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Abstract

This paper presents a numerical demonstration of the use of the adjoint method for permittivity
optimization to design a dielectric medium capable of object classification at the speed of light.
In a two-dimensional setup, the system comprises an input waveguide, a design region, and three
output ports made of a lossless dielectric material. The design medium is optimized to guide light
into specific output ports based on the type and variation of scatterers placed between the input
waveguide and the design region. For proof of concept, scatterers derived from the MNIST data-
set’s digits 0, 1, and 2 are used to represent different object classes with varying shapes and sizes.
The optimization process dynamically adjusts the material distribution within the design region
to maximize classification performance. The final structure achieved a classification accuracy of
96.3%, with light successfully directed to the correct output port corresponding to each scatterer
class. This work demonstrates the potential of permittivity optimization for developing advanced
photonic devices capable of ultrafast object recognition, paving the way for future research in
three-dimensional designs and more complex classification tasks.

1. Introduction

Inverse photonic design involves leveraging advanced computational techniques to create photonic struc-
tures with the desired optical properties. This process begins with the desired outcome and works back-
wards to identify the optimal structure [1-20]. Unlike traditional design methods, inverse design util-
izes algorithms to explore complex design spaces and discover nonintuitive geometries that meet spe-
cific performance goals. Among various techniques, permittivity optimization has emerged as a powerful
approach in the past two decades [1-20]. Permittivity optimization, often employing the adjoint method
for efficient gradient calculations of performance metrics with respect to design parameters, aims to
determine the optimal distribution of materials within a design domain to achieve the desired photonic
behavior. Originated in fluid dynamics and meteorology for sensitivity analysis [21], the adjoint method
significantly accelerates the optimization process.

Historically, Young-Seek et al’s and Georgieva et al’s works [22, 23] can be considered the first
demonstrations of the feasibility of adjoint sensitivity technique for electromagnetic design optimiz-
ation, laying the groundwork for its application in photonics. Jensen and Sigmund’s review paper [2]
summarizes the rapid developments in the following decade of permittivity optimization in nanophoton-
ics, utilizing the adjoint method to design photonic crystals, waveguides, and resonators. This pixel-like
parameterization of geometry allowed for significant design freedom and efficiency and in the follow-
ing years, the researchers came up with novel designs for optical cloaking [3], mode conversion [4] and
splitting (based on wavelength [4, 6], polarization [4], or power [4]), beam splitters [5], fiber couplers
[4], and photonic fibers [9]. Lin et al further demonstrated the power of adjoint optimization in non-
linear photonics through cavity-enhanced second-harmonic generation, optimizing the nonlinear over-
lap to achieve superior efficiency [7]. The integration of machine learning with the adjoint method, as
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Figure 1. Schematic illustration of object classification using light. (a) The setup consists of four waveguides: one input wave-
guide, where the light source is positioned, and three output waveguides. The dark gray box represents the design region. The
permittivity of each pixel of the design region will be determined using permittivity optimization. When different types of objects

are placed between the input waveguide and design medium, the light is expected to exit through different output ports, as shown
in (b), (¢), and (d).
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explored by Tahersima et al [13], introduced deep neural networks for the inverse design of integrated
photonic power splitters, combining data-driven approaches with physics-based optimization. Recent
studies showcased the freeform metasurface design using topology optimization, illustrating the method’s
adaptability to complex metasurface geometries [9, 14, 15]. Morrison et al introduced a physics-agnostic
inverse design framework by integrating the adjoint method with the transfer matrix method, broaden-
ing its applicability across various physical domains [17]. Substrate and coating optimization have also
benefited from the adjoint method [18-20]. For example, we recently applied it to broadband substrate
optimization using layered medium Green’s functions, achieving significant performance improvements
in quantum efficiency of the two-dimensional (2D) material-based phototransistors [20]. In short, the
adjoint method has made a significant impact on inverse photonic design by providing a computation-
ally efficient framework for optimizing complex photonic structures.

In this purely numerical work, we employed the adjoint method for permittivity optimization to
design a medium capable of achieving object classification at the speed of light. To demonstrate the
feasibility of this concept, we consider a 2D scenario. Assume that our setup involves three distinct
object types: rock, paper, and scissors, which we aim to classify using light. Our computation domain
includes one input and three output ports made from a lossless dielectric material and a design medium,
as illustrated in figure 1(a), with light and dark gray rectangles. The light source is positioned within
the input waveguide on the left of the design medium. The object to be classified is placed between the
input waveguide and the design medium. If we can achieve our goal, the light should exit from different
ports for different objects, i.e. if it is a rock, the light will exit from the lower port; if it is a paper, from
the middle port; and if it is a pair of scissors, then from the upper port, as illustrated in figures 1(b)—
(d). However, this classification must be achieved for objects with slight variations in size and shape.

To accomplish this, we need to use scatterers from different classes, and for each class, we should have
similar objects with varying sizes and shapes during the adjoint optimization. In other words, unlike all
previous implementations aforementioned, training needs to be done dynamically here. To our know-
ledge, this is the first time multi-objective permittivity optimization has been carried out with dynamic
training.

The remainder of this paper is structured as follows: In section 2, we detail our methodology, begin-
ning with the construction of scatterers from the MNIST dataset [24]. We then describe the compu-
tational domain and the finite-difference frequency-domain (FDFD) simulation setup. We explain the
adjoint-based permittivity optimization process, including the cost function, the parameterization of the
design region, and the use of automatic differentiation. In section 3, we present the numerical results,
demonstrating how strategic weighting in the cost function improved classification accuracy, and ana-
lyze the resulting field distributions. We also discuss the system’s robustness and its inherent linearity.
Following a discussion on experimental validation, practical challenges, and the potential for 3D exten-
sion in section 4, we conclude.
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2. Method

2.1. Scatterers

To validate our hypothesis, we require a dataset comprising three distinct groups of objects, with each
group containing numerous similar yet non-identical objects. Therefore, we decided to create scatterers
using the digits 0, 1, and 2 from the MNIST dataset [24]-a widely used collection of 60000 handwritten
digit images (0-9) for training and testing image classification algorithms. Its simplicity and standardized
format (each image is 28 x 28 pixels with integer values ranging from 0 to 255, as illustrated in the top
row of figure 2) have established it as a foundational benchmark for evaluating and comparing machine
learning models in computer vision [24, 25]. Following the approach in [25], we first apply the follow-
ing expression to convert MNIST images into scatterers with dielectric permittivity values ranging from

min max
e, toeg,

Du,v

(1) = P 4 (e - ) 12

(1)

where D, , represents the value of the pixel at (u,v) and 1 < u,v < 28. We then apply a 2D interpolation
algorithm (RegularGridinterpolator module from the SciPy library) to upscale the images from 28 x 28 to
70 x 70 pixels, as shown in the bottom row of figure 2. The rationale behind this enlargement will be
explained in the subsequent section. Notably, the two ‘digit-2’ images/scatterers in the last two columns
of figure 2 exhibit significant variations, which will pose challenges later in the analysis.

2.2. Computation domain

Figure 3(a) illustrates the 10\ by 10\ computation domain used in this work, where A is the excitation
wavelength. To ensure high accuracy, the mesh sampling density along the x (horizontal) and y (ver-
tical) directions is set to A/60, resulting in a computational domain composed of 600 by 600 pixels. All
the waveguides are 50 pixels wide. The output waveguides are centered at pixel positions 200, 300, and
400 along the y-axis. The design region measures 300 pixels by 400 pixels. The target region—where
the scatterer will be placed—is 70 pixels by 70 pixels. This is why we enlarge the MNIST images in the
first step of this study. Both the design and target regions are centered at pixel 300 along the y-axis. The
source and observation ports are positioned at the centers of the input and output ports, indicated by
red and light green dashed lines. The background is assumed to be a vacuum with a relative electrical
permittivity of 1, while the waveguides have a relative electrical permittivity of 2.96. The mustard-colored
regions in figure 3(a) represent perfectly matched layers, each 40 pixels thick. Figure 3(b) lists the crit-
ical coordinates of each component within the computational domain. The objective of the permittivity
optimization is to determine the relative electrical permittivity of each pixel in the design region so that
light exits through one of the three output waveguides based on the scatterer type (0, 1, or 2), as illus-
trated in figures 1(b)—(d).

To simulate the wave propagation along the computation domain, we utilize a freely available 2D
electromagnetic FDFD simulation tool called Ceviche [26]. The fdfd_ez module in Ceviche specifically
solves for 2D transverse magnetic (TM) modes, where the electric field has only a z-component (E,)
and the magnetic fields have x- and y-components (H, and H,). Briefly, this FDFD algorithm solves the
following form of Maxwell’s equation:

V x V x E, (x,y) — w*pocoer (x,¥) E; (x,y) = 0, (2)

where w = 27f, f is the frequency of the excitation, p and &( are the magnetic permeability and elec-
trical permittivity of vacuum, and ¢, is the relative electrical permittivity. The total field E, is expressed
as E; = Einc + Egcat, where Ejpc and Egq are the incident field due to mode injection and scattered field
due to the structures inside the computation domain, respectively. Hence, we first determine the fun-
damental TM mode in the input waveguide. Then, this excitation is applied as a boundary condition

by injecting a known modal field Ej,.. Once the linear system is solved, we compute the electric field
intensity at the output ports, as indicated by the green dashed lines in figure 3(a). Integrating this
intensity along the prob yields the mode overlap Os,, where s is 0, 1, or 2, representing the scatterer
object. The p is either 1, 2, or 3, representing the output ports, which are centered at pixel positions 200,
300, and 400, respectively, along the y-direction.

3
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Figure 2. Top row: Sample digits from the MNIST dataset, where the color of each pixel represents an integer between 0 and 255.
Bottom row: Sample scatterers created from the MNIST dataset using 2D interpolation, where the color of each pixel represents
the local relative electrical permittivity value ranging from 1 to 4.
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Figure 3. (a) Schematic illustration of the computation domain: black and dark gray rectangles are the waveguides and design
region, light gray and mustard-colored regions are vacuum and perfectly matched layers (PML), respectively, dashed green square
shows the area where the scatterer will be placed; (b) critical pixel numbers along the x and y directions for all the components of
the computation domain.

2.3. Permittivity optimization

Permittivity optimization is an iterative process, and for each iteration, we run three simulations to cal-
culate mode overlaps at each port, assuming the scatterer is made from a digit-0 first, then from a digit-
1, and finally from a digit-2. We use the following expression as our cost function C

C= 22: (OS’S+1 >as (3)
Os,l + Os,2 + Os,3 ’

s=0

where a; is a positive number that determines the priority given to digit-s. For example, if ag = a1 =
oy = 1, each calculation contributes equally during the permittivity update. Maximizing this cost func-
tion should lead to the following scenarios: if the scatterer is created from a digit-0, the strongest mode
should appear in the lower output port; if the scatterer is created from a digit-1, the strongest mode
should appear in the middle output port; and if the scatterer is created from a digit-2, the strongest
mode should appear in the top output port.

In our optimization framework, we employ a gradient-based topology optimization approach util-
izing reverse-mode automatic differentiation combined with the Adam optimizer to design photonic
structures capable of routing optical signals to specified output ports based on input digit patterns. The
design variable p representing a density distribution undergoes a sophisticated parameterization pro-
cess before defining the physical permittivity distribution. This process begins with a blurring opera-
tion implemented via 2D convolution using a circular kernel with a radius of 2 pixels, applied once
to ensure feature smoothness and mitigate discretization artifacts. Subsequently, a projection opera-
tion employing a hyperbolic tangent function enforces binarization through the transformation p =
tanh(8n) 4 tanh(8(p — n))/tanh(Bn) + tanh(B(1 — n)), where S controls the projection strength and

4



10P Publishing

Mach. Learn.: Sci. Technol. 6 (2025) 045014 E Simsek and S H Oishe

— Iteration 1
5l — Iteration 2
Iteration 10

— Iteration 20 -

N

Cost (Unitless)

[\e]

2 4 6 8 10
Epoch Number

Figure 4. Evolution of the cost function C versus epoch number for optimization iterations 1 (blue), 2 (red), 10 (yellow), and 20
(purple).

1 =0.5 represents the transition midpoint. The projection strength ( follows an adaptive scheduling pro-
tocol to facilitate gradual change: during iterations 1-39, 5 =30 provides gentle projection; iterations 40—
60 employ S =50 for increased permittivity change; iterations 61-89 utilize 5 =75 for stronger enforce-
ment; and iterations 90 and beyond apply 5 =100 for permittivity finalization.

Gradient computation leverages reverse-mode automatic differentiation via the adjoint method,
providing computational efficiency independent of the number of design parameters. The Adam
optimizer [27] operates with a step size of 5 x 107> for maximization over 10 steps per digit pat-
tern, resulting in 200 epochs across 20 digits. Figure 4 illustrates the evolution of the cost function
across training epochs for different optimization iterations. At iteration 1, the cost starts near unity and
increases gradually with epoch number, reflecting the optimizer’s attempt to align scatterer-port map-
pings with the design objectives. By iteration 2, the cost rises more sharply, reaching values above 2.5
by epoch 6 before stabilizing, indicating improved-but still fluctuating-mode routing performance. At
iteration 10, the cost baseline shifts upward to around 3, showing cumulative improvement from earlier
iterations, while maintaining smoother growth. By iteration 20, the cost stabilizes above 4, demonstrating
that the optimizer has progressively refined the permittivity distribution to direct optical energy toward
the desired output ports with higher fidelity. The monotonic upward trend in the cost across iterations
confirms that the gradient-based adjoint optimization, combined with adaptive projection and the Adam
optimizer, effectively maximizes the overlap of the desired output modes for each digit scatterer. Small
fluctuations within individual iterations reflect the nonconvex nature of the optimization landscape and
the stochasticity inherent in automatic differentiation-based gradient updates.

To summarize, we compute the gradient of the cost function C using automatic differentiation, spe-
cifically reverse-mode differentiation (also known as backpropagation). At each iteration of the optimiza-
tion, we update the permittivity distribution based on the gradient of the objective function with respect
to the design parameters with the following steps. We first run three full-wave simulations to compute
the electromagnetic field distributions corresponding to each possible scatterer configuration. Then we
evaluate the mode overlap integrals to determine how well the scattered fields couple into the desired
output ports. Using automatic differentiation, we compute the gradient of the objective function with
respect to the permittivity values in the design region, and we update the permittivity distribution using
the Adam optimization algorithm, which adaptively adjusts the step size based on the computed gradi-
ents. By employing reverse-mode differentiation, we efficiently compute the necessary gradients without
manually deriving and implementing them. The updated permittivity matrix is then used to re-evaluate
the objective function, and the process repeats for Ny, iterations.
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Table 1. Confusion matrix showing the classification results for the final optimized design on the test set of 100 samples per class. Rows
represent the true class, columns represent the predicted class based on the output port with the strongest signal.

True Class Predicted ‘0’ Predicted ‘1’ Predicted 2’
Digit ‘0’ (True) 100 0 0

Digit ‘1’ (True) 0 100 0

Digit 2’ (True) 9 2 89

3. Results

All the codes and datasets used to generate these results are publicly available, please see the ‘Data avail-
ability statement’ below. The frequency of excitation is 6 pm. The input and output ports are assigned
a constant relative permittivity value of 2.96. The design region is initialized with a relative permittivity
value of 2 and is allowed to vary between 1 and 4 during optimization. For training, we use 20 differ-
ent sets of scatterers. For each set, we iterate 10 times (N;; = 10.) In other words, the total number of
epochs is 200. The initial learning rate is 5 x 107>, For testing, we used 100 sets of scatterers that were
not included in the training.

In our initial attempt, we set o = a1 = a; = 1 and obtained our first permittivity-optimized
medium. Although we correctly identified all the zeros and ones with 100% accuracy, the success rate
for identifying scatterers created from digit 2 s was very low at 61%. The main reason for this low accur-
acy is the non-uniformity of the scatterers created from digit-2 s. The last two columns of figure 2 show
two examples. Upon examining the digit-2 images, we realized that people write the number two in
many different ways. For our second attempt, we set g = oy = 1, and «, = 1.2, giving higher weight
(priority) to the permittivity updates from scatterer-2 calculations. In this case, the accuracy for identify-
ing scatterers created from digit 2 s increased to 73%. In our third and last attempt, we set oy = 1 = 1,
and a; =2, and we achieved an accuracy of 89% for identifying scatterers created from digit 2 s. To
be more precise, for all the 100 test cases with a 0-shaped scatterer, the strongest mode occurred in
the lower port; for all the 100 test cases with a 1-shaped scatterer, the strongest mode occurred in the
middle port, and 89 of the 100 test cases with a 2-shaped scatterer, the strongest mode occurred in the
upper port. Nine 2-shaped scatterers produced the strongest signal in the lower port and were mislabeled
as scatterer-0, while two 2-shaped scatterers produced the strongest signal in the middle port and were
mislabeled as scatterer-1. In other words, for 289 test cases in total, the strongest mode was in the cor-
rect port, resulting in an overall classification accuracy of 96.33%. For clarity, the classification perform-
ance is summarized in the confusion matrix (table 1).

Figure 5 shows the relative permittivity (e,) distribution of the final version of the computation
domain. We observe that ¢, changes smoothly between 1 and 4 over the 30 ym by 40 um design
domain.

Figures 6(a)—(c) present the electric field distributions |E,| across the entire computational domain
for scatterers formed by digits 0, 1, and 2, respectively. In contrast to the earlier results shown in
figures 1(b)—(d), where only one waveguide is bright while the other two remain dark, here all three
output waveguides receive a non-negligible portion of the transmitted light. Nevertheless, the domin-
ant mode coupling occurs into the lower, middle, and upper ports when the scatterer corresponds to
digits 0, 1, and 2, respectively. As illustrated in figure 6(a), the designed medium after the scatterer ‘0’
produces a wavefront that interferes constructively towards the lower port, while destructive interference
suppresses the excitation of the middle and upper ports. A similar effect is observed for the scatterer 2’
in figure 6(c), where constructive interference directs energy predominantly into the upper port.

To better understand the intermediate case of the scatterer ‘1, we turn to the phase distributions
shown in figure 7. Unlike the vertical phase patterns observed for scatterers ‘0’ and 2 the phase pattern
for the scatterer ‘1’ exhibits a strong horizontal variation within the design region. This phase modula-
tion indicates that the scatterer modifies both the amplitude and phase of the propagating wave in such
a way that efficient coupling occurs primarily into the fundamental mode of the middle port. Overall,
the design region acts as a physical analog of a linear kernel: it transforms the scattered fields into a rep-
resentation where the output classes (digits) are distinguished by the port with maximum transmitted
power. This demonstrates how the scatterer geometry effectively encodes information into spatial field
distributions that can be mapped onto separable output channels.

To verify the accuracy of these simulations, we re-simulated all the test cases using Tidy3D, a com-
mercial finite-difference time-domain solver. In all cases, identical numerical results were obtained.

6



10P Publishing

Mach. Learn.: Sci. Technol. 6 (2025) 045014 E Simsek and S H Oishe

10 4

3.5

2.5

y(A)

1 2 3 4 5 6 1 8 9 10
x ()

Figure 5. The distribution of relative permittivity in the computation domain at the end of the optimization.

@ ® © .,
9 9 9
3 8 8
7 7 7
6 6 6
=5 =5 Zs TG
2 =~ = )
4 4 4
3 3 3
2 2 2
1 1 1
x (A) x (A) x(A)

Figure 6. Electric field distribution |E,| over the entire computation domain for scatterers created from (a) digit-0, (b) digit-1,
and (c) digit-2. The contour of the permittivity distribution is overlaid on the field distribution for more intuitive visualization.
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Figure 7. Phase of the electric field over the entire computation domain for scatterers created from (a) digit-0, (b) digit-1, and (c)
digit-2. The contour of the permittivity distribution is overlaid for more intuitive visualization.

To assess the practical viability of our classifier, we evaluated its robustness against two common
perturbations: additive noise and small misalignments. For the first robustness study, we introduced a
Gaussian noise with a standard deviation of 5% of the maximum permittivity value into the scatterer

7
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profiles of the test set. When tested with these noisy scatterers, the overall classification accuracy dropped
slightly from 96.33% to 94.33%. The accuracy for digit 2’ decreased to 83%, while digits ‘0’ and ‘1’
remained perfectly classified. This indicates a reasonable level of resilience to fabrication imperfections
or measurement noise. For the second robustness study, we tested the system’s sensitivity to misalign-
ment by shifting the scatterer’s position within the target area by up to +5 pixels (approximately \/12)
in both x and y directions. This perturbation caused a more significant performance drop, reducing the
overall accuracy to 88%. When we randomly change the orientation of the scatterers, the overall classi-
fication accuracy dropped to 57 %. Considering we only use three waveports for the classification task,
such a low classification accuracy for randomly oriented objects is inevitable. We recently addressed this
challenge in a separate study [28] using an attention-based neural network. Since this was more of a
post-processing solution, rather than direct classification with light, we do not delve into the details of
that study. We conclude that for passive classification systems such as the one examined in this work,
the object should be centered between the input waveport and design region, and it should be aligned
parallel to the waveport.

We acknowledge that the classification mechanism demonstrated here is inherently linear, as it relies
on light propagation governed by Maxwell’s equations within a passive, linear dielectric medium. The
optimization procedure tailors the spatial permittivity distribution, but the resulting classification corres-
ponds to a linear projection of the input field onto the output ports. This represents a fundamental lim-
itation, since linear classifiers are known to struggle with data that is not linearly separable. Nevertheless,
linear systems remain powerful for certain classes of problems and can serve as energy-efficient front-
end processors. To overcome this limitation, future extensions could integrate optical nonlinearities
into the design region, for example, by incorporating Kerr-type or saturable absorber materials, which
would enable intensity-dependent responses and thereby increase the expressive power of the classifier.
Alternatively, hybrid optical-electronic architectures could be envisioned, where the optical module per-
forms fast linear transformations while subsequent electronic or optoelectronic layers implement non-
linear activation. Such approaches would combine the energy efficiency and parallelism of optical pro-
cessing with the representational power of nonlinear computation, thereby addressing the theoretical
constraints of purely linear classifiers.

4. Discussion

4.1. Experimental validation plan

To further support the numerical demonstrations, we outline here a potential pathway toward exper-
imental validation. The proposed setup would consist of a coherent mid-infrared source, such as a
quantum cascade laser capable of generating monochromatic light near 6 um. The input and output
ports can be realized as single-mode ridge waveguides with grating couplers for efficient excitation and
readout [29]. The light would then be incident on the target object, which is placed over the designed
region. The optical transmission at each output port would be recorded either with an infrared camera
for full-field imaging or using discrete photodetectors (e.g. the Hamamatsu P16113-011 M, an InAsSb
photovoltaic detector) connected to an optical power meter for quantitative measurements. By sequen-
tially testing scatterer patterns corresponding to different digit classes, classification accuracy could be
directly benchmarked against numerical predictions, following procedures similar to those adopted in
recent demonstrations of optical neural networks [30, 31].

4.2. Practical implementation challenges
This was a simple proof-of-concept study, and we are aware of the fabrication-related challenges asso-
ciated with the permittivity-optimized designs. Small deviations in scatterer geometry can alter inter-
ference conditions and reduce classification fidelity, highlighting the need for robust design strategies.
Precise alignment of the scatterers and stable coupling of the input laser beam are critical to minimize
systematic measurement errors, while the sensitivity of photodetectors will ultimately limit the precision
of port intensity readout.

Beyond fabrication, several system-level challenges must be addressed for real-world deployment.
In high-speed optical communication systems, for example, precise signal synchronization between the
laser source, the scatterer, and the detection module is essential, as even minor temporal drifts can com-
promise classification performance. Furthermore, noise resilience is a critical concern, as environmental
fluctuations (e.g. thermal drift, vibrations, or laser intensity noise) can perturb the scattered fields and
obscure the detected signal. These challenges can be effectively mitigated by employing a lock-in amp-
lification technique, where the laser source is amplitude-modulated at a stable reference frequency and
the photodetector outputs are measured using synchronous detection. By doing so, our system can reject
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uncorrelated noise and ensure precise, drift-resistant measurement of the port intensities. For ultimate
robustness, such signal recovery strategies can be combined with scatterers designed for inherent stability
and digital error-correction protocols. Additionally, stability and long-term reliability are crucial consid-
erations for optical sensing applications. Over time, material degradation, photodetector aging, or surface
contamination can alter the effective permittivity distribution, thereby affecting reproducibility. Strategies
such as protective coatings, effective heat sinks, self-calibration protocols, and redundant sensor arrays
may help mitigate these effects.

Nevertheless, rapid progress in nanofabrication technologies offers promising solutions. For instance,
nanocomposite materials [32, 33] enable the realization of graded permittivity profiles by embed-
ding high-permittivity nanoparticles (e.g. titanium dioxide [32] or barium titanate [33]) into a low-
permittivity polymer matrix (e.g. silicon dioxide or PMMA [34]). By spatially varying the nanoparticle
concentration, the local permittivity can be precisely tuned to match the optimized design. Advanced
fabrication techniques, such as two-photon polymerization [35] or direct ink writing (for book-size
objects, using GHz-level electromagnetic antennas and receivers), can then provide the necessary resol-
ution for the accurate replication of permittivity-optimized structures.

4.3. Extension to three-dimensional designs

While the present work is implemented in 2D, the broader applicability of this approach motivates con-
sidering extensions to three-dimensional (3D) configurations. A transition to 3D would enlarge the
design space and could enable higher-capacity classification schemes, more compact device layouts, and
improved tolerance to certain fabrication imperfections. It is important to clarify a common miscon-
ception: the optimization formulation does not fundamentally change when moving from 2D to 3D.
The adjoint-based gradient computation retains the same mathematical structure and requires only

M +1 full-wave solutions of Maxwell’s equations per gradient evaluation (where M is the number of
exit ports). Consequently, although increasing the number of output ports (to support more classes)
increases the number of full-wave solves per iteration, the algorithmic complexity of the optimization
loop remains the same. That said, practical resource requirements do grow in 3D: the volumetric mesh
contains many more degrees of freedom, the number of permittivity voxels to be updated increases, and
each full-wave solve becomes more memory- and time-intensive. In 3D, one must also account for all
three vector components of the electric field (Ex,E,,E;) in both the forward and adjoint evaluations;
these are naturally incorporated into the gradient expressions without altering the optimization for-
mulation, but they do increase per-solve computational effort. Despite these practical cost increases, we
expect the number of iteration steps required for convergence to remain modest-typically a few tens of
iterations, as in the 2D case-because the adjoint method provides efficient exact gradients regardless of
dimensionality. Fabrication of the design medium remains more challenging in 3D (requiring techniques
such as multiphoton lithography [36], focused-ion-beam approaches [35], or high-resolution additive
manufacturing [37]) at high frequencies, but these are separate engineering hurdles: they do not change
the adjoint-based optimization workflow and can be addressed with the same material- and process-
level strategies aforementioned before. Also note that in this work, we restrict our analysis to real pos-
itive permittivity values due to solver limitations, but more sophisticated 3D solvers such as MEEP and
COMSOL can directly handle lossy materials, thereby introducing an additional degree of freedom that
could enhance both the accuracy and capacity of 3D classification; in fact, by placing photodetectors on
all five output facets (with excitation from the sixth side), one could, in principle, classify a substantially
larger number of object classes.

4.4. Efficiency of adjoint method and ultra-fast classification with light

The computational efficiency of the adjoint method is a critical advantage that enables the practical
design of large-scale, wavelength-scale devices, such as the one presented here. Unlike other modern
optimization techniques, such as particle swarm optimization [38] or genetic algorithms [39], which

are often derivative-free and rely on stochastic exploration of the design space, the adjoint method is

a gradient-based approach. Its power stems from a physics-based derivation that allows it to compute
the sensitivity of the figure of merit (e.g. field intensities at target locations) to design parameters (e.g.
the permittivity of each pixel in the structure) in just M additional full-wave simulations per iteration,
regardless of the number of parameters (pixels), where M is the number of ports. This stands in stark
contrast to brute-force finite-difference methods, which would require N + 1 simulations for an N-
parameter problem, becoming prohibitively expensive for the thousands of pixels in a typical permit-
tivity optimization. Consequently, while methods like genetic algorithms or surrogate modeling [38] may
require hundreds or even thousands of iterations to converge—each involving a computationally expensive
electromagnetic simulation—the adjoint method typically converges to a high-quality solution in only a
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few tens of iterations. This reduction by an order of magnitude in the number of required simulations
makes the optimization of complex, large-area photonic structures computationally feasible.

Last but not least, please remember that our computation domain is 10\ wide. The light propagation
from one end to another takes only ~10X,/€™™ /¢, seconds, where ¢, is the speed of light in vacuum.
This process takes 0.40 picoseconds in this work. An implementation at 1 GHz would take 20 nano-
seconds. In other words, object classification via a permittivity-optimized medium happens at the speed
of light.

5. Conclusion

In conclusion, this work demonstrates a successful application of the adjoint method for permittivity
optimization in designing a photonic medium capable of high-speed object classification. By leveraging
a dynamically evolving material distribution, our design effectively routes light through specific output
ports based on the shape and size variations of scatterers derived from the MNIST dataset. The optimiz-
ation process, guided by the Adam algorithm and tailored cost function, resulted in a photonic structure
that achieved a classification accuracy of 96.33% across diverse scatterer samples. Notably, increasing the
weighting factors for more challenging scatterer classes substantially improved performance, highlight-
ing the method’s adaptability. Future research may explore extending this framework to 3D systems and
integrating more complex datasets to broaden the scope of optical computing applications.
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