separate ( Generic_Elementary_Functions ) function Sinh( X : Float_Type ) return Float_Type is -- On input, X is a floating-point value in Float_Type; -- On output, the value of sinh(X) (the hyperbolic sine of X) is returned. -- The definition of sinh(Y) is (exp(Y) - exp(-Y))/2, therefore -- the bulk of the computations are performed by the procedure -- KP_Exp (Y, M, Z1, Z2) which returns exp(Y) in M, Z1, and Z2 -- where -- exp(Y) = 2**M * ( Z1 + Z2 ) -- M of integer value, and Z1 only has at most 12 significant bits. Z, Sign_Y : Common_Float; Y, Abs_Y, Z1, Z2, Cond : Common_Float; M, J : Common_Int; One : constant Common_Float := 1.0; Log2 : constant Common_Float := 16#0.B17217F7D1CF79ABC9E3B39803F2F6AF40#; Base_Digits : constant Common_Float := Common_Float( 6 * Float_Type'Base'Digits ); Two_to : constant array ( Common_Int range -3..3 ) of Common_Float := ( 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 ); Large_Threshold : constant Common_Float := 8.0 * Common_Float(Float_Type'Safe_Emax) * 0.6931471806; begin -- Filter out exceptional cases. if ( X = 0.0 ) then return(X); end if; Y := Common_Float( X ); if ( Y > 0.0 ) then Sign_Y := One; else Sign_Y := -One; end if; Abs_Y := abs(Y); if Abs_Y >= Large_Threshold then raise Constraint_Error; end if; Cond := Base_Digits * Log2; if (Abs_Y >= Cond) then -- Get the values of M, Z1, and Z2 so that the natural exponential of Y -- can be calculated by Exp(Y) = 2**M * (Z1 + Z2) KP_Exp (Abs_Y, M, Z1, Z2); M := M - 1; case Radix is when 2 => Y := Z1 + Z2; when others => J := M rem 4; M := (M - J) / 4; Z1 := Z1 * Two_to(J); Z2 := Z2 * Two_to(J); Y := Z1 + Z2; end case; Z := Sign_Y * Scale( Y, M ); -- Now, Z = sign(X) * 1/2 * exp( abs(X) ). -- When abs(Y) gets so big, subtracting (1/4)/Z will not make -- a difference in the outcome of the sinh(X). return ( Float_Type(Z) ); else Z := KF_Em1 (Abs_Y); return ( Float_Type( Sign_Y * 0.5 * (Z+(Z/(Z+1.0))) ) ); end if; end Sinh;