same trends in accu-
racy are observed up to fifth order.

For the case of a normal shock in the nozzle, all linear schemes are at best first order
accurate globally. Figure 3 shows the distribution of pressure error for a 4th order solution.
The parametet is the number of elements. Note that while the upstream flow is achieving
design accuracy, the solution is at best first order not only at the shock but also down-
stream of the shock. This problem was discovered by Casper and Carpenter[41] and is also
observed in these results.

These results verify that the SU/PG scheme as formulated for linear solution data
(i.e. 2nd order schemes) can be used without modification to achieve higher order accu-

racy for smooth flows.
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Figure 1. Pressure error for converging-diverging nozzle with purely subsonic flow.
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Chapter 4

Two-Dimensional Navier-Stokes Equa-

tions

4.1 Governing Equations

The governing equations are the steady-state Navier-Stokes equations in conserva-

tion form given by

aF+aG__0Fv+an

ox dy  0X
where
P pu
o=|PY F= pu® +p
pv puv
P€o puh,

dy

ov2+p|

pv
puv

pvh,

(53)

(54)

wherep is the densityl andv are the Cartesian components of the velocity vegisrihe

pressureg is the internal energy per unit malsss the enthalpy per unit mass, and a sub-

script “0” indicates a stagnation condition. The viscous flixes
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0 0
T T
FV = XX , GV = Xy (55)
T T
Xy yy
Uy + VT, — Oy UT,y + VT, — Q)
where the viscous stressgg T

, apg

are evaluated for a Newtonian fluid under the
bulk viscosity assumption.

T, 4ou 26VD

_ ,@u, ovQ Mov _ 20uf
- M&ax~ 36yD’ “@T/ x0Ty T H@ay 30x0 (56)
wherep is the molecular viscosity. The heat flux componegts q@,nd are given by Fou-
rier's law:
_ 0T _ 0T
Qx = _k&! qy = k==

7
3 (57)
wherek is the Fourier heat transfer coefficient anid the static temperature

The pressure is related to density and energy via the ideal-gas equation of state given
by

p=(y-1)pe

(58)
while the following power law valid for air at temperatures from 300°R to 900°R[42] is
used to relate viscosity to temperature

Or 9-7®

ur Er = )
where the subscriptdenotes a reference condition

The equations are solved in nondimensional form by defining the following nondi-
mensional quantities:

x = )E(’yD:)—L/,pD:pﬂ,uD

:£1VD:l’pD:L2,TD:R—2T1eD:%,

Cor Cor PwCoo Coo Coo

hD—_hz.,uD:ui,kD:kh (60)
(::00 00 ]
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whereR is the ideal-gas constaitjs a reference length and the subscrigtihdicates a
condition in the free stream. By substituting these expressions into the expressions for the

inviscid and viscous fluxes, the nondimensional inviscid flux vectors can be written as

plul] pbvU]
]
FO= [PU+pl g2 | PR (61)
NETEYE pO/F + pOd
ptuthyU pLvth,U
while the viscous fluxes can be written as
_ . . _ . .
M T, M .0
0= == X 0= -2 Xy
Fy Re 1.0 Gy Re . 0 (62)
Xy yy
_uDrXXD+ vDerD— qXD_ uDerD+ vDrny— qu
whereReis the Reynolds number defined Bg = (p,,[U,|L)/ K.,  whiug| is the

magnitude of the free-stream velocity vector and the nondimensional viscous stresses are

given by

T,,0 = Eg
H axD

ubd—=_"_

3ayDVEE T,

uD+

axD EE

0= Eg £ 9 63
M-85, 3 axD (63)
The nondimensional heat fluxes are given by
0=_Y 1400 t0qo=_Y 1,09 1
Ax y—lPrk axDT » Gy y—lPrk oyl (64)

where the Prandtl number is definedRy = ucp/k

, Wh%re

is the specific heat at

constant pressure. Under the assumption that the Prandtl nemberonstant, the nondi-

mensional Fourier heat transfer coefficikhlt

pC.

Is equal to the nondimensional viscosity

In the remaining sections of this chapter, the superscript is omitted from the nondi-
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mensional quantities for the sake of clarity.

4.2 Finite Element Formulation

The Petrov-Galerkin weak statement of equation 53 is given by:

(Sl e EELI

where the matrix is defined as in chapter 2. By integrating the Galerkin terms by parts,

the above weak statement becomes:

W(ER, + GR)dr — o= CW(F A + G, )dF — F+aWGEgQ+ (66)
I X Yy Rel V' X Yy £

Mo, Bw_  ow dw, , dw_ [oF L aG Mo9F, G - _
ReJox v* GV%HQJr ax " ay BD[[GX ay Refb_+ }dQ 0

wheref, amcﬁy are the Cartesian components of the boundary surface unit normal vector

A. The fluxes in the boundary integrals are evaluated based on the boundary conditions as
described in the following paragraphs.

The inviscid flux on the boundary can be written as:

puh, +pvh, i o0 Oh i
2 R R _ R
Fh, +GR = (pu™+p)h, +puviy _ puiJDh+ P (67)
puvh + (pv’+ p)i,|  [PVUER+ PRy
puhh, + pvhhy phuth
On both inviscid and no-slip surfaces, the normal veldacity vanishes, resulting in the

following boundary flux:
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+Gh, = (68)

where the pressureis evaluated just inside the boundary. For subsonic flow across an
inflow/outflow boundary, the inviscid flux is evaluated by computing the normal velocity

and speed of sound from two locally one-dimensional Riemann invariants given by

R = u[hinl (69)

The quantityR is evaluated using free-stream conditions vRile is evaluated based on
values just inside the domain. The normal velocity and speed of sound on the boundary are

then given by
_ 1, o+ _ _y-=-1,_+ _
(@A), = 5(R"+R), ¢, = L=(R'-R) (70)

The velocity components on the boundary are found by decomposing the normal velocity
(given by equation 70) and the tangential velocity into components resulting in the follow-
ing expressions:

u, = u, + (0 ), —(ah),], v, = v, +n[(0Ch),— (D), ] (71)

ol
where the subscriptdenotes a reference condition in the free stream for flow into the
domain and just inside the boundary for flow out of the domain. Similarly, entropy on the
boundary is calculated from free-stream quantities for flow into the domain and from inte-
rior values for outflow. The density on the boundary is then calculated as

1

o= B2 72
YO
For supersonic inflow and outflow, the boundary flux vector is calculated entirely from
quantities in the free stream and just inside the boundary, respectively.

The viscous flux vector on the boundary can be written as
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0
T, N+ T, N
~ A XXX X
F A, +GA, = ) vy (73)
Ty Ty My
Ay + (UT,y + VT

(UTy, + VT n, +kOT [h

xy) yy) y
On inviscid and inflow/outflow boundaries, the viscous flux is assumed to be zero. On no-
slip surfaces the conditiom = v = 0 is strongly enforced, replacing the momentum

eqguations on those surfaces. As a result, the second and third elements of the boundary
flux vector are irrelevant, and the fourth reducdsid [h . An adiabatic wall is assumed,
so this term also vanishes. Thus, the integral of the viscous boundary flux vanishes on all

boundaries.

4.3 Solution Methodology

4.3.1 Discretization

The physical domaif is divided into a set of nonoverlapping triangular elements
Q. such that the entire domain is represented. The solutioQdarepresented by tri-

angular Bezier patches in each element defined by

n n-i

Q&M = 5 Y QBjEn) (74)

i=0j=0
whereg andn are the local barycentric coordinates of the element anir;the are the

bivariate Bernstein polynomials of degregiven by

n!
jl(n—=i—j)!
To accommodate curved boundaries, the coordinates of each triangular element are

Bf (&, n) = gnl(1-g-n)"' . (75)

also represented by triangular Bezier patches of degiEas results in a nonlinear coor-
dinate transformation from the physical space to the element parameter space. Derivatives

in physical spacex(y) are transformed to element parameter spaag) by
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9 089 ond o _098Ed .onad
ax - 9x3E Toxon’ dy ~ ayaE | ayan’ (76)

The metric terms appearing in equation 76 can be expressed in terms of the deriva-

tives of the element coordinates as

0 _ 19y 98 _ 1dx on _ 19y on _ 10x

ox ~ Jon'dy | Jan'dx | Jog'dy | JoE ()
whereJ is the Jacobian of the element coordinate transformation defined by
_ Oxdy oxoay
J = 3T9n 9nac’ (78)
Finally, the volume differentiadiQ,_ is scaled by the JacoBias follows:
dQ, = Jd&dn. (79)

Continuity of the solution across element interfaces is enforced by sharing control
points along the interfaces as illustrated in figure 4a.(T;j¢ indexing in equation 74 is

converted to a single index as shown in figure 4b by the following function:
Inode = 1(2N—j+3)/2+i (80)

The boundary of the domain) is divided into a finite number of line elemefts

each of which corresponds to the edge of a triangular element adjoining the boundary as
shown in figure 5. The coordinates and data on each of these elements is represented by a
Bezier curve of degreeas described in the previous chapter. Integrals over the boundary
I can now be written as sums of integrals over individual boundary elements. These ele-
ment integrals are transformed into integrals over the local element parameter space.

The polynomial expression of the boundary element coordinates gives rise to a con-
tinuously varying unit normal along curved elements. The components of the element nor-

mal vector are given by

=, h, = —%. (81)

Boundary element integrals are transformed according to
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Jf(x, ydre = [fIx(&), y(8)]sdg (82)
e O
where

s = %—2% %%E (83)

Upon substitution of the foregoing domain and boundary transformations, the weak

statement (equation 66) can now be written as

1 1
C e M., . .
Z IB{}(FnX + Gy )sdg — =2 J’B{}(Fvnx + Gvny)sdi} + (84)
e 0 0
11- n

OB
2| -I I e e = I 5 g ipeken

11-n
(B - 0B .0 aQ+BaQ

IJ. %”AJf—”BDr g Er]dadn =0

where

F o 08 08, & 0N, 0N
F = XF+ayG,G—0XF+ayG (85)

are the transformed inviscid flux vectors ahd 8nd  are the corresponding flux Jacobi-

ans. The transformed viscous fluﬁs éh;d are similarly defined. Note that the contri-

bution of the viscous terms to the Petrov-Galerkin part of the weak statement has been
neglected. These terms involve derivatives of the metric terms and are therefore difficult to
compute. Reference 43 presents a local reconstruction technique to represent this contri-
bution that may be incorporated in future work. As will be seen in the results, this omis-
sion has no impact on the order properties of the scheme.

The integrals appearing in equation 84 are evaluated numerically using the Gaussian
quadrature rules of [44] for triangular elements and [12] for the line elements on the

boundary. Finite element theory dictates that numerical quadrature must integrate polyno-
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mials of degre€(n—m) exactly to preserve the convergence properties of the
scheme[12]. Hera is the degree of the interpolant ands the highest order derivative
appearing in the integrand. This means that quadrature rules for triangular elements must
be exact to degre&(n—1)  while boundary quadrature must be exact to degree . Gaus-
sian quadrature results in the minimum computational work for a given degree of accu-
racy, but availability of quadrature rules for triangular elements limits the scheme to fifth

order accuracy.

4.3.2 Solution Procedure

The solutionQ is obtained using an approximate Newton method. First, the weak

statement (equation 84) is approximately linearized about an initial sofdtion to give

M, RiFAg +R, = 0 86
E}E a_QiDQi i = (86)

where a pseudotime term has been added to improve diagonal dominance and allow more

robust convergence. The mass maM?J( is defined as

11-n
Mj = gse“' By B, dEdn (87)
e 00

whereS, is the element area. Note that this is an approximation of the true mass matrix,

but time accuracy is not at issue, and the approximation allows the integral to be evaluated
analytically and independent of the element shape - thus it can be precomputed and stored.
The system of linear equations represented by equation 86 is solved using the Gener-
alized Minimum Residual method (GMRES) described in [45], which computes the solu-
tion of a general linear system iteratively by projecting the residual onto vectors in the
Krylov subspace (An overview of Krylov subspace methods is given by Saad[46]). The
GMRES algorithm yields an exact solution if all the Krylov vectors are used; however, in

practice a subset of these vectors must be chosen to minimize storage requirements. Most
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implementations of the algorithm allow the solution to be restarted when the allotted stor-
age for the Krylov vectors is exhausted. The implementation of the algorithm used in this
work allows specification of the number of Krylov vectors to store, the number of restarts
permitted, and a tolerance on the residual to use as a stopping criterion. Unless otherwise
noted, all the test cases presented in this chapter stored 20 Krylov vectors, allowed one
restart, and solved the system to a tolerance of 0.01.

The GMRES algorithm does not require explicit knowledge of the matrix of the lin-

ear system - only the product of the matrix with the ve&tQy is required. This allows
the product of the Jacobia?ﬂizj/aQi and the solution upA&te to be written as a finite-

difference expression as described in reference 47 and given by

oR. R.(Q+¢eAQ)-R(Q)
ine = j
aQiAQ‘ - £

whereg is a constant chosen such that the norg/\ Is the square root of machine pre-

(88)

cision.

The performance of the GMRES algorithm depends, in general, on the use of a suit-
able preconditioner. The preconditioner should approximate the inverse of the matrix, but
must be simpler to solve. The simplest preconditioning is diagonal or Jacobi precondition-
ing, in which only diagonal terms of the matrix are retained and the resulting diagonal sys-
tem is solved. Other forms of preconditioning such as incomplete LU factorization[48] or
least-squares approximate inverse techniques[49, 50, 51] can improve convergence of the
GMRES algorithm at the expense of increased computational complexity and storage[48].

The preconditioning used in this work is a block-diagonal preconditioning in which
4x4 blocks are retained on the diagonal of the matrix. This preconditioning is easily solved

by inverting a 4x4 matrix for each degree of freedom. The block-diagonal matrix is repre-

sented by
M oR
Kk X (89)
At 0Q
where the diagonal block of the system Jacobian méRjx 0Q, is approximated by
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Note that the dependence of the flux Jacobians androthe solutiorQ is neglected in

this approximation.

4.4 Inviscid Flow Results

4.4.1 Ringleb Flow

The first case presented is that of Ringleb’s flow, which is presented in detail by
Chiocchia[36]. This flow is an exact solution of the Euler equations for an ideal gas
obtained by using a hodograph transformation. The equations are transformed from the
Cartesian(x, y) coordinate system to {lug0) hodograph plane ghetbe velocity
magnitude an@ is the angle the velocity vector makes with a reference axis. The momen-

tum equations can be expressed in stream function form as

2 2
O o O 42
qza—f+qu+%%+u—q—23ﬂz’ = 0 (91)
og O c 9 O c°o0
wherey is the stream function defined such that the Cartesian velocity components are
given by
_ Proy _ Proy
03y’ vV = 0 Ox (92)

where the subscriptindicates an arbitrary reference condition. This choice of stream

function identically satisfies the continuity equation.
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The particular solution representing Ringleb flow is given by

W = ésine 93)

where the overbar indicates division by a reference quantity. The streamlines for this solu-

tion are given by

where
k =1/
J = %+§i—3+gi—5—%log-l—é—g
_ y-1.2 >
5 = ¢/

The geometry is determined a posteriori by choosing two streamlines to serve as
solid walls along with lines of constant velocity as inflow and outflow boundaries. A typi-
cal geometry for this flow is shown in figure 6, where the solid walls are formed by
streamlines correspondingko= 0.8 akd= 1.6 , and the outflow boundary is given by
g = 0.4.

In order to avoid the necessity of generating a high-order discretization of the curved
boundaries, triangular regions were selected from the traditional Ringleb flow domain.
One region lies entirely within the subsonic portion of the flow, while the other region is
within the supersonic region as illustrated in figure 6. Finite element meshes are generated
in each region by uniformly subdividing the region as shown in figure 7a. Additional
degrees of freedom required for the higher order interpolants are added via linear interpo-
lation of the mesh coordinates as illustrated in figure 7b. The exact solution was supplied
as a strongly enforced Dirichlet boundary condition.

Figure 8 shows the integrated norm of the error in the solution variables as a function

of the number of degrees of freedom. Note that design accuracy has been obtained up to
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5th order. Similar behavior is noted in figure 9, which shows the integrated error norm for

the supersonic region.

4.4.2 Bump on a Wall

A simple case incorporating curved boundaries is shown in figure 10a. Four qua-
dratic segments form a bump on a wall whose height is 10% of its length. The segments
have continuous derivatives at their junction points. The mesh depicted in figure 10a is a
baseline mesh which was uniformly subdivided to control the number of unknowns in the
problem in a fashion similar to that used for Ringleb flow described in the previous sec-
tion. After subdividing and distributing additional degrees of freedom, the control points
on the lower wall were moved to match the Bezier representation of the geometry. An
example is given in figure 10b for a subdivision factor of 2 and cubic data.

Figure 11a shows the Mach number distribution along the lower wall for a free-
stream Mach number of 0.4. Note the considerable difference in the 2nd and 3rd order
solutions both at the peak and downstream to the outflow boundary. The SU/PG solutions
are also compared with results obtained from an implementation of a second order finite
volume scheme known as FUN2D[52]. Note that the finite volume results agree with the
second order SU/PG scheme at the peak, but the finite volume results are much more accu-
rate in the area of decelerating flow on the aft side of the bump. The second order SU/PG
scheme generates a significantly larger amount of entropy near the body than the finite
volume scheme as shown by the flow-field Mach number contours in figure 12. Note that
the contours for the finite volume solution smoothly approach the body while those for the
SU/PG solution show a significant jump in Mach number near the wall. This is an indica-
tion that while the SU/PG scheme achieves higher order accuracy, the relative error levels

may be improved by deriving an improved SU/PG formulation.

4.4.3 NACA 0012 Airfoll

Figure 13 shows a section of a mesh around a NACA 0012 airfoil obtained using the
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grid generation method of Marcum, et al.[53, 54]. The finest grid, depicted in the figure,
had 96 points distributed on the airfoil surface and 32 points distributed along a circular
outer boundary with a radius of 20 chord lengths. Two coarser meshes were generated by
selecting alternating points on the boundaries and retriangulating the volume.

The NACA 4-digit thickness profile[55] is given by

y = bl—(o 20690/x —0.12600 — 0.35166¢ + 0.2843%° —0.1015")  (96)

wheret is the maximum thickness. By parametrizingsx = 22 .y can be written in

terms of§ as
y = + (0 2969¢ - 0. 1260({ -0. 3516Q + 0. 2843Q —0.1015@ ) (97)

Thus the thickness distribution can be exactly represented by an 8th-order parametric Bez-
ier curve. To generate higher order finite element meshes, this defining curve was subdi-
vided to match the domain of each edge on the surface of an existing mesh and a least-
squares procedure was used to obtain the control points for the desired accuracy. The end-
points of each edge were forced to match the surface exactly.

The first case was run at a Mach number of 0.63 and an angle of attack of 2 degrees.
At these conditions, the flow is completely subsonic. Figure 14a shows the surface pres-
sure distribution obtained using the SU/PG scheme for several orders of accuracy. Each
case has approximately the same number of degrees of freedom. Note the slight difference
in pressure between the 2nd and 3rd order solutions. A comparison of the SU/PG results
with results obtained from FUN2D are shown in figure 14b. The second order SU/PG
results are in close agreement with the finite volume results.

A second case at a Mach number of 0.8 and an angle of attack of 1.25 degrees was
run and surface pressure distributions obtained using FUN2D and the second and third
order SU/PG schemes is shown in figure 15. At these conditions, the flow is transonic and
shocks exist on both the upper and lower surfaces of the airfoil. Note that the two second
order schemes are in agreement and that the third order SU/PG scheme captures the upper

surface shock more sharply.
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4.5 Laminar Viscous Flow Results

4.5.1 Couette Flow

To verify the formal accuracy of the scheme, a rotational Couette flow was com-
puted. The solution domain is depicted in figure 16a. Two concentric cylinders are in rela-
tive angular motion inducing fluid motion in the annular region. An analytic solution for

the angular velocity exists for incompressible flow and is given by:

Ug = Ar+$

(98)
whereA andB are constants depending on the geometry and on the boundary conditions
andr is the distance from the common center of the cylinders. This solution also applies to
compressible flows as long as viscosity is constant. In a real flow, the temperature depen-
dence of viscosity couples the momentum and energy equations, but for the purpose of
establishing the accuracy of the scheme, this approximation will suffice.

Grids were generated by distributing Lagrange points for triangular elements along
lines of constant and® and then converting to the required Bezier description. A typical

grid for a second-order calculation is shown in figure 16b. Figure 17 shows the integrated

L, error in the circumferential velocity for a Couette flow wheye= 1 r, = 4 ,

w; = 0.2 andw, = 0 . This particular choice of parameters results in an exact solution

for the circumferential velocity of

10

7m0 T

_ 160
U = = (99)

where thel/r term dominates. The Mach number at the inner cylinder (0.2) and the Rey-
nolds number (500) were chosen to be relatively low to avoid violating the assumptions of
constant viscosity and laminar flow. The parametedicates the degree of the basis
functions. Design accuracy is confirmed up to fifth order. The case of quadratic data

appears to show superconvergence, but this result may be peculiar to this case (it is sus-
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pected that the error may simply have no third-order components).

4.5.2 Flat Plate

The first case of practical interest is that of flow past a flat plate. Figure 18 shows the
solution domain and an initial discretization that forms the basis of all the following calcu-
lations. For each case, the finite-element grid is characterized by two paradyreters
The refinement parametdrindicates how many subdivisions of the baseline grid were
performed, while the parameteis the degree of the interpolating polynomial. The num-
ber of degrees of freedom in the calculation is linearly related to the product of these two
parameters.

Since the Riemann-invariant boundary condition is strictly applicable only to invis-
cid flows, the abutment of a viscous surface and an outflow boundary results in significant
error over much of the plate; therefore a different boundary formulation is used. At the
inflow, total pressure, total temperature and normal velocity are specified while static pres-
sure is evaluated just inside the boundary. At the outflow, a back pressure is specified
while the energy and velocity are evaluated just inside the boundary.

Figure 19a shows skin friction distributions for several cases at a Mach number of
0.3 and a Reynolds number of 500. The well known incompressible solution of Bla-
sius[56] is shown for comparison. The flow conditions were chosen so as to compare
favorably with the Blasius solution while avoiding the ill conditioning of the equations at
very low Mach numbers[57]. Note that the higher order solutions are in closer agreement
to the Blasius solution than the second order solution. The results shown in figure 19b rep-
resent a uniform refinement of the cases in figure 19a. At this level of refinement, all the
schemes give visually similar distributions of the skin friction. Note that there is still a
small oscillation in the skin friction at the outflow for all the cases, probably due to the

combination of strong enforcement of the no-slip condition and weak enforcement of the
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outflow condition.

4.5.3 NACA 0012 Airfoil

Figure 20 shows a sample grid for a case of laminar flow over a NACA 0012 airfoil.
The flow conditions aré_, = 0.8 g = 10° , arie = 500 , corresponding to case A2

in [58]. This case represents a relatively severe test of the method since much of the upper
surface flow is separated. In fact, on sufficiently fine grids, obtaining a steady solution was
impossible, and to obtain the coarse grid solutions, the number of Krylov vectors used in
the GMRES scheme had to be increased to 30. The cases shown were all run on a grid that
began as a structured C-type mesh having 73 points in the circumferential direction and 25
points in the normal direction. This C mesh was used to distribute Lagrange points on a
triangular finite-element mesh which was then converted to the required Bezier represen-
tation. Thus all the cases have the same number of degrees of freedom.

A comparison of skin friction distributions for each order of accuracy is presented in
figure 21. Note that there are now significant changes among the different orders of accu-
racy up through fifth ordem(= 4 ), particularly at the leading and trailing edges. This is
to be expected since the calculations are on extremely coarse meshes. Because the skin
friction is based on derivatives of the flow variables, it can be expected to converge one
order less than the solution. In other words, a second-order solution should exhibit first-
order convergence of the skin friction.

An unexpected observation of particular importance can be seen in the convergence
histories presented in figure 22. Note that contrary to conventional wisdom, the nonlinear
system converges more quickly as the accuracy of the scheme is increased. Not reflected
in the figure, however, is the fact that the linear system does become more difficult to
solve. This may be due to the preconditioning - a diagonal preconditioner can be expected
to degrade in performance as the matrix becomes less sparse. This difficulty does not seem
to significantly impact convergence, however, since the GMRES algorithm meets the pre-

set limits of 20 Krylov vectors and one restart early in the computation. The actual pro-
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cessing time is virtually the same for these cases. An analysis of the number of floating
point operation count in a single inviscid residual evaluation indicates that for the same
problem size (i.e. degrees of freedom), the third and fourth order schemes incur approxi-
mately 15 per cent fewer floating point operations than the second and fifth order schemes

for each evaluation of the inviscid residual.
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Figure 4. Element data distribution using triangular Bezier patches.
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Figure 5. Boundary element data distribution using Bezier segments.
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Figure 7. Generation of finite element meshes for Ringleb flow.
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Figure 10. Geometry and grid for parabolic bump in a channel.
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Figure 11. Surface Mach number distribution for parabolic bump in a channel.
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a) Second order SU/PG scheme.

o\

b) Second order finite volume scheme.

Figure 12. Mach number contours for parabolic bump on a wall.
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Figure 13. Fine grid for inviscid flow over a NACA 0012 airfoil.
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Figure 15. Surface pressure distribution for transonic NACA 0012 airfoil.
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Figure 20. Sample grid for laminar flow over a NACA 0012 airfoll.
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Figure 22. Convergence histories for laminar flow over a NACA 0012 airfoil.
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Chapter 5

Concluding Remarks

The SU/PG method has been applied for the first time to higher-order finite-element
discretizations in one and two dimensions. Several test cases involving both subsonic and
transonic inviscid flows in one and two dimensions were investigated as well as several
subsonic laminar flow cases in two dimensions. High order accuracy was confirmed up to
ninth order for one-dimensional flows and up to fifth order for two dimensional inviscid
and laminar flows. The higher order schemes were found to provide significantly more
accurate results using fewer computational resources. An appendix is included in which
the method is applied to three-dimensional inviscid flows. Several important observations
were made based on the results:

1. No modification of the SU/PG scheme is required to achieve high order accuracy. This
essentially means that the order property of the scheme is independent of the formula-
tion of the SU/PG parameteprovided the original design criteria are met(i.e. that
vanishes as the mesh is refined). There are indications from comparisons with a second
order finite volume scheme, that an improved formulation of thatrix could further
reduce error levels by a constant factor.

2. Significant improvement of the solution results from using the higher order schemes.
Error norms for Ringleb flow and Couette flow indicate that the high order schemes
outperform the second order scheme even on very coarse meshes. Analysis of opera-

tion counts indicates that based on problem size, the third and fourth order schemes
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are cheaper to compute than the second order scheme, and that the operation count of
the fifth order scheme is comparable to the second order scheme.

3. Neglecting the Petrov-Galerkin contribution of the viscous terms in the two-dimen-
sional schemes had no impact on the order properties of the scheme. In spite of the
absence of these terms, the error norms for Couette flow converged at high order.
There is the possibility, however, that inclusion of these terms could influence error
levels by a constant factor.

4. The nonlinear system converges more quickly as the order of accuracy is increased for
the same number of degrees of freedom. The linear system converges more slowly, but
processing time is only slightly affected because the linear solver reaches the limit of
its allotted resources per iteration early in the computation. This is contrary to popular
belief that higher-order schemes suffer from convergence problems.

Clearly, the results shown here indicate that higher order schemes can greatly reduce
the computational resources required to compute steady-state aerodynamics of complex
configurations. In order to realize this potential, however, several areas must be explored
in future research.

The primary difficulty in using the higher-order schemes was the generation of suit-
able higher-order discretizations of the flow domain when curved boundaries were
involved. No general solution was found - each case required its own preprocessor to gen-
erate the higher-order finite-element mesh from an existing structured mesh or linear
finite-element mesh. Particularly difficult to generate are meshes that are highly stretched
to compute viscous flows - simply moving the boundary control points to match the sur-
face creates overlapping elements which are unacceptable to the scheme. These problems
are further compounded in three dimensions. To facilitate application of the higher-order
schemes in general, grid generation techniques must be adapted to handle high-order dis-
cretizations and must be more closely tied to geometry definitions (e.g. CAD systems).
This remains as an avenue of future work.

Other issues remaining for future research with the two-dimensional scheme are

improvement of the Petrov-Galerkin parametes discussed in chapter 2 and the incor-
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poration of the Petrov-Galerkin contribution of the viscous terms, both of which may fur-
ther reduce error levels by a constant factor. The GMRES algorithm with block-diagonal
preconditioning provided adequate convergence of the linear system, but an improved pre-
conditioning scheme could bring gains in efficiency by allowing a larger pseudotime step.
The addition of a turbulence model will allow computation of high Reynolds number

flows. The three-dimensional scheme (presented in appendix A) can benefit from these

same improvements and will also require the addition of viscous terms.
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Appendix A

Three-Dimensional Euler Equations

A.1 Governing Equations

The governing equations for inviscid flow in three dimensions can be written as

oOF 0G oH _
3% +W +6_z =0 (100)
where
o] pu pv pw
pu pu2 +p puv puw
pw puw pvw pW2 +p
P& puhy pvhy pwh,

andp is the density, v andw are the Cartesian components of the velocity vegisrthe

pressuree is the internal energy per unit makss the enthalpy per unit mass, and a sub-
script “0” indicates a stagnation condition.

The pressure is related to density and energy via the ideal-gas equation of state given

69



by
p=(y-1)pe (102)
wherey is the ratio of specific heats.

The nondimensionalization of the equations is identical to that given in chapter 4.

A.2 Finite Element Formulation

The SUPG weak statement corresponding to equation 100 is

ZE[w+ %VA+3—\;/VB+GZC%}@§ 35 aHBﬂQ (103)

wherew is the Galerkin weight functio, B andC are the flux Jacobian matrices corre-
sponding td~, G andH, and the matrix is defined as in chapter 2. By integrating the

Galerkin terms by parts the weak statement becomes:

1[w(Fn +Ghy, +HA)dr - z[ F+g G+0WHED|Q+ (104)
ow aw [@F aG BH
B At £ om cDr BdQ

where the fluxes in the boundary integrals are evaluated based on the boundary conditions

as described in chapter 4.

A.3 Solution Methodology

The physical domaif is divided into a set of nonoverlapping tetrahedral elements

Q. such that the entire domain is represented. The solutioQdatrepresented by tet-
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rahedral Bezier volumes in each element defined by

n n—in—i—j
QENY =53 5 ¥ QuBi(E N (105)
i=0j=0k=0
whereg, n, and( are the local barycentric coordinates of the element anir}qhe are the

trivariate Bernstein polynomials of degmegiven by

n! i—j—k

Bij (8.1, 2) = i!j!k!(n—i—j—k)!Ei”jZk(l‘E‘”—Z) o (106)

To accommodate curved boundaries, the coordinates of each tetrahedral element are
also represented by tetrahedral Bezier volumes of degidas results in a nonlinear
coordinate transformation from the physical space to the element parameter space. Deriv-
atives in physical spacg, fy, 2 are transformed to element parameter spaag ) by

0 080 ond 0{d 9 _080 ond  0¢o
ox  Ox0& 0xdn 0xa(’ gy  0yd& dyon dyo(’

Lo 00 (107)

0 -980 ,0n 9
0z 0z0& 0zon 0z0C

The metric terms appearing in equation 107 can be expressed in terms of the deriva-

tives of the element coordinates as

_1lyoz 0z0yog _ 1@z ox 0x0zdg _ 1oxay 0y ox[j
ax " JnaZ anolUay ~ IJBnal onalUoz ~ JBnal onall

_1lm@zoy 0yozpon _ 1@x0z 0zoxpon _ 1@yox axadyn (108)
W JBEAL 9gol0oy ~ JDEal odtalUay ~ JBEAl oatalU

_1l@yodz 0zoy(ol _ 1@zox 0x0z[joC _ 1@xdy 0dyox[
az " JEan 9fonUaz ~ JBEon otonUaz ~ JEan afand

whereJ is the Jacobian of the element coordinate transformation defined by

6x6y62+0y626x+026x6y 0x0z 0y 0yoxdz 0zdy dX
0&0no¢ 0&onol 0&onal 0&onol 0&onol 0d&onol’

Finally, the volume differentiadiQ,_ is scaled by the JacoBias follows:

J =

(109)
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dQ, = Jd&dndg (110)
Continuity of the solution across element interfaces is enforced by sharing control

points along the interfaces as illustrated in figure 23a.(T,hek) indexing in equation

105 is converted to a single index as shown in figure 23b by the following function:

= k(3n°+12n+ 11— 3nk—6k +K°)/6+ j(2n—2k—j+3)/2+i  (111)

Inode

The boundary of the domain is divided into a finite number of triangular ele-

mentsl, , each of which corresponds to the face of a tetrahedral element adjoining the

boundary. The coordinates and data on each of these elements is represented by a triangu-
lar Bezier patch of degraeas described in chapter 4. Integrals over the bouridaan
now be written as sums of integrals over individual boundary elements. These element
integrals are transformed into integrals over the local element parameter space.

The polynomial expression of the boundary element coordinates gives rise to a con-

tinuously varying unit normal along curved elements. The components of the element nor-

mal vectorn, ,n, and, are given by

y

= ORI L. e
Boundary element integrals are transformed according to
11-n
r[f(x’ Y, 9dle = [ [ T[x(&n) y(& n), z(& n)]Rdédn (113)
e 00
where
R = [Mzdy 0yoz DZ+ [0x0z azaxDZ+ oy 0x axayg2 (114)

~ N[Bgan oganU " [9gon o0gonD ' [9%on 0&onU
Upon substitution of the foregoing domain and boundary transformations, the weak

statement (equation 104) can now be written as
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~11-n

S W(FﬁX+Gﬁy+HﬁZ)RdEdn}+ (115)
"1 z1n¢
1]t e
11-¢1-n-¢
+.” i E?.XEV "WN cﬂr% 6Q+Cg?%1dzdndz} .
0 0
where

P08 085, 08, 50N, g, 0, &
B Rl el ANl MU v U

0, 0C , 9C
o TaCtat (1)

~

are the transformed inviscid flux vectors ahdB , @nd are the corresponding flux Jaco-
bians.

The integrals appearing in equation 115 are evaluated numerically using the Gauss-
ian quadrature rules of [59] for tetrahedral elements and [44] for the triangular elements
on the boundary. Availability of quadrature rules for tetrahedral and triangular elements
limits the scheme to fifth order accuracy.

The solutiomQ is obtained using a Newton-Krylov scheme as described in chapter 4.

The only difference is the preconditioner, which is still of block-diagonal form and is

given by
R, [
a_szzgj' Bij (AR, + Bny+CnZ)BiijdEdr]}+ (117)
[ 11-21-n-¢
11-c1-1- Z[a B«  9BJ~ 9BJ -0 0B} 0B,

A+ B+ *CarA-—-""+B +CaB”kEUdEd dz
-([{ {% an - “ggee TCan Ttar g™
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A.4 Results

5.0.1 NACA 0012 Wing

The geometry consists of a straight wing with a constant NACA 0012 cross section
between two vertical walls. To produce grids for higher order solutions, a least-squares
procedure similar to that used in two dimensions is used to approximate the true surfaces.
The three corners of each surface triangle match the true surface exactly.

Figure 24 shows mid-span pressure distributions at a Mach number of 0.63 and an
angle of attack of 2 degrees. Note that the third order solution has a much higher suction

peak and is comparable to the second order solution using a more refined grid.

5.0.2 ONERA M6 Wing

Subcritical flow over the ONERA M6 wing at a Mach number of 0.699 and an angle
of attack of 3.06 degrees was computed using the 2nd order scheme. The geometry and
experimental data for this case are discussed in reference 60. Figure 25 shows the pressure
distribution at 65% span compared with experimental data. The comparison is favorable
even though the grid is relatively coarse. Higher order solutions have not yet been

obtained due to the difficulty in obtaining higher order representations of the surface.
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@ shared points

@ control points

a) Enforcement of continuity via shared control points (quadratic elements depicted).

b) Indexing of control points within an element (quadratic element depicted).

Figure 23. Element data distribution using triangular Bezier patches.
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Figure 24. Mid-span surface pressure distribution for NACA 0012 wing.
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Figure 25. Surface pressure distribution for ONERA M6 wing at 65% span.

77



Vita

Daryl L. Bonhaus was born December 11, 1967 in Cincinnati, Ohio. He graduated
from Elder High School in Cincinnati in June of 1985 and received a B.S. in Aerospace
Engineering in June of 1990 at the University of Cincinnati. Upon graduation, he began
working at the Langley Research Center of the National Aeronautics and Space Adminis-
tration in Hampton, Virginia. He attained a M.S. in Fluid Mechanics and Thermal Sci-
ences from the George Washington University in September of 1993. Daryl continues to

work for the Langley Research Center.

78



	(ABSTRACT)
	Acknowledgments
	Table of Contents
	List of Figures
	Introduction
	The Streamline Upwind/Petrov-Galerkin Method
	2.1 Scalar Advection - One Dimension
	2.2 Advective Systems - One Dimension
	2.3 Scalar Advection - Multiple Dimensions
	2.4 Advective Systems - Multiple Dimensions

	Quasi-One-Dimensional Euler Equations
	3.1 Governing Equations
	3.2 Finite Element Formulation
	3.3 Solution Methodology
	3.4 Results

	Two-Dimensional Navier-Stokes Equations
	4.1 Governing Equations
	4.2 Finite Element Formulation
	4.3 Solution Methodology
	4.3.1 Discretization
	4.3.2 Solution Procedure

	4.4 Inviscid Flow Results
	4.4.1 Ringleb Flow
	4.4.2 Bump on a Wall
	4.4.3 NACA 0012 Airfoil

	4.5 Laminar Viscous Flow Results
	4.5.1 Couette Flow
	4.5.2 Flat Plate
	4.5.3 NACA 0012 Airfoil


	Concluding Remarks
	References
	Three-Dimensional Euler Equations
	A.1 Governing Equations
	A.2 Finite Element Formulation
	A.3 Solution Methodology
	A.4 Results
	5.0.1 NACA 0012 Wing
	5.0.2 ONERA M6 Wing


	Vita

