Basic Finite Element Method

The purpose of this lecture is to show a systematic method of developing a computer program
to find the numerical solution for a partial differential equation of fourth order in four dimensions
with known boundary values using a generic finite element method.

Be advised that most numerical solution of partial differential equations makes use of special
techniques for specific problems. There are layer upon layer of approximation techniques and
implementation variations. Many implementations have evolved and the details of the current
software design are not available and may not be understood.

One method for numerically solving partial differential equations is the Finite Element Method,
FEM, and specifically the Galerkin method. Partial differential equation is used here to include
ordinary differential equation in order to use one notation for all orders and all numbers of dependent
variables. The independent analytic variable will be u and the dependent variables will be x, ¥, z
and ¢ for first through fourth dimensions. The numerical solution will be U(x;,y;, 2, tw) values at
discrete points, not necessarily uniformly spaced, in the problems dimensions.

The development will proceed, beginning with the one dimensional case, onto the four dimen-
sional case.

Given a one dimensional linear partial differential equation with dependent variable u and
independent variable x

L (u(z)) = f(x)

L is a general linear differential operator of some specific order. Samples for up to fourth order in
up to four dimensions are shown below.

Find the approximate solution U(z) numerically, that has boundary conditions chosen that
make the problem of finding u(z) well posed on the domain €2 for all x € . We approximate U (z)

n
Ux) = Uj¢;(x)
j=1
where ¢;(z) is the jy, polynomial in a set of orthogonal polynomials such that:

qu(:vi):{ 1 fori=j

0 otherwise

We take j = 1...n for specific nodes z1,xs,...,T,.

We denote the approximated solution U(x;) as U; at node z;.
We will use ¢ as a set of Lagrange orthogonal polynomials.
The Galerkin Method states:

[ LW@)si@a = [ fa)oi(a)da

Substituting for U(x) yields

/Q L ;Uj@(x)) &i(z)dx — /9 F(2)s(x)der



Bringing the summation out of the integral yields

320 J, L) uada = | flehoois

L(¢;j(z)) means a substitution in L(u(x)) where u(x) becomes ¢;(x), v’ (z) becomes qb;(:z:) , and
u” () becomes gb;/(:z:) etc.
Writing the above in matrix form using the index ¢ for rows and index j for columns yields

Jo L(6:(2) o1 (x)dx [o L(92(2)) ¢u(x)d ... [q L(dn(x)) du(x)de | |Ur| | o f(2)¢1(2)de
Jo L (9:(2)) ¢o(z)dr [o L(da(2)) da(x)dz ... [ L(¢n(2)) da(x)dz | | Us| _ | Jq f(2)d2(x)de

Jo L (6:(2)) @)z [ L (6a(2)) bn(@)ds . [o L (6n(@) bn@)dz| |Unl | o F(2)bu(x)dz

Note that the above applies for the “internal” non boundary nodes.
Given Dirichlet boundary values v, at x; and v, at x, the first and last rows of the above
matrix equation would be:

X

10...0 U1 V1

X

Un
The boundary rows may be eliminated and a (n — 2) system of equations are solved to find the
Ujforj=2...n—-1
Note that, in general, numerical integration is required to compute the matrix elements and the
right hand side vector elements.

00...1 Un



Given a two dimensional linear partial differential equation with dependent variable u and
independent variables x, y

L (u(m,y)) = f(a:,y)

L is a general linear differential operator of some specific order. Samples for up to fourth order in
up to four dimensions are shown below.

Find the approximate solution U(zx,y) numerically, that has boundary conditions chosen that
make the problem of finding u(z,y) well posed on the domain Q for all (x,y) € .

We denote the approximated solution U(x;,y;) as Uy at node (x;,y;).

We take ¢ = 1...nzx for specific nodes z1,x9,...,Z, and j = 1...ny for specific nodes

Y1,925 - -+ Yny-
Thus, without loss of generality, k runs over all pairs (z;,y;) k = (i—1) xny+j and nxy = nxxny

Let U(z,y) = Y124 Uor(z,y)
We will use

o, y) = ¢i(x)9;(y)

where ¢y (z,y) is the ky, polynomial in a set of two dimensional orthogonal polynomials such
that:

1 fori=k,j=k
0 otherwise

D1 (i, yj) :{

We will use ¢ as a set of Lagrange orthogonal polynomials.
The Galerkin Method states:

[ LWy auwy)drdy = [ floy)inte,ydzdy
Q 0

Substituting for U(z,y) yields

nry

/Q L(Z Umk(x,y)) bu(w,y)da dy = /Q (@, y) i, y)dz dy

k=1

Bringing the summation out of the integral yields

nxy

> U /Q L (6x(x, ) du(, y)da dy = /Q f(@,y)éu(x, y)da dy

L(¢x(x,y)) means a substitution in L(u(z,y)) where u(x,y) becomes ¢ (x,y), ur(z,y) becomes
¢i(x,y) 65 (x,y) , uy(z,y) becomes ¢i(z,y) ¢;(x,y), ury(z,y) becomes ¢;(x,y) ¢;(z,y), urz(z,y)

becomes ¢; (x,y) ¢;(x,y) , uyy(z, y) becomes ¢;(x,y) ¢; (,y), etc.



Writing the above in matrix form using the index k = (i — 1) x ny + j for rows
and index [ = (i — 1) x ny + j for columns yields

Jo L(¢:(z,y)) ¢u(x,y)dxdy [o L(po(x,y)) ou(x,y)dxdy ... [oL(ney(w,y)) ¢u(x,y)dxdy
Jo L (#:(2,9)) ¢=(z,y)dzdy [o L(d2(2,y)) da(x,y)drdy ... [o L (nay(T,y)) ¢2(,y)dz dy

Jo L (64(2,9)) bnay(@s)da dy fo L (63(2,)) dray (@ 9)dz dy - . [or L (Suay(:1)) draay (. y)de dy

Ui Jo I, 9)o1(z, y)dx dy
Uy | _ | Jof(2,y)¢2(z,y)dzdy

lﬁmw ]bif(x,y)¢nxy(x,y)dardy
Note that the above applies for the “internal” non boundary nodes.

Given Dirichlet boundary values, e.g. v at (x1,y1) and vpgy at (Tng, Yny) the first and last rows
of the above matrix equation would be:

10...0 Uy

U1
X

00...1 Unzy
The many boundary rows may be eliminated and a (nz — 2)(ny — 2) system of equations are
solved to find the Uy fort=2...nx —1,j=2...ny — 1
Note that, in general, numerical integration is required to compute the matrix elements and the
right hand side vector elements.

Unzy



Given a three dimensional linear partial differential equation with dependent variable u and
independent variables z, vy, z

L (u(x,y, Z)) = f(l‘,y, Z)

L is a general linear differential operator of some specific order. Samples for up to fourth order in
up to four dimensions are shown below.

Find the approximate solution U(z,y, z) numerically, that has boundary conditions chosen that
make the problem of finding u(z,y, z) well posed on the domain Q for all (x,y,z) € Q.

We denote the approximated solution U(x;,y;, 2) as Uy, at node (z;,y;, 2k).

We take ¢ = 1...nzx for specific nodes z1,29,...,T,, and j = 1...ny for specific nodes
Y1,Y2, - - Yny- k= 1...nz for specific nodes 21, 22, ..., 2.

Thus, without loss of generality, m runs over all (x;,y;, 2x) m = (i—1) xny xnz+(j—1) xnz+k
and nxyz = nr X Ny X nz .

Let U(z,y,2) = > ] Undm (2, y, 2)

We will use

¢m(xv Y, Z) = ¢z(x)¢J (y)¢k(z)

where ¢, (x,y, 2z) is the my, polynomial in a set of three dimensional orthogonal polynomials
such that:

1 fori=m,j=m,k=m
0 otherwise

S (Tis Yjs 2k) :{

We will use ¢ as a set of Lagrange orthogonal polynomials.
The Galerkin Method states:

/ﬂ LUy, 2)) di(x,y, 2)de dy dz = /Q F @y, 2)di(z, y, 2)dx dy dz

Substituting for U(z,y, z) yields

nTYz

AL (Z Um¢m($7y7 Z)) ¢l(x7yuz)dxdy dz = ‘/Qf(l‘7y7 Z)¢l(x7yaz)dxdy dz

Bringing the summation out of the integral yields

nryz

Z Um‘/gzL(¢m($7y7z)) ¢l($7y7z)d$dydzz f()f(xvyvz)¢l($7y7z)d$dydz

m=1
L(¢m(z,y, z)) means a substitution in L(u(z,y, z)) where u(zx, y, z) becomes ¢, (x,y, 2), ur(x,y, z)
becomes ¢z($7 Y, Z) ¢] (.’E, Y, Z) ¢k(x7 Y, Z)7 uy($7 Y, Z) becomes ¢Z(‘T7 Y, Z) ¢J (.’E, Y, Z) ¢k($7 Y, Z)a UZ(.’E, Y, Z)
becomes ¢;(x,y, 2) ¢;(x,y, 2) qb;g(a:,y, z), etc.



Writing the above in matrix form using the index m = (i — 1) x ny x nz + (j — 1) x nz + k for
rows and index [ = (i — 1) x ny X nz + (j — 1) x nz + k for columns yields

Jo L (¢:(z,y,2)) d1(2,y, 2)dzdy dz [ L(¢a(2,y,2)) ¢1(2,y,2)dxdydz ... [oL(fnay:(2,y,2)) d:1(z,y, 2)dw
fQL(¢1($,y,Z)) gbz(l‘,y,z)d:tdydz fQL(¢2($,y,Z)) qbz(x,y,z)da;dydz fQL((anyZ(Q:?y?Z)) ¢2($7y7z)d$

fQ L (¢)1 (337 Y, Z)) ¢nxyz($7 Y, Z)d:l,‘ dy dz f_Q L (¢2(x7 Y, Z)) ¢nxyz(xa Y, Z)dx dy dz ... f_Q L (¢nxyz($7 Y, Z)) ¢nxyz($7 Y,

U1 fQ f(xayaz)¢l($7y7 Z)d‘/ljdydz
U2 — fQ f(l“ayaz)%(l‘,y» Z)dxdydz

Umfyz fQ f(x,y,Z)quyz(ﬂc,y, Z)dl‘ dy dz
Note that the above applies for the “internal” non boundary nodes.

Given Dirichlet boundary values vy at (z1,y1,21) and Ungy. at (Tnaz, Yny, 2nz) the first and last
rows of the above matrix equation would be:

10...0 Uy

U1
X

00...1
The many boundary rows may be eliminated and a (nx —2)(ny —2)(nz —2) system of equations
are solved to find the Uy, fori =2...nz —1,j=2...ny—1,k=2...nz—1
Note that, in general, numerical integration is required to compute the matrix elements and the
right hand side vector elements.

Unxyz Unaxyz



Given a four dimensional linear partial differential equation with dependent variable u and
independent variables x, v, z, t

L (u(m,y, Z>t)) = f(l‘,y, Z?t)

L is a general linear differential operator of some specific order. Samples for up to fourth order in
up to four dimensions are shown below.

Find the approximate solution U(z,y, z,t) numerically, that has boundary conditions chosen
that make the problem of finding u(x,y, z) well posed on the domain 2 for all (z,y,z,t) € Q .

We denote the approximated solution U(x;,y;, 2k, tp) as Uy, at node (x;,y;, 2k, tp).

We take ¢ = 1...nzx for specific nodes z1,x9,...,Z,, and j = 1...ny for specific nodes
Y1,Y2, - Yny- Kk = 1...nz for specific nodes 21,22,...,2,.. p = 1...nt for specific nodes
t1,t9, ..., tnt.

Thus, without loss of generality, m runs over all (z;,y;, 2k, tp)
m=(i—1)xnyxnzxnt+(j—1)xnzxnt+ (k—1) xnt+ p and
nIrYzt = nr X ny X nz X nt .

Let U(z,y,2,t) = anx:yft Undm(z,y, 2, 1)

We will use

qu(l', Y, z, t) = ¢z(x)¢J (y)qbk(z)qbp(t)

where ¢,,(z,y, z,t) is the my, polynomial in a set of four dimensional orthogonal polynomials
such that:

1 fori=m,j=m,k=m,p=m
0 otherwise

¢m(xi7yj7 Zk7tp) - {

We will use ¢ as a set of Lagrange orthogonal polynomials.
The Galerkin Method states:

/L(U(x,y,Z))¢z(w,y,z,t)d$dydzdt=/ [y, 2, t)pu(2,y, 2, t)dx dy dz dt
Q 2

Substituting for U(z,y, z,t) yields

nxyzt

/ L ( Z Um¢m(x7yvzvt)> gbl(xvyvzvt)dxddedt :/ f(xvyvzvt)¢l(x7yvzvt)dxddedt
Q [0}

m=1

Bringing the summation out of the integral yields

nryzt

Z Un / L (¢m(x7 Y, z, t)) QS[(J), Y, =, t)d.l‘ dy dzdt = / f(xa Y, =, t)le(l', Y, =, t)d.l‘ dy dzdt
m—1 Q (9}
L(¢m(z,y, 2,t)) means a substitution in L(u(z,y, z,t)) where u(z,y, z,t) becomes ¢, (z,y, 2, t),
U.’E(QJ, Y, z, t) becomes ¢;(‘T7 Y, z, t) ¢] (1:7 Y, z, t) ¢k($7 Y, z, t) ¢p($7 Y, z, t)7 uy($7 Y, z, t) becomes ¢Z(‘T7 Y, z, t) ¢; (1:7 Y, z,

uz($7y7 Z7t) becomes ¢i(x7y7 th) ¢]($7y7 Z7t) ¢;g(x7y7 Zut) ¢p($7y7 Z7t)7 Ut($7y7 Z7t) becomes ¢i(1’7?/7 Z7t) ¢](x7y7 Zat
etc.



Writing the above in matrix form using the index m = (i — 1) x ny x nz x nt + (j — 1) x nz x
nt+ (k—1) x nt+p for rows and index | = (i—1) xny xnz xnt+(j—1) xnzxnt+(k—1) xnt+p
for columns yields

fQ L (¢1 (.’E, Y, =, t)) ¢1($7 Y, =, t)d.’[‘ dy dZ dt f_Q L (¢2($7 Y, =, t)) ¢1($7 Y, =, t)d.’]}‘ dy dZ dt e f_Q L ((bnxyzt(xa Y, =,
fQ L (le (JL‘, Y, z, t)) ¢2($, Y, z, t)dﬂ? dy dZ dt f() L (¢2($, Y, z, t)) ¢2(x> Y, z, t)dﬂ? dy ClZ dt e f() L (¢n:vyzt(xa Y, z,

fQL(qbl(xaya Z>t)) ¢n$yzt(x7y7zvt)dxdyd2dt fQL(¢2(x7y7z7t)) ¢n$yzt(x7y7zvt)dxddedt fQL(qbnityzt(maya

Ul fQf(x,y,z,t)¢1(x,y,z,t)dxdydzdt
U2 _ fQf(xayaZut)¢2(x7yuzat)d$ddedt

Unayzt Jo f(@,y, 2,t)bnay=t (2, y, 2, t)dx dy dz dt
Note that the above applies for the “internal” non boundary nodes.
Given Dirichlet boundary values vy at (x1,y1,21,%1) and Unagyze at (Tng, Yny, Znz, tne) the first
and last rows of the above matrix equation would be:

10...0 U1 (%1

X

0 0 ce . 1 Un$yzt Un$yzt

The many boundary rows may be eliminated and a (nz — 2)(ny — 2)(nz — 2)(nt — 2) system of
equations are solved to find the Uy, fori =2...nx—1,7=2...ny—1L,k=2...nz—1,p=2...nt—1

Note that, in general, numerical integration is required to compute the matrix elements and the
right hand side vector elements.



Some general formulations of linear partial differential equations from first order to fourth
order with one to four dimensions. The functions f;() may be constants including zero. The linear
differential operator L used above, may be any left hand side from these, or more general, equations.

£o@) 22 4 fy (@) = (o)

1) 2 1 o) 25y @uta) = )

3U X 2u xr u\xr
a0 ZD ¢ gy 8D @) 28D i) = (@)
4u xr 3U 2u u\x
fs@ T i) 2 | T gy 2D ) = £

du(z, y)
or

u(z,y)
or?

Ou(z,y)
ox
0

du(z, y)

f3(m>y) ay

+ fa(z,9)

+ fl(m,y)u(a:,y) = f(xay)

*u(z,y)

2U xr
+file) 5 e

oxy

ou(z,y)
dy

fﬁ(may)

f3($7y) +f2($7y) +f1($7y)u($7y) :f($7y)

Pu(, y) O*u(z,y) P*u(z,y)
o3 T fQ(xay)Tgy + fs(x,y)Tngr

0u(z, y) u(,y) u(,y)
o + fo(z, Q)W " Ory

flo(l“,y)

_l’_

fr(z,y) + f5(z,9)

2U X u\xr u\xr
e =55 4 o) 4 ol 25 4 i yyuteny) = fo

ou(x,y, z
+ f2($7y7 3)%—’_

ou(x,y, z)
oz

ou(x,y, z)

f4($,y,2’) ay

+ f3($7y7 Z)

f1($7y7 Z)U(Qi,y, Z) = f(xvyv Z)

Pu(z,y, z) u(z,y, 2)
o2 + fo(,y, Z)Ty

Pu(z,y, 2)
Oy?

62
u(z,y, 2) n
oxz

P*u(z,y, 2)
022 *
ou(x,y, 2)

+ f2($7y7 Z)T""

flO(xayvz) +f8(337y72)

0*u(z,y, 2)
Oyz

ou(x,y, 2)
y

f?(fU,y»Z) +f6(337y72) +f5(55‘>y,2)

fular ) 22T gy 2)

f1($7y7 Z)U(Qi,y, Z) = f(xvyv Z)

9



f5(x7yvzvt)w + f4(x,y,z,t)w + f3($,y,2,t)w+
Oz oy 02

ou(x,y, z,t
fQ(xayazut)% + fl(xayuzat)u($7y7 Z7t) = f(xayazat)

82u(1‘,y, z,t) 82u(x,y,z,t) 82u(az,y,z,t)
fra(z,y, Z’t)T + fi3(z,y, Z’t)ﬁ—azy + fi2(z,y, z,t)T
82u(1‘, Y, z,t) 82u(1‘, Y, z,t) 82u(1‘, Y, z,t)
fii(z,y, Z’t)T + fio(z,y, zvt)a—yg + fo(z,y, Z’t)8—yz+
Pu(x,y, z,t) u(w,y, z,t) &u(z,y, 2, )
bl b s SIS LA
f8(f137?/737 ) Oyt +f7(x7yaza ) 822 ‘|‘f6(337y72’7t) Izt
au(x7 y7 z’ t) au(x7 y7 z’ t) 8u(x7 y7 z? t)
st st R LA
fS(xayuza ) ox +f4(x7yaza ) 82/ ‘|‘f3(337y72’7t) Oz
a b ) 7t
fﬂ%%%ﬂ% + fl(xvyvzvt)u(x?ya Z>t) = f(xvyvzvt)
84u(1‘,y, z,t) 84u(az,y,z,t) 84u(x,y,z,t)
f0(z,y, Z’t)T + fio(w, v, z’t)8—y4 + fis(z, y, Z>t)T+
0*u(z,y, 2, 1) du(z,y, 2, ) du(x,y, 2, )
f17(33,y,27t)T +...+ fS(xuyazut)T + f4(33,y,2,t)T
ou(x,y, z,t ou(x,y, z,t
f3($7?/7 Z7t)% +f2($7?/7 Z7t)M

at +f1($7y7z7t)u(x7y7z7t):f($7y727t)

10



Lagrange polynomials and derivatives of various orders and dimensions
One dimension, using ¢(x) for the Lagrange polynomial on the points x1, zo, ..., x, , for a given
7 and z we can numerically compute

o= 11 =3

i=1,i#]
Two dimensions, using ¢;(z) and ¢;(y) for the Lagrange polynomials on the points z1, 22, ..., Zna
Y1,Y2s -+ - s Yny » for a given ¢ and z, j and y we can numerically compute

Sm(z,y) = ¢i(x)P;(y)

This is just the product of the evaluations of the two Lagrange polynomials. Note that the two
polynomials may be of different degree and have different indices.
Similarly, we can numerically compute

(bm(xvyvz) = ¢Z($)¢](y)¢k(z)
¢m($7?/7 Z7t) = ¢Z($)¢](y)¢k(z)¢p(t)

Taking the derivative with respect to x gives

¢;(z) = Z

k=1,k#j

Tj— X i=1 it (ij — ;)

Higher order derivatives may be defined in the same way.

For numerical computation:

The numerical integration is best performed by Gauss-Legendre quadrature, my experience with
adaptive quadrature was not good.

The simultaneous equations may be solved by any numerically stable method.
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