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Abstract: In recent years, the photonics community has shown increasing interest in the8

inverse design of photonic components and devices using the adjoint method (AM) due to9

its efficient gradient computation and suitability for large parameter and continuous design10

spaces. This work focuses on substrate optimization to maximize light transmission or field11

enhancement at specific locations using layered medium Green’s functions (LMGFs). We first12

provide a numerical formulation for calculating two-dimensional (2D) LMGFs, leveraging their13

efficiency for fixed sources and observation points parallel to layer interfaces. We then present14

a step-by-step implementation of the AM for substrate optimization using LMGFs. Through15

numerical studies, we verify the field enhancement achieved with AM-designed substrates using16

a frequency-domain solver. We compare the results of AM with particle swarm optimization17

(PSO) for two optimization problems, demonstrating that AM not only generates realistic designs18

with smooth permittivity profiles but also achieves inverse design more efficiently than PSO. The19

AM designs are easier to fabricate and require significantly less computational effort due to the20

efficient gradient computation inherent in the method. This study underscores the advantages of21

AM in designing photonic devices with continuous parameter spaces.22

1. Introduction23

In the last decade, there has been growing interest in the photonics community in the inverse24

design of photonic components and devices using the adjoint method (AM) [1–13]. This25

choice has several advantages over other modern numerical optimization techniques, such as26

particle swarm optimization (PSO) [10, 14–16] and the genetic algorithm (GA) [10, 14, 17].27

First, AM provides efficient computation of gradients with respect to design parameters with28

a computational cost that is independent of the number of design parameters. This unique29

property of AM is particularly advantageous in optimization problems where the number of30

design parameters is large. Second, AM is well-suited for problems with continuous design31

spaces, where the design parameters can take on any real value within user-determined limits.32

GA and PSO, on the other hand, face challenges in handling continuous design spaces, especially33

if the number of parameters to be optimized is large, e.g., as the number of parameters increases34

in a PSO implementation, the search space expands exponentially, making it harder for the swarm35

to explore effectively and find optimal solutions. This leads to sparse sampling and slower36

convergence since particles take longer to locate promising regions. Additionally, the risk of37

premature convergence to sub-optimal solutions rises, complicating the optimization process.38

The fitness landscape in high-dimensional spaces is more complex, with numerous local optima39

and steep gradients, making navigation through this space and global optimization difficult.40

Substrate optimization for maximizing the transmission of light through the substrate or41

maximizing the field at a specific location at a desired wavelength or wavelength range typically42

involves designing the properties of the substrate material, such as the permittivity and thickness43

[11–13, 18–26]. It is known that stacks of thin films with varying refractive indices and coatings44

with a gradually changing refractive index can reduce reflections, and AM has already been45

utilized to design substrates [11,12]. In those studies [11,12], researchers have used either the46
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frequency-domain finite differences (FDFD), time-domain finite differences (FDTD), or the47

transfer-matrix method. Here, we achieve the same goal using layered medium Green’s functions48

(LMGFs).49

For a multi-layered planar geometry, LMGFs give us the electric and magnetic fields created50

by electrical or magnetic dipoles or line sources placed at any location in that multi-layered51

geometry [27–30]. As discussed later, the LMGF formulation requires less computation time52

for the solution if the computation makes use of the following fact: For a fixed source, if the53

coordinates of observation points change parallel to the layer interfaces, then one needs to54

calculate the spectral domain LMGFs only once, and their spatial counterparts can be computed55

via adaptive integration all at once.56

The outline of this paper is as follows. We first provide a complete formulation to calculate the57

two-dimensional (2D) LMGFs numerically. Then we provide a step-by-step recipe to implement58

an adjoint method for substrate optimization using LMGFs. In the numerical results section, we59

verify the field enhancement that is achieved with substrates that are designed with the adjoint60

method using a frequency-domain finite-differences (FDFD) solver for two different optimization61

problems and conclude.62

2. Evaluation of 2D LMGFs63

Previously, we followed the formulation developed by Chew [27] to calculate the LMGFs for64

line [28] and dipole [29] sources. Both studies reduced computation time by subtracting the65

singularities from the spectral domain LMGFs and adding their contributions to the spatial domain66

using some Bessel and Hankel function formulae. Here, we follow the recursive formulation67

developed initially for anisotropic medium LMGFs [30] as follows.68

Figure 1 illustrates a medium with # + 1 layers aligned parallel to the G-axis, where each layer69

is defined with its electrical permittivity (n✓ = n0nA ,✓), magnetic permeability (`✓ = `0`A ,✓),70

thickness (⌘✓) for ✓ = 0, 1, · · · , # , and ⌘0 = ⌘#+1 = 1, and n0 and `0 are the electrical71

permittivity and magnetic permeability of vacuum. The infinitely long source parallel to the72

H-axis is located at (G0, I0) in layer-<. The wavenumber in layer-✓ is :2
✓
= l

2
n✓`✓ , where73

l = 2c 5 and 5 is the frequency of the electromagnetic waves created by the line source. The74

electric field at the observation point (G, I), which can be chosen in any layer, can be determined75

by evaluating the following Sommerfeld integral76

⇢H (G, I |G0, I0) =
1

4c:✓

π 1

0

⇢
⌧̃ (G, I |G0, I0) cos(:G |G � G0 |)

:I

�
3:G , (1)

where ⌧̃ (G, I |G0, I0) is the spectral domain LMGF that can be calculated with77

⌧̃ (G, I |G0, I0) = �✓4D✓ (I�I; ) +  ✓4�D✓ (I�I;�1 )
, (2)

where �✓ and  ✓ are unknowns that need to be determined according to continuity conditions of78

the electric and magnetic fields at the interfaces, :G is the integration variable, :2
I,✓

+ :2
G
= :2

✓
,79

and D✓ = 9 :I,✓ . When the source is in the bottom layer (< = 0), then  0 = 0, and similarly,80

when the source is in the top layer (< = # + 1), then �#+1 = 0. By imposing the boundary81

conditions for electric and magnetic fields, we can create a linear equation to determine all these82

coefficients, i.e., AX = S, where A 2 ⇠2#⇥2# , X 2 ⇠2# , and X 2 (2# . The non-zero elements83

of A are provided in the Appendix section. To construct the vector X, we set84

G1 = �0, G2= =  # ,

G28 = �8 , G28+1 =  8 ,
(3)

for 8 = 1, ..., # � 1.85
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Fig. 1. Schematic illustration of a multilayered medium with # + 1 layers and #
interfaces parallel to G-axis. The thickness of layer-✓ is ⌘

✓
. The relative electrical

permittivity and magnetic permeability of the material used in layer-✓ are n
A ,✓

and `
A ,✓

,
respectively.

To construct the vector S, we set86

(2 9�1 =
4
�D 9 |I 9�1�I0 |

D 9

, (2 9 =
4
�D 9 |I 9�1�I0 |

n 9

,

(2 9+1 = � 4
�D 9 |I 9�I0 |

D 9

, (2 9+2 =
4
�D 9 |I 9�I0 |

n 9

.

(4)

If in (4), the source is in the bottom layer, i.e., < = 0, we then set (2<�1 = 0 and (2< = 0.87

Similarly, if the source is in the top layer < = =, we then set (2<+1 = 0 and (2<+2 = 0.88

After determining the unknown coefficients, we numerically compute Eq. (1) using a 32-point89

Gauss-Legendre quadrature. It is essential to note that when the source location is fixed and90

observation points have the same I coordinate but different G values, we must calculate the91

spectral domain LMGFs only once. Hence, evaluating Eq. (1) for =3 observations on an axis92

parallel to Ĝ, we calculate all the LMGFs in a single run, reducing the computation time by93

almost =3 times compared to evaluating them one by one.94

3. Implementation of Adjoint Method with LMGFs95

We start with the following simple example to describe how the adjoint method can be implemented96

with 2D LMGFs. Assume that we have a 2_ thick substrate between I = �2_ and I = 0. A line97

source is at (G0 = 0, I0 = �2.5_), half wavelength below the substrate. Our goal is to design a98

substrate that would yield the highest electric field at (GC = 0, IC = 0.5_), half wavelength above99

the substrate. For the sake of simplicity, let us assume that the substrate consists of 10 layers100

with the same layer thickness (_/5), as shown in Fig. 2 (a). Assuming all the materials are101

non-magnetic, we aim to determine each layer’s permittivity using the AM.102
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Fig. 2. Schematic illustrations of (a) target, (b) forward, and (c) backward field calcula-
tions where small circles and crosses represent field and source points, respectively.

As explained in [2–9,11], the AM requires only two computations to calculate the gradients103

with respect to the design parameters. For this problem, we choose our cost function (o) in order104
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to maximize the electric field intensity (|⇢ |2) at the target location (GC , IC ) and use the following105

equation to calculate the gradient106

mo

mnA ,✓

= �2:2
0

’
3

Re
n
Eforw
✓

· Eadj
✓

o
(5)

where ⇢ forw
✓

is the electric field created by the original line source and calculated at 3 observation107

points located in layer-✓ as shown in Figs. 2 (b) and ⇢adj
✓

is the adjoint field calculated at the108

same observation points due to an adjoint source located at the target position as shown in Figs.109

2 (c). Analogically, if ⇢ forw
✓

is the value that we obtain with Eq. (1) when there is a line source at110

(G0, I0) carrying 1 A of current, then the ⇢adj
✓

is the value we obtain from the same equation for111

a line source at (GC , IC ) carrying a complex current of 2 9⇢⇤ (GC , HC |G0, I0)/l A, where ⇢⇤ is the112

complex conjugate of ⇢ . In other words, our adjoint field at an observation point (G3 , H3) is113

⇢
adj =

2 9
l

⇢
⇤ (GC , IC |G0, I0)⇢back

✓
(G3 , I3 |GC , IC ). (6)

where ⇢back
✓

(G3 , I3 |GC , IC ) is the value that we obtain with Eq. (1) when there is a line source at114

(GC , IC ) carrying 1 A of current.115

Our iterative implementation has five steps that can be formulated as follows.116

• Step-1: Calculate the electric field ⇢ (GC , HC |G0, H0) at the target point where we want to117

enhance the electric field as shown in Fig. 2 (a).118

• Step-2: Calculate the electric field ⇢ forw
✓

(G3 , I3 |G0, I0) at observation points that cover119

a wide range horizontally (e.g., �4_  G  4_) and dense enough vertically (e.g., 20120

observation points per wavelength) inside each layer, as illustrated in Fig. 2 (b).121

• Step-3: Repeat Step-2 by changing the source location with the target location, i.e.,122

calculate ⇢back
✓

(G3 , I3 |GC , IC ), as depicted in Fig. 2 (c).123

• Step-4: Update the permittivity of each layer using Eqs. (5) and (7).124

n
new
A ,✓

= ncurrent
A ,✓

+ U mo

mnA ,✓

(7)

where U is the learning rate, ncurrent
A ,✓

is the relative electrical permittivity of layer-✓ used in125

the current set of calculations, and nnew
A ,✓

is the updated permittivity to be used in the next126

iteration.127

• Step 5: Calculate
Õ
✓
|mo/mnA ,✓ |. If it is smaller than the desired threshold value, stop128

iterating. Otherwise, go back to Step-1.129

Note that using symmetry properties of LMGFs (e.g, ⇢H (G, I |G0, I0) = �⇢H (�G, I |G0, I0)),130

vectorial evaluation of numerical integration, and parallel computing, the computation time131

of steps 2 and 3 can be reduced significantly. Also, if we would like to achieve broadband132

optimization, then we can update the permittivity of each layer as follows. Let’s assume, we133

have  discrete values representing the spectrum of interest where the intensity of the light at134

wavelength-Z is �Z for Z = 1, 2, · · · , . Then the permittivity of layer-✓ can be computed by135

n
new
A ,✓

= ncurrent
A ,✓

+ U

 

 ’
Z=1

�Z

moZ

mnA ,✓

. (8)
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4. Numerical Results136

For all the examples presented here, the learning rate (U) is set to 0.05.137

4.1. Permittivity Optimization138

We first start with the aforementioned simple optimization problem. Assume the wavelength of139

the electromagnetic waves created by the line source is 600 nm, and we are trying to determine140

the permittivity values of each layer of the substrate, nA ,✓ for ✓ = 1, 2, · · · , 10. The top and141

bottom layers are both air (nA ,0 = nA ,11 = 1). As a design constraint, we enforce 1  nA ,✓  4.142

For the first iteration of the optimization process, we set nA ,✓ = 2 for all ✓.143

Fig. 3. Real part of the electric field (⇢ forw) for the forward calculation obtained using
(a) an FDFD solver and (b) LMGFs.

To validate the accuracy of our LMGF implementation, we calculate the electric field values144

along the substrate using our LMGF formulation and an FDFD solver. For the FDFD solution,145

we set the unit mesh length to 5 nm. Similarly, for the LMGF implementation, we create a grid in146

each layer with a grid step length of 5 nm (horizontally and vertically) for �1`m  G  1`m. In147

Fig. 3, we plot the electric field’s real part only for brevity. Due to the perfectly matched layers148

(PML) on both sides of the substrates, the results obtained with the FDFD gradually decrease in149

those PML regions. Apart from those regions, the results look almost identical.150

For the first AM-based substrate optimization example, we assume the same geometry explained151

at the beginning of the previous section, e.g., the substrate is 2_ thick from I = �2_ to I = 0, the152

line source is at G0 = 0 and I0 = �2.5_, and the substrate consists of ten _/5-thick layers. We153

continue to use 20 points per wavelength sampling density, hence there are 640 target points in154

each layer, i.e., 4 points vertically and 160 points horizontally. With the selected design constraint155

and initial permittivity values, the AM implemented with the LMGF formalism generates a156

design, as depicted by the blue line in Fig. 4, which yields an 11.1% increase compared to a glass157
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slide with a relative permittivity of 2.25 (corresponding to the refractive index of 1.5), which158

is the typical value for the permittivity of optical glass substrates. We also implement another159

numerical optimization method using the PSO method. Using 100 swarms and 300 iterations,160

the PSO recommends a similar but slightly different design, shown with the red dashed lines in161

Fig. 4, which yields an 11.13% increase compared to the glass slide. Note that we obtain much162

more significant enhancements by increasing the maximum electrical permittivity allowed from163

4 to a higher value, e.g., 20. However, since our primary focus is the applicability of the AM164

method for one-dimensional problems such as substrate optimization using LMGFs, we do not165

discuss those cases here.166

Fig. 4. Solid and dashed lines show the optimized permittivity values along the AM
and PSO designed substrates with 10 thin layers that lead to an 11.09 % and an 11.13%
enhancement, respectively.

For the second set of substrate optimization studies, we increase the number of layers within167

the substrate to 240 and follow the same procedure. Since these are _/120-thick layers, we have168

160 target points in each layer. For the initial step, we set all the relative permittivity values169

to 2.0 for all 240 thin layers. The PSO implementation uses 2400 swarms, with the maximum170

number of iterations set to 1000, but the computation ends nearly at the 400th iteration when171

the cost no longer decreases. The designs recommended by the AM and PSO implementations172

are plotted in Figs. 5 (a) and (b). Even though these two designs yield almost the same level173

of field enhancement, 11.32% and 11.3%, respectively, the designs recommended by these two174

methods have one very distinct difference. The permittivity profile of the AM design is very175

smooth, whereas the PSO design has abrupt changes. The reason behind the smooth design of176

AM is that the permittivity update equation, Eq. (7), is basically an averaging operation that177

includes the contributions of hundreds of interactions between forward and backward fields.178

From a practical point of view, the AM design is easier to fabricate, for example, using thin179

films of acrylonitrile butadiene styrene-based nanocomposites, whose relative permittivity can180

be tuned to any value between 2 and 7 by changing the ferroelectric barium titanate nanoparticle181

fill ratio [31]. As pointed out earlier, PSO-like numerical optimization methods face challenges182

in handling continuous design spaces when the number of parameters to be optimized is large.183

In terms of computing time and efficiency, let’s make the following comparison. In the PSO184

implementation, each trial requires only one calculation of (1). Since we use 2400 swarms185

and 400 iterations, we compute nearly one million LMGFs. For the AM implementation, we186

compute 481 sets of LMGFs (240 forward, 240 backward, and 1 source-to-target), which takes187

47 iterations to converge. So, we compute nearly 23 thousand LMGFs. Due to this significant188

difference between the number of LMGFs computed in the PSO and AM implementations, the189
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Fig. 5. Permittivity values along the (a) AM and (b) PSO designed substrates with
240 thin layers that lead to an 11.22 % and an 11.2 % enhancement, respectively. (c)
Electric field intensity values at I = _/2 and �1.5_  G  1.5_, where _ = 600 nm,
assuming a plain substrate with relative permittivity of 2 (solid curve) and the optimized
substrate (dashed curve).

latter requires much less time to achieve the inverse design. We can conclude that the AM not190

only generates realistic designs with smooth permittivity profiles but also achieves the inverse191

design more efficiently than PSO-like numerical optimization algorithms due to calculating the192

gradients based on the laws of physics.193

It is well known that both the learning rate and dipole sampling density affect the computation194

time and efficiency. For our initial studies, the learning rate was set to 0.01, which provided195

robust but slightly low learning. When we set it to 0.1, we observed oscillations in the cost196

value rather than a continuous and smooth increase. We chose U = 0.05 as the optimum value197

for the examples presented here to balance this trade-off between accuracy and efficiency. In198

short, the learning rate in AM optimization problems determines whether we can achieve our199

goal and, if we can, then how fast we reach our goal. Similarly, when we increase the dipole200

sampling density from _/20 to _/30, the computation time for each iteration did not change201

due to the recursive calculation of LMGFs. However, we did not observe any reduction in the202

number of iterations during the AM optimization. This verifies that the dipole sampling density203

of _/20 is sufficient to grasp the oscillations in the electromagnetic waves propagating along the204

multi-layered substrate. Using a higher sampling density is neither necessary nor advantageous.205

However, when we reduced the dipole sampling density from _/20 to _/10, the optimization206

was completed in 161 iterations. The one implemented with _/5 sampling density did not even207

converge. This latter case is probably because a coarser mesh may miss the points where the208

electric field intensity gets maximized, which leads to sub-optimal or inaccurate design solutions.209

Lastly, we would like to discuss the impact of the observation point range on the efficiency210

and accuracy of the AM implementation. As mentioned before, we calculate the forward and211

backward electric field values over a 8_-wide range horizontally. After including the distance212

between the source and the lower interface of the substrate, we can assume an approximate213

distance of 5_ between the source and observation points chosen over the substrate. Again, with214

a rough calculation, this means that both forward and backward electric field intensities near the215

edges of our search domain are one-fifth of the field values calculated along the center, e.g., at216

G = 0. Since the adjoint field calculation includes both terms, the effect over the permittivity217

update of the dipoles near the edges is roughly 4% of those near the center. As a result, their218

contribution is limited to the third digit of the final value of the permittivity for each layer. If one219

is interested in the first two digits only, then a 3_-wide range would suffice.220



OP I ICA 
PUBLISHING GROUP 

4.2. Thickness Optimization221

In the past two decades, extensive research has focused on monolayers of transition metal222

dichalcogenides, such as molybdenum disulfide (MoS2) and graphene, commonly called two-223

dimensional (2D) materials. We utilize SiO2 coated Si substrates with 90 nm or 270 nm224

thicknesses, illustrated in Fig. 6 (a), to work with these 2D materials. These specific thicknesses225

offer optimal contrast between the coated 2D material and bare regions, facilitating the localization226

of materials during experiments [32]. Our objective is to design a substrate using the adjoint227

method to enhance the visibility of 2D materials further. To achieve this objective, we redefine228

the design question and constraint. Assuming we are limited to two materials, SiO2 and Si, but229

have the freedom to choose the number, thickness, and order of layers, we seek the optimal design230

that maximizes contrast for broadband excitation. This optimization problem can be approached231

in various ways. For instance, one might aim to maximize reflectance from the substrate or power232

within the 2D material. We adopt the latter approach.233

It is essential to note that in this scenario, the source is broadband and far from the substrate,234

similar to the experiments conducted on 2D material-based photodetectors. Due to this large235

distance between the light source and the target, we assume this is a plane-wave-like excitation,236

not a line source. To define broadband excitation, we assume a bell-shaped spectrum ranging237

from 400 to 750 nm, with maximum intensity at 575 nm (normalized to 1) and relative intensities238

of 0.4 at 450 and 700 nm. We assume the monolayer MoS2 thickness to be 0.65 nm. The complex239

electrical permittivity of monolayer MoS2 is determined using a numerical model accounting for240

the wavelength [33]. Similarly, the electrical permittivity values of Si [34] and SiO2 [35] are241

calculated as a function of wavelength.242

Fig. 6. Monolayer MoS2 is placed on top of (a) a simple 270 nm SiO2 coated Si
substrate, (b) optimized substrate illuminated with a broadband light source, and (c)
quantum efficiency of the MoS2-based phototransistors over regular and optimized
substrates assuming gate voltage of 10 V, source-to-drain voltage of 0.5 V, and incidence
power of 0.2 `W.

For the AM optimization, we set the number of inner layers (the layers between MoS2 and the243

Si substrate) to 1000, with each inner layer having a thickness of 1 nm. Initially, the material type244

of all the inner layers is set to SiO2. Then, during the iterative process, if the mo/mnA ,✓ value245

for layer-✓ is larger than the average mo/mnA calculated over all layers, the material of layer-✓ is246

set to Si. If the value is lower than the average, then the material of layer-✓ is set to SiO2. The247

inverse design is completed in 88 iterations. The final design, which comprises four pairs of248

SiO2/Si layers with different thicknesses, is shown in Fig. 6 (b).249

To verify the success of the substrate optimization, we first compute the average power (⇢ ⇥�⇤)250

at the center of the MoS2 film using the FDFD solver for both the current industry standard251

substrate shown in Fig. 6 (a) and the one recommended by the AM method as shown in Fig. 6 (b).252
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We achieve to enhance the power absorbed by the MoS2 film across the entire spectrum, with an253

average enhancement of 72%. Second, we compute the quantum efficiency of the phototransistors254

made from MoS2 coated SiO2 substrates as follows.255

We form a phototransistor by fabricating two metal contacts on opposite sides of a monolayer256

MoS2 that is placed over a back-gated SiO2/Si substrate. This device can convert optical257

excitations into electrical currents, and its quantum efficiency is defined as the ratio of the number258

of generated electrons to the number of incident photons. Briefly, we solve the drift-diffusion259

equations to calculate the output current of the phototransistors numerically [36]. A detailed260

description of how the drift-diffusion model is utilized to compute quantum efficiency and other261

characteristic parameters of 2D material phototransistors can be found in [37]. The quantum262

efficiencies of the phototransistors made with the regular and optimized substrates are shown in263

Fig. 6 (c). It is observed that for the device with a single layer of SiO2 with a thickness of 270264

nm, the quantum efficiency reaches 7.5% at the wavelength around 561 nm. However, with the265

optimized substrate, the quantum efficiency of 18% is achieved at the wavelength of 571 nm,266

corresponding to a 141 % increase in peak quantum efficiency. The average enhancement across267

the entire spectrum is 210 %.268

Similar to this example, we can utilize the AM implemented with LMGFs to design a substrate269

that maximizes the field at specific wavelengths while minimizing it at others, accommodating270

different types of excitations, excitation polarizations, and incidence angles. However, implement-271

ing the AM method with a full-wave solver would be necessary for more advanced optimization272

problems, such as if we aim to enhance the fields further based on the surface plasmon resonance273

of metal nanoparticle arrays fabricated on the substrate.274

5. Conclusion275

This study demonstrates the effectiveness of the adjoint method (AM) combined with layered276

medium Green’s functions (LMGFs) for substrate optimization. Through appropriate formulation277

of the optimization problem and constraints, we harness the unique advantages of AM, which278

include efficient computation of gradients and suitability for continuous design spaces, to279

optimize substrate designs aimed at enhancing field properties and transmission characteristics.280

Our numerical investigations illustrate the proposed methodology’s accuracy, efficiency, and281

versatility, resulting in significant improvements in field intensity for a selected wavelength or282

wavelength range. Through comparative analysis with particle swarm optimization, we emphasize283

the superior computational efficiency of AM, highlighting its role as a robust tool for photonics284

inverse design.285

6. Appendix286

The non-zero elements of A are as follows,287

�11 =
1
D0

, �12 = � 4
�D1⌘1

D1
, �13 = � 1

D1
, (9)

288

�21 =
1
n0
, �22 = � 4

�D1⌘1

n1
�23 =

1
n1
, (10)

289

�21 =
1
n0
, �22 = � 4

�D1⌘1

n1
, �23 =

1
n1
, (11)

290

�2#�1,2#�2 =
1

D=�1
, �2#�1,2# = � 1

D=

, �2#�1,2#�1 =
4
�D=�1⌘=�1

D=�1
, (12)

291

�2# ,2#�2 =
1
n=�1

, �2# ,2# =
1
n=

, �2# ,2#�1 = � 4
�D=�1⌘=�1

n=�1
, (13)
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292

�2# ,2#�2 =
1
n=�1

, �2# ,2# =
1
n=

, �2# ,2#�1 = � 4
�D=�1⌘=�1

n=�1
, (14)

293

�28�1,28�2 =
1
D8�1

, �28�1,28�1 =
4
�D8�1⌘8�1

D8�1
,

�28�1,28 = � 4
�D8⌘8

D8

, �28�1,28+1 = � 1
D8

,

(15)

294

�28,28�2 =
1
n8�1

, �28,28�1 = � 4
�D8�1⌘8�1

n8�1
,

�28,28 = � 4
�D8⌘8

n8

, �28,28+1 =
1
n8

,

(16)

where 8 = 2, ..., # � 1.295
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