separate ( Generic_Elementary_Functions ) function KF_Atanh( Y : Common_Float ) return Common_Float is -- On input, |Y| <= 2(exp(1/16)-1) / (exp(1/16)+1). -- On output, the value of [log(1 + Y/2) - log(1 - Y/2)]/Y - 1 -- is returned. -- The core approximation calculates -- Poly = [log(1 + Y/2) - log(1 - Y/2)]/Y - 1 -- in the type Working_Float, which is a type chosen to -- have accuracy comparable to the base type of Float_Type. Result : Common_Float; begin -- Approximation. -- The following is the core approximation. We approximate -- [log(1 + Y/2) - log(1 - Y/2)]/Y - 1 -- by a polynomial Poly. The case analysis finds both a suitable -- floating-point type (less expensive to use than LONGEST_FLOAT) -- and an appropriate polynomial approximation that will deliver -- a result accurate enough with respect to Float_Type'Base'Digits. -- Note that the upper bounds of the cases below (6, 15, 16, 18, -- 27, and 33) are attributes of predefined floating types of -- common systems. case Float_Type'Base'Digits is when 1..6 => declare type Working_Float is digits 6; R, Poly : Working_Float; begin R := Working_Float( Y * Y ); Poly := R * 8.33340_08285_51364E-02; Result := Common_Float( Poly ); end; when 7..15 => declare type Working_Float is digits (15+System.Max_Digits - abs(15-System.Max_Digits))/2; -- this is min( 15, System.Max_Digits ) R, Poly : Working_Float; begin R := Working_Float( Y * Y ); Poly := R*( 8.33333_33333_33335_93622E-02 + R*( 1.24999_99997_81386_68903E-02 + R*( 2.23219_81075_85598_51206E-03 ))); Result := Common_Float( Poly ); end; when 16 => declare type Working_Float is digits (16+System.Max_Digits - abs(16-System.Max_Digits))/2; R, Poly : Working_Float; begin R := Working_Float( Y * Y ); Poly := R*( 8.33333_33333_33335_93622E-02 + R*( 1.24999_99997_81386_68903E-02 + R*( 2.23219_81075_85598_51206E-03 ))); Result := Common_Float( Poly ); end; when 17..18 => declare type Working_Float is digits (18+System.Max_Digits - abs(18-System.Max_Digits))/2; R, Poly : Working_Float; begin R := Working_Float( Y * Y ); Poly := R*( 8.33333_33333_33335_93622E-02 + R*( 1.24999_99997_81386_68903E-02 + R*( 2.23219_81075_85598_51206E-03 ))); Result := Common_Float( Poly ); end; when 19..27 => declare type Working_Float is digits (27+System.Max_Digits - abs(27-System.Max_Digits))/2; R, Poly : Working_Float; begin R := Working_Float( Y * Y ); Poly := R*( 8.33333_33333_33333_33333_33334_07301_529E-02 + R*( 1.24999_99999_99999_99998_61732_74718_869E-02 + R*( 2.23214_28571_42866_13712_34336_23012_985E-03 + R*( 4.34027_77751_26439_67391_35491_00214_979E-04 + R*( 8.87820_39767_24501_02052_39367_49695_054E-05 ))))); Result := Common_Float( Poly ); end; when 28..33 => declare type Working_Float is digits (33+System.Max_Digits - abs(33-System.Max_Digits))/2; R, Poly : Working_Float; begin R := Working_Float( Y * Y ); Poly := R*( 8.33333_33333_33333_33333_33333_33332_96298_39318E-02 + R*( 1.25000_00000_00000_00000_00000_93488_19499_40702E-02 + R*( 2.23214_28571_42857_14277_26598_59261_40273_30694E-03 + R*( 4.34027_77777_77814_30973_20354_95180_362E-04 + R*( 8.87784_09009_03777_78533_78449_15942_610E-05 + R*( 1.87809_65740_24066_11924_19609_24471_232E-05 )))))); Result := Common_Float( Poly ); end; when others => raise PROGRAM_ERROR; -- assumption (1) is violated. end case; -- This completes the core approximation. return( Result ); end KF_Atanh;