separate ( Generic_Elementary_Functions ) function Arccosh( X : Float_Type ) return Float_Type is -- On input, X is a floating-point value in Float_Type; -- On output, the value of Arccosh(X) (the inverse hyperbolic cos of X) -- is returned. -- The definition of Arccosh(Y) is log( Y + sqrt(Y*Y - 1) ), Y >= 1. -- To obtain good accuracy, we consider several cases: -- 1) Y = 1, simply return 0. -- 2) 1 < Y <= sqrt(2) -- Y + sqrt(Y*Y-1) = Y + sqrt( (Y-1)*(Y+1) ) -- 3) sqrt(2) < Y < 10/epsilon, -- Y + sqrt(Y*Y-1) = 2( Y - 0.5/[ sqrt(Y*Y-1) + Y ] ). -- 4) 10/epsilon <= Y, then -- Y + sqrt(Y*Y-1) = 2Y for practical purposes. -- Note that (3) and (4) are suited for invoking the kernel procedure -- KP_Log(Input) which returns M, Z1, and Z2 where -- log(Input) = M * log(2) + Z1 + Z2. -- Y1, Y, M, Z1, Z2, Result : Common_Float; Zero : constant := 0.0; One : constant := 1.0; Half : constant := 0.5; Root2 : constant := 1.41421_35623_73095_04880_16887_24209_69807; Large_Threshold : constant Common_Float := 10.0 / Common_Float'Base'Epsilon; Log2_Lead : constant Common_Float := 16#0.B17#; Log2_Trail : constant Common_Float := 16#0.000217F7D1CF79ABC9E3B39803F2F6AF40#; begin Y := Common_Float(X); if (Y < One) then raise Argument_Error; end if; if (Y <= Root2) then if (Y = One) then return( Float_Type(Zero) ); else Y1 := Y - One; Y := Y1 + KF_Sqrt( Y1*(Y+One) ); return( Float_Type(KF_L1p( Y )) ); end if; else if (Y < Large_Threshold) then Y := Y - Half/(Y + KF_Sqrt( (Y-One)*(Y+One) )); end if; KP_Log( Y, M, Z1, Z2 ); M := M + One; end if; Result := M*Log2_Lead + (Z1 + (Z2 + M*Log2_Trail)); return( Float_Type(Result) ); end Arccosh;