
I

B

i
f
c
n
c
a
p
p

w
t
q

@

@
©

GEOPHYSICS, VOL. 74, NO. 3 �MAY-JUNE 2009�; P. E111–E123, 8 FIGS., 1 TABLE.
10.1190/1.3085644
nfluence of a pipe tool on borehole modes
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ABSTRACT

A sonic measurements-while-drilling tool consists of acoustic
transmitters and receivers mounted on a drill collar that has the
form of a thick steel pipe. This mandrel is designed to meet the
strength requirements of tough logging conditions encountered
in deviated and horizontal drilling. A primary goal of sonic mea-
surement is to estimate formation compressional and shear slow-
nesses that are not affected by the presence of a drill collar.
Understanding the basic physics of monopole, flexural, and
quadrupole modes in a cylindrically layered structure consisting
of a concentric steel pipe in a water-filled borehole can help in es-
timating formation compressional and shear slownesses from at
least one branch, either of the monopole, dipole, or quadrupole
family of modes. Results show that coupling between the pipe
and formation modes is strongly dependent on formation proper-
ties relative to the borehole-fluid compressional slowness. The
g
d
t
w
o
r
a

s
�
a
c
d
�
m

ed 27 O
: sinha1
.S.A.;

.A.; pre

E111
resence of a steel pipe tool in a borehole causes a significant in-
rease in the Stoneley dispersion at low frequencies. However,
he Stoneley slownesses at high frequencies remain essentially
he same as those in the open hole without a mandrel. The leaky
ompressional dispersion in slow formations produced by a
onopole source also is perturbed at frequencies where the open-

ole leaky compressional and Stoneley-wave dispersions are
lose to each other. Although there is a strong interference be-
ween the pipe and formation flexural modes in fast formations,
uch interference in slow formations occurs at very low frequen-
ies, and the formation flexural dispersion is less affected by the
resence of a drill collar at higher frequencies. Interestingly, the
resence of a drill collar in a borehole causes rather small chang-
s in the lowest-order quadrupole dispersion from the case of an
pen hole without a mandrel. Consequently, quadrupole logging
s a preferred choice for estimating the formation shear slowness.
INTRODUCTION

Elastic wave propagation in cylindrical structures has been stud-
ed for several decades for a wide range of applications. Starting
rom fundamental studies of elastic wave propagation in plates and
ylinders �Gazis, 1959; Meeker and Meitzler, 1964�, there is a sig-
ificant amount of work on wave propagation in composite cylindri-
al structures that have applications in the analysis of optical fiber
coustic waveguides �Lai et al., 1971; Jen et al., 1986�. Elastic waves
ropagating through the earth are used routinely to estimate physical
roperties of the formation �Biot, 1952; Schmitt, 1988, 1993�.

A typical sonic measurement consists of a fluid-filled borehole
here a source and an array of receivers are placed in the fluid. Three

ypes of sources generally are used: a monopole, a dipole, and a
uadrupole. A monopole source excites axisymmetric waves propa-
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ating along the borehole, whereas a dipole source directed perpen-
icular to the borehole axis excites flexural waves propagating along
he borehole. Quadrupole transmitters are used in a measurement-
hile-drilling �MWD� environment because formation quadrupole
r screw waves essentially are decoupled from the drill-collar quad-
upole modes. All of these axisymmetric �n � 0�, flexural �n � 1�,
nd screw �n � 2� waves in a borehole are dispersive.

Cheng and Toksöz �1981� used the variational principle to under-
tand the effects of radial layering on guided waves. Tubman et al.
1984�, Baker �1984�, and Burns et al. �1985� studied full-waveform
coustic logging in radially layered boreholes �with steel casing or
ement�. Lee �1991� developed a low-frequency approximation for a
rill pipe in a fluid-filled borehole. Sinha et al. �1992� and Plona et al.
1992� presented a theoretical and experimental study of axisym-
etric wave propagation in fluid-filled cylindrical shells. Subse-
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E112 Sinha et al.
uently, Hsu et al. �1997� and Rama Rao and Vandiver �1999� report-
d on axisymmetric modes of an elastic or poroelastic mandrel in a
iquid-filled borehole surrounded by a formation.

The presence of a poroelastic mandrel causes a significant attenu-
tion of Stoneley modes that is useful in the design of sonic imaging
ools. The lowest-order axisymmetric Stoneley mode dispersion

ight be utilized to estimate formation shear slowness under favor-
ble conditions �Stevens and Day, 1986�. However, a preferable way
f determining the formation shear slowness is to measure borehole
exural dispersion using a dipole source and an array of receivers in
liquid-filled borehole in the absence of any significant coupling be-

ween pipe and formation flexural modes. The flexural dispersion as-
mptotically approaches the formation shear-wave speed at low fre-
uencies.

Recently, Sinha and Asvadurov �2004� obtained velocity disper-
ions and radial depths of investigation at various frequencies for
igher-order modes of a water-filled borehole �without a pipe man-
rel� in fast and slow formations. Higher-order quadrupole modes
ould have advantages in the estimation of formation shear slow-
esses in the presence of a pipe mandrel. The peak excitation of this
ode occurs at somewhat higher frequencies than that of the flexural
ode and is less susceptible to interference from the pipe quadru-

ole mode and possible drilling noise.
This paper describes a fundamental study of modal propagation of

igher-order modes in cylindrical structures and investigates the ef-
ect of interaction of steel pipe dispersion with that of the formation.
t is helpful to study such interactions by analyzing first the modal
ispersions of components of the coupled system separately. To this
nd, we analyze the modal dispersion of a fluid-filled borehole in a
ormation and, separately, a steel pipe immersed in an infinite fluid.

odal dispersions of these two canonical cases provide insight into
odal dispersions of the coupled system consisting of a pipe in a flu-

d-filled borehole, as shown in Figure 1. Hence, a major objective of
his paper is to emphasize that coupling between the pipe and forma-
ion flexural modes is strongly dependent on formation properties
elative to the borehole-fluid compressional slowness.

Numerical solutions are obtained for these structures in terms of

igure 1. Aconcentric pipe in a fluid-filled borehole.
ispersion curves for families of monopole �n � 0�, flexural �n
1�, and quadrupole �n � 2� modes in the frequency range of in-

erest.Attenuation of the leaky modes also is computed directly from
he imaginary part of the complex frequency for cases when they ex-
st.

MATHEMATICAL FORMULATION

This section contains a brief review of the equations of motion for
cylindrical structure, which are the building blocks of more com-
lex cylindrically layered systems. When referred to the coordinate
ystem shown in Figure 1, the equations of motion for harmonic
aves in cylindrical structures can be given by �Gazis, 1959�
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here � rr, � � � , � zz, � rz, � r� , and � z� are the stress components; ur, u� ,
nd uz are the displacement components; and � is the mass density of
he material of the cylindrical structure at hand.

The constitutive relations for a homogeneous, elastic, and isotro-
ic material are

� rr � �� � 2��rr, � � � � �� � 2��� � ,

� zz � �� � 2��zz, � r� � 2��r� ,

� z� � 2��z� , � rz � 2��rz, �2�

here � � �ur/� r � ur/r � �1/r��u� /�� � �uz/� z; �rr, �� � , �r� ,
z� , and �rz are the strain components; and � and � are the Lamé con-
tants for the material of the cylindrical structure at hand.

The strain-displacement relations in cylindrical coordinates take
he form
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n eigensolution to any linear elastodynamic solution can be ex-
ressed in terms of a scalar potential � and a vector potential H,

u � � � � � 	 H , �4�

here � ·H is arbitrary, and

V1
2�2� � �
2� ,

V2
2�2H � �
2H . �5�

e can express the displacement components in cylindrical coordi-
ates in terms of these scalar and vector potentials:
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Substituting these displacement components into the constitutive
elations and the stress equations of motion, we can write equation 5
n the following form in terms of the scalar potential � and three
omponents of vector potential H:
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solution of equation 7 can be written in the form

� � f�r�cos n� ei� z,

Hr � hr�r�sin n� ei� z,

H� � h��r�cos n� ei� z,

Hz � hz�r�sin n� ei� z, �8�

hich satisfies equation 7 provided that
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here V1 and V2 are the compressional- and shear-wave velocities,
espectively.

Subtracting and adding equations 11 and 12, we obtain

� 2h1
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r

�h1
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� �
 2 �

�n � 1�2

r2 �h1 � 0,

� 2h2
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here

2h1 � hr � h� , 2h2 � hr � h� . �15�

olutions of equations 9, 10, 14, and 15, respectively, can be written
n the form

f � AJn��r� � BYn��r� , �16�

nd

hz � h3 � A3Jn�
 r� � B3Yn�
 r� , �17�

2h1 � hr � h� � 2A1Jn�1�
 r�

� 2B1Yn�1�
 r� , �18�

2h2 � hr � h� � 2A2Jn�1�
 r�

� 2B2Yn�1�
 r� , �19�

here Jn and Yn are nth-order Bessel functions of the first and second
ind.

Because � ·H is arbitrary, we can eliminate one hi. Following the
ork of Gazis �1959�, we set h2 � 0, and from equations 18 and 19,
e have

hr � h1 , h� � �h1. �20�

he solution for the displacement components now can be written

ur � � � f

� r
�

n

r
h3 � i� h1�cos n� ei� z,

u� � ��n

r
f � i� h1 �

�h3

� r
�sin n� ei� z,

uz � �i� f �
�h1

� r
� �n � 1�

h1

r
�cos n� ei� z. �21�

Substitution of equations 16–20 into 21 yields the following ex-
ressions for the displacement components in the mth cylindrical
ayer that can be used to satisfy the appropriate boundary conditions:

ur � ��n

r
Jn���m�r� � ��m�Jn�1���m�r��A�m�

� �n

r
Yn���m�r� � ��m�Yn�1���m�r��B�m�

� i� Jn�1�
 �m�r�A�m� � i� Yn�1�
 �m�r�B�m�

1 1
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u� � ���
n

r
Jn���m�r��A�m� � ��

n

r
Yn���m�r��B�m�

� 	i� Jn�1�
 �m�r�
A1
�m� � 	i� Yn�1�
 �m�r�
B1

�m�

� ��
n

r
Jn�
 �m�r� � 
 �m�Jn�1�
 �m�r��A3

�m�

� ��
n

r
Yn�
 �m�r�

� 
 �m�Yn�1�
 �m�r��B3
�m��cos n� ei�
t�� z�, �23�
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A1
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 �m�Yn�
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cos n� ei�
t�� z�, �24�

here the index m denotes the mth cylindrical layer parameter and

��m�
2 �


2

V1�m�
2 � � 2, 
 �m�

2 �

2

V2�m�
2 � � 2, �25�

ith V1�m� and V2�m� the compressional- and shear-wave velocities for
he mth media.

At this point, it should be noted that the solutions given by equa-
ions 22–24 are valid for a solid annulus. The corresponding solution
or a solid rod is obtained simply by discarding the terms containing
n��r� or Yn�
 r�, which diverge as r→0. On the other hand, the
ave solution in a solid formation of infinite radial extent takes the

orm �Auld, 1973; Aki and Richards, 1980�
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n�1 3
uz � 	�i� Hn��r��A�m�

� �
 Hn�
 r��A1
�m�
cos n� ei�
t�� z�, �28�

here Hn�x� represents the outgoing Hankel functions of the second
ind consistent with the exp�i
t� given by

Hn�x� � Jn�x� � iYn�x� . �29�

The corresponding displacement components in an inviscid fluid
ake the reduced form

r
f � ��n

r
Jn�� fr� � � fJn�1�� fr��C1

�m� � �n

r
Yn�� fr�

� � fYn�1�� fr��C2
�m�� 	 cos n� ei�
t�� z�, �30�

�
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n

r
	Jn�� fr�C1

�m� � Yn�� fr�C2
�m�
�sin n� ei�
t�� z�,

�31�

z
f � i� 	Jn�� fr�C1

�m� � Yn�� fr�C2
�m�
cos n� ei�
t�� z�, �32�

here

� f �

2

Vf
2 � � 2, �33�

f represents the compressional-wave velocity in the fluid, and the
uperscript f refers to that quantity or parameter associated with the
uid medium.
At this point, it should be noted that the solution given by equa-

ions 30–32 is valid for a liquid annulus. The corresponding solution
or a liquid column is obtained simply by discarding the terms con-
aining Y0,1�� fr�, which diverge as r→0. On the other hand, the
ave solution in a fluid medium of infinite radial extent takes the

orm

ur
f � �� fHn�1�� fr�D1

�m� cos n� ei�
t�� z�, �34�

u�
f � ��� fHn�1�� fr�

�
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�m� sin n� ei�
t�� z�, �35�

uz
f � i� Hn�� fr�D1

�m� cos n� ei�
t�� z�. �36�

The classical boundary conditions at a fluid-solid interface are
iven by
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here the superscripts 1 and 2 refer to the media on either side of the
urface of discontinuity r � a. However, it should be noted that the
hear stresses � �1� and � �1� in an inviscid fluid are identically equal to
rz r�
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ero.At a solid-solid interface, the continuity conditions are
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, �38�

hereas the normal stress components are set equal to zero at trac-
ion-free surfaces.

The unknown amplitudes associated with different cylindrical
ayers are determined by satisfying the boundary conditions at the
elevant interfaces. The solution to a cylindrically layered system
an be obtained by satisfying appropriate boundary conditions at all
iquid-solid or solid-solid interfaces. These conditions can be ex-
ressed in terms of a matrix equation Lc � 0, where the vector c de-
otes the unknown amplitude coefficients as follows:

c � �A�1� , A�2� , B�2� , A1
�2� , B1

�2� ,

	 A3
�2� , B3

�2� , A�3� , B�3� , A�4� , A1
�4� , A3

�4��T. �39�

or nontrivial solutions of this matrix equation, we require that the
eterminant of coefficient matrix L be zero.

A search routine can be established to find the resonant mode ve-
ocities �V� for a given frequency �f� in an �f ,V� search domain.
ere, we have a slightly different search domain consisting of nondi-
ensional frequency � and nondimensional axial wavenumber � ,
here � � 
c/V2�4� and � � kc, which are converted to �f ,V� by
sing

V � �V2�4�/� , f � �V2�4�/2�c , �40�

here 
 � 2� f is the radial frequency, c � r3 is the borehole radi-
s, k is the resonant mode axial wavenumber, and V2�4� is the forma-
ion shear velocity in the 4th cylindrical layer. Figure 2 contains an il-
ustration of the conversion from one domain to another for a flexur-
l mode.

COMPUTATIONAL RESULTS

Sinha and Asvadurov �2004� present a detailed analysis of mono-
ole, dipole, and quadrupole modes of a water-filled borehole in an
nfinite formation. In this work, we describe computational results
or the two additional configurations to study effects of the mandrel
r an equivalent pipe on the borehole modes. The two configurations
re �1� a steel pipe in an infinite liquid, and �2� a steel pipe in a water-
lled borehole surrounded by a fast/slow formation. A fast or slow
ormation refers to the formation shear-wave speed being faster or
lower than the compressional-wave speed in the borehole fluid,
hich is water in all cases. Parameters for the materials appearing in
ur investigation are given in Table 1. The assumed geometric pa-
ameters for an MWD tool are as follows: the borehole radius is c

13 cm �5 inches�; the pipe inner and outer radii are a�6.5 cm
nd b�10 cm �or 2.5 inches and 4 inches, respectively�.

To check the accuracy of our formulation and implementation, we
rst obtain borehole slowness dispersions by using the dyadic
reen’s function formulation of Lu and Liu �1994�. This formula-

ion yields synthetic waveforms at an array of receivers produced by
monopole, dipole, or quadrupole source placed on the borehole
xis. Synthetic waveforms then are processed by a modified matrix
encil algorithm �Hua and Sarkar, 1990� to isolate nondispersive and
ispersive arrivals in the wavetrain. For this problem, we use 20 re-
eivers placed in the annulus between the drill collar and a fast for-
ation �see Table 1 for material properties�. The distance between

he source and first �last� receiver is 0.6 m �3 m�. Figure 3 shows the
ecorded synthetic waveforms and slowness dispersions obtained by
rocessing these waveforms obtained from a monopole source �top
ow� and a dipole source �bottom row�. In dispersion plots, we also
epict the mode-search algorithm �black solid lines� results that con-
rm a very good agreement between these two formulations.
Computational results consist of �1� modal dispersion, �2� radia-

ion-induced attenuation, and �3� radial variation of modal ampli-
udes at select frequencies. The dashed horizontal lines in dispersion
lots correspond to the compressional, shear, and liquid slownesses,
abeled C, S, and L, respectively. In the case of a pipe in infinite liq-
id, these correspond to the compressional and shear slownesses of
teel; in the case of a pipe in a water-filled borehole in an infinite for-
ation, they correspond to the slownesses of the formation. The ver-

ical solid lines in modal amplitude plots denote radial locations of
he inner and outer surfaces of the pipe, and the borehole surface, re-
pectively.

We choose the frequency range of 1 through 15 kHz that covers
he common frequency range of interest for various measurements

ade while drilling, and we present results for the Stoneley, flexural,
nd quadrupole modes in this frequency range. For some of these
odes, we compute the amplitude of the radial component of parti-

le acceleration on the axis r � 0, and the excitation function, as de-
ned in Sinha et al. �1994�; black solid and red dashed lines depict Ur

nd Uz acceleration components, respectively. To obtain a complete

able 1. Material parameters for cylindrical components

aterial V1 �m/s� V2 �m/s� � �kg/m3�

ast formation 3658 2032 2350

low formation 1890 508 2054

teel 5800 3100 7900

ater 1500 — 1000
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igure 2. �a� Blue circles denote zeros of boundary condition deter-
inant matrix in �� ,� � space. Red, green, and cyan dashed lines

how formation compressional, shear, and fluid compressional ve-
ocities, respectively. �b� Slowness-frequency dispersion �1/V, f�
btained from results in Figure 2a.
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nderstanding of such modes, we also present the corresponding dis-
lacement and stress profiles at chosen frequencies.

Figures 4–6 contain computational results for these configura-
ions: �1� a steel pipe in infinite liquid, �2� a concentric steel pipe in a
ater-filled borehole surrounded by a fast formation, and �3� a con-
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igure 3. �a� Synthetic waveforms generated by a dyadic Green’s
unction method of Lu and Liu �1994� for a monopole source; �b�
odal dispersions obtained by processing synthetic waveforms by a
odified matrix pencil algorithm �red dots� and a mode-search algo-

ithm �solid black lines�; �c� and �d� follow the same notation as �a�
nd �b�, respectively, for a dipole source.
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igure 4. Monopole modes: Phase slowness dispersion curves �left
nduced attenuation �center column�, and excitation spectra �right co
n liquid �top row�, a concentric steel pipe in a water-filled borehole
ormation �center row�, and a concentric steel pipe in a water-filled b
y a slow formation �bottom row�. In the right column, Ur and Uz

lack and dashed red curves, respectively.
entric steel pipe in a water-filled borehole surrounded by a slow for-
ation.

teel pipe in infinite liquid

Amajor objective of studying dispersions of a solid pipe in infinite
iquid is to help recognize them in the composite system of a pipe in-
ide a fluid-filled borehole surrounded by a formation. To this end,
e need to look at such details as the profiles of the slowness disper-

ion curves, the cutoff frequencies of the various modes, and the
agnitudes of the attenuations. Plona et al. �1992� and Aristégui et

l. �2001� studied and reported on this particular case. In this section,
e describe results for a steel pipe in infinite liquid, as shown in Fig-
res 4a-c, 5a-c, and 6a-c.

onopole slowness dispersions

Figure 4a shows the four monopole modes in the frequency range
f interest. One mode is barely visible at the high-frequency end.
he first mode, labeled m � 1, is nonradiating, has slowness �phase
nd group� close to the fluid speed, and is almost nondispersive, as
hown in Figure 4b. The second mode, m � 2, is the pipe extension-
l mode, which is essentially nondispersive at lower frequencies as
igh as 7 kHz. The third and fourth modes have cutoff frequencies of
pproximately 10 and 15 kHz and are moderately attenuative. Fig-
re 4c presents the excitation spectra of the first two modes, m

1,2. The excitation spectra are plotted in terms of radial and axial
Ur and Uz are shown by solid black and dashed red curves, respec-
ively� acceleration components on the borehole axis, as discussed
y Sinha andAsvadurov �2004�.

Dipole slowness dispersions

The flexural dispersions for a steel pipe in infi-
nite liquid are presented in Figure 5a. Figure 5b
shows that all the modes exhibit varying degrees
of attenuation, except in the low-frequency range
below 2 kHz where the first mode, m � 1, has
slownesses larger than the slowness of the fluid.
As frequency goes to zero, the slowness of this
first mode increases without bound. The higher-
order m � 2, 3, and 4 are cutoff modes with rela-
tively high group velocity and with cutoff fre-
quencies of approximately 6, 7, and 14 kHz. Fig-
ure 5c shows the excitation spectra for the steel
pipe lowest-order flexural formation mode �n
� 1;m � 1�, and a higher-order pipe flexural
mode �n � 1;m � 2�.

Quadrupole slowness dispersions

The quadrupole modes for a pipe in infinite flu-
id are presented in Figure 6a. All of these are cut-
off modes with cutoff frequencies of approxi-
mately 3, 3.5, 11.5, and 12 kHz. The high-fre-
quency asymptote of the first mode is the slow-
ness of the liquid, and the dispersion curve for this
mode shows a characteristic cusp at approximate-
ly 7 kHz. It appears that the lowest-order quadru-
pole mode of the steel pipe �in vacuum� and that
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f the liquid column are crossing each other, causing a strong inter-
ction around 7 kHz. When the phase slowness is smaller than the
uid compressional slowness, all such modes radiate energy into the
urrounding liquid. Figure 6b illustrates radia-
ion-induced attenuation of these modes as a
unction of frequency. Figure 6c shows the exci-
ation function for the lowest-order nonradiating
ormation quadrupole modes �n � 2; m � 1 and
�. Unlike the lowest-order monopole and flexur-
l modes, even the lowest-order quadrupole
ode exhibits a cutoff frequency at about 3 kHz.

teel pipe in a borehole surrounded by
fast formation

The behavior of modes of a composite struc-
ure of steel pipe in a fluid-filled borehole might
r might not be similar to the behavior of corre-
ponding modes in disjoint structures of the pipe
n infinite liquid and the fluid-filled borehole
ithout a tool. In this section, we describe results

or a steel pipe in a fluid-filled borehole surround-
d by a fast formation as shown in Figures 4d-f
monopole�, 5d-f �dipole�, and 6d-f �quadrupole�.

e follow a notation that a mode preceded by F or
denotes a mode dominated by formation or pipe
roperties, respectively.

onopole slowness dispersions

The monopole modes in this configuration are
resented in Figure 4d. Comparing results in Fig-
re 4d for the case of a pipe in a borehole and a
ipe immersed in an infinite liquid, we observe
hat the lowest-order modes are only slightly per-
urbed, and we recognize the slower of the two as
he formation Stoneley, and the faster of the two
s the first monopole pipe mode. Accordingly, in
igure 4d we label these two modes as F1 for the
rst formation mode and P1 as the first pipe
ode. The pipe mode is pushed closer to the liq-

id head wave, and the Stoneley F1 mode is re-
elled by the faster mode to the higher slowness
ange �in particular, the low-frequency slowness
f the Stoneley mode increases to above
00 �s/m�, but otherwise the shape of the two
odes remains unchanged.
In the next mode, we recognize the perturbed

hape of the second, pseudo-Rayleigh, formation
ode and label it F2. The cutoff frequency of this
ode increases from about 6 kHz to about 9.5

Hz. The mode gets repelled to the faster side to-
ard the shear slowness of the formation. These

ffects need to be taken into account for accurate
nterpretation; in particular, this will influence the
rocess of proper frequency range selection for
ormation shear inversion.

Figure 4e shows that F1, P1, and F2 modes do
ot radiate energy into the surrounding forma-
ion. In the next mode, which we label P2, we
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The higher-order modes P3 and P4 are almost undisturbed modes
� 3 and 4 of the pipe. The higher-order formation modes are not

resent in this frequency range.
The signal received at an array of receivers can be represented by a

onvolution of source spectrum and modal excitation functions
Sinha et al., 1994�. In Figure 4f, we show the modal excitation spec-
ra for the three lowest modes, for which excitation of the mode la-
eled F1 resembles the pipe lowest-order mode with the excitation
eak moved to a slightly lower frequency.

ipole slowness dispersions

Seven modes enter the picture for the dipole dispersion curves in
ur composite structure; see Figure 5d. The slowest two provide ex-
mples of the interesting interaction of the lowest-order pipe and for-
ation modes. At the low-frequency range, the mode labeled P1 be-

aves as the lowest-order pipe mode, m � 1, hence the label we as-
ign to it. However, as frequency increases as high as above 5 kHz,
he behavior of P1 starts to differ from that of the pipe mode, and the
igh-frequency behavior of this composite mode is similar to that of
he lowest-order formation mode, m � 1. On the other hand, the
econd composite mode F1 starts out as the lowest-order formation
ode, m � 1, but as frequency increases, its behavior reflects that of

he lowest-order pipe mode. This type of interaction of modes of the
eparate structures is common when the separate modes cross each
ther if the two figures are overlaid. Obviously, in the composite
tructure the modes cannot cross each other in the complex plane be-
ause this would lead to nonuniqueness of the solution, so they either
epel each other or interact in ways just described.

Modes labeled F3 and F4 are the perturbed m � 3 and 4 modes of
he borehole without a tool. The mode F4 has a higher cutoff fre-
uency than in the case without a tool. This behavior is similar to the
onopole case described above. The mode F3 gets displaced by the

roximity of the modified F1 mode. The rest of the modes are almost
onperturbed pipe modes P2, P3, and P4.

Figure 5e shows that F1, P1, and F4 modes do not radiate energy
nto the surrounding formation. Figure 5f shows the modal excita-
ion spectra for the two lowest flexural modes.

uadrupole slowness dispersions

The quadrupole family of modes shown in Figure 6d exhibits neg-
igible interference with steel pipe quadrupole modes. In the slowest

ode, F1, we recognize the first quadrupole mode of the borehole
ithout a tool. This mode is perturbed and has the cutoff frequency
f approximately 3 kHz, instead of the 5 kHz as in the case of an
mpty borehole in an infinite formation.

Four cutoff modes appear in the picture. The modes F2 and F3 fol-
ow the behavior of the second and third modes of the borehole with-
ut a tool. In particular, they cross in the phase slowness plane, simi-
arly to the case without a tool �note that there is no crossing in the
omplex plane and hence no contradiction to the uniqueness.� How-
ver, the high-frequency behavior of the F3 mode differs from that of
he independent system in that it now does not cross the shear slow-
ess within the frequency range of our interest. The mode with the
utoff frequency of 2.5 kHz is labeled P1 because it behaves similar-
y to the low-frequency part of the first quadrupole mode of the pipe
n infinite liquid. However, unlike the independent mode in Figure
e, this composite mode disappears when it crosses the shear slow-
ess of the formation. The last mode in the current picture has the be-
avior similar to the second pipe mode and is labeled P2. The third
ipe mode, as well as the fourth and fifth formation modes, does not
ppear in the figure.

Figure 6f shows that all the modes except F1 are dispersive.

teel pipe in a borehole surrounded by a slow formation

Modal dispersions associated with a slow formation in the pres-
nce of a steel pipe are significantly different from those in a fast for-
ation. In this section, we study these differences and provide useful

uidelines for proper processing and interpretation of sonic data.

onopole slowness dispersions

The monopole modes in this configuration are presented in Figure
g. Comparing results in Figure 4g for the case of a pipe in a borehole
nd a pipe immersed in an infinite liquid, we notice that the lowest-
rder Stoneley mode, labeled F1 in the figure, is perturbed greatly by
he presence of the pipe. It no longer intersects the formation shear,
nd its zero frequency limit is altered significantly. The higher for-
ation modes, labeled F2 and F3 in the figure, are not perturbed sig-

ificantly by the presence of the pipe. The only change is that the
eaky compressional mode does not grow in slowness as fast as in the
pen-hole case, and at the highest frequency that we consider,
5 kHz, is only halfway between the formation compressional slow-
ess and slowness of the fluid, whereas in the open-hole case, at the
ame frequency the mode was already close to its high-frequency as-
mptote of the fluid slowness.

The highest formation cutoff mode, which we label F4, is altered
y the presence of the pipe in the following way. The cutoff frequen-
y becomes significantly higher, changing from 7 kHz in the open-
ole case to more than 10 kHz in the case of the pipe presence, and
ts slowness value at frequency 15 kHz is almost three times as low
s in the open-hole case. The next cutoff formation mode, visible in
he open-hole case in our frequency range of interest, does not even
how up in the case of the presence of the pipe.

Pipe modes, labeled P1 and P2 in the figure, are not altered signifi-
antly compared with the case of the pipe in infinite fluid. These two
odes, respectively, correspond to the slow-Stoneley mode �m
1� and pipe extensional mode �m � 3� in the case of the pipe in

nfinite liquid. However, the fast-Stoneley mode �m � 2�, and pipe
utoff modes m � 3 and m � 4 from the steel pipe in fluid, are not
resent.

The signal received at an array of receivers can be represented by a
onvolution of source spectrum and modal excitation functions
Sinha et al., 1994�. In Figure 4i, we show modal excitation spectra
or the four lowest modes. Comparing results in this figure with
hose of the other two cases, we notice that the excitation of the

odes is not altered significantly.

ipole slowness dispersions

An extremely interesting slowness dispersion picture for the di-
ole dispersion curves of our composite structure is presented in Fig-
re 5g. As we can see from overlaying results for the two cases of an
pen hole without a mandrel and a steel pipe in liquid, the lowest-or-
er pipe dipole mode in its original form intersects two of the forma-
ion modes, in their original form. This intersection results in signifi-
ant alteration of these three modes. This type of interaction of
odes of the separate structures is common when the separate
odes cross each other if the two figures are overlaid. Obviously, in
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he composite structure the modes cannot cross each other in the
omplex plane because this would lead to nonuniqueness of the solu-
ion to det�L� � 0, so they either repel each other or interact in ways
ust described. We label the resulting three modes by their high-fre-
uency asymptotes as F1, F2, and P1. In each of these modes, we can
bserve a characteristic kink that has the approximate frequency of
he point where the undisturbed pipe mode would intersect the un-
isturbed formation modes.

The rest of the formation and pipe modes present in the figure,
hich are labeled F3, P2, and P3, are relatively unperturbed. Mode
� 4 from the case of the open hole without a mandrel is not

resent in this frequency range, and is pushed out to higher frequen-
ies by the presence of the higher pipe modes. Figure 5h shows that
ll the modes except F1 are dispersive. Figure 5i shows the modal
xcitation spectra for the three lowest flexural modes.

uadrupole slowness dispersions

The quadrupole family of modes shown in Figure 6g presents a
impler case than the monopole and dipole cases. The modes of the
pen-hole and pipe families do not seem to be affected greatly by
ach other. In the slowest mode F1, we recognize the first quadrupole
ode of the borehole without a tool. The second and third slowest
odes are labeled F2 and F3 and follow the behavior of the second

nd third modes of the borehole without a tool. The next cutoff mode
esembles the first pipe mode and is labeled P1. It should be noted,
owever, that this mode seems to be interacting with the mode m

4 of the open-hole case. In particular, at high frequencies it be-
omes slower than the liquid. We choose to label the modes accord-
ng to their low-frequency limit. Going through the modes in the or-
er of increasing cutoff frequency, we recognize the next formation
ode F3 and two higher-order pipe quadrupole modes P2 and P3.
ll of these modes seem to be very weakly altered compared with

he previous figures. Figure 6h shows that all the modes except F1
re dispersive.

In Figure 6i, we show the modal excitation spectra for the modes
1, F2, and F3. We see that these excitations do not differ significant-

y from the open-hole case.

adial variation of modal amplitudes

Radial variation of modal amplitudes provides estimates of radial
epth of investigation as a function of frequency. Radial depth of in-
estigation is an indicator of formation volume probed by a given
ode at various frequencies. This helps in a proper interpretation of
easured borehole dispersions and their subsequent applications in

nferring formation mechanical attributes at different radial posi-
ions from the borehole surface. Even though we analyze these vari-
tions at multiple frequencies, here we describe radial variation of
odal displacement amplitudes Ur and Uz, and radial stress � rr, for

he formation Stoneley and pipe extensional, formation flexural and
ipe flexural, and formation quadrupole modes at select frequencies.

ast formation

In Figure 7a and b, we show the modal amplitude profiles at fre-
uencies of 2 �solid lines� and 7 kHz �dashed lines� for the two low-
st-order monopole modes labeled F1 and P1, respectively. As ex-
ected, lower frequencies exhibit larger radial depth of investigation
han higher-frequency signals. We notice that at both frequencies for
hese modes, the axial displacement in the pipe is rather small. The
adial stress associated with these modes extends deeper into the for-
ation for the F1 mode at these two frequencies. Generally, radial

epth of investigation at a given frequency is largest for the forma-
ion flexural followed by the Stoneley and quadrupole modes.

Figure 7c and d displays modal amplitudes of two lowest-order di-
ole modes at frequencies of 2 �solid lines� and 7 �dashed lines� kHz.
e notice that at 2 kHz, the radial displacement of the pipe is signif-

cantly larger for the P1 mode, whereas the penetration of the radial
isplacement and stress amplitudes into the formation is larger for
he F1 mode. At 7 kHz, this distinction appears to vanish. Figure 7d
lso shows that the relative radial stress component �denoting the hy-
rostatic pressure in the borehole fluid� inside the pipe is approxi-
ately one-tenth of its value in the annulus between the pipe and for-
ation. These results suggest that a hydrophone placed inside the

nnulus will be far more sensitive, compared with one placed inside
he pipe tool, to detecting the pressure signal associated with the for-

ation flexural mode.
In Figure 7e, we show the radial variations of displacement ampli-

udes at frequencies of 2 �solid lines� and 7 �dashed lines� kHz for the
uadrupole F1 mode.

low formation

In Figure 8a and b, we show the modal amplitude profiles at fre-
uencies of 1.5 �solid lines� and 5 kHz �dashed lines� for the two
owest-order monopole modes labeled F1 and P1, respectively. For
he monopole F1 mode, the depth of investigation into the formation
s about 4 borehole radii, and the dominant part of the energy is con-
entrated inside the annulus between the pipe and the formation, and
n the formation itself at 1.5 and 5 kHz. As the frequency increases,
he depth of penetration decreases. For the monopole P1 mode, most
nergy is concentrated inside the pipe and fluid, although some radi-
l displacement is present inside the formation as well. Figure 8c-e
isplays modal amplitude profiles for the dipole F1, dipole P1, and
uadrupole F1 modes, respectively. Interestingly, the quadrupole F1
ode in a slow formation at frequencies of 1.5 and 5 kHz exhibits

imilar penetration depths as observed in a fast formation at 2 and
kHz.

SUMMARY

We have studied the influence of a pipe tool on monopole, dipole,
nd quadrupole waves in a water-filled borehole. Unlike previous
tudies, this work uses a complex mode-search routine �based on

uller’s technique �Muller, 1956; Atkinson, 1988�� that has the ca-
ability of analyzing real and complex modes associated with a flu-
d-filled borehole in the presence of a thick pipe �or drill collar�. Con-
equently, we identify radiating and nonradiating borehole modes
upported by a system of cylindrical structures that are both disper-
ive and attenuative. Results for modal dispersions, radiation-in-
uced attenuation, and excitation spectra for a few select modes
ave been obtained for axisymmetric, flexural, and quadrupole
odes as high as 15 kHz in fast and slow formations.
In addition to calculating modal dispersions, attenuations, and ex-

itation functions, we plot an acoustic field associated with any of
hese modes at select frequencies. These plots are extremely useful
or a proper interpretation of borehole sonic data in geophysical ap-
lications. For instance, these plots indicate radial depth of investi-
ation as a function of sonic logging frequency that can help in con-
rming if elastic moduli estimated from an MWD sonic tool repre-
ent formation properties in the far-field or might have been compro-
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igure 7. A concentric steel pipe in a water-filled borehole surrounded by a fast formation: Normalized displacements �Ur and Uz� and radial
tress �� rr� plotted as a function of r/a for the mode �a� monopole F1, �b� monopole P1, �c� flexural F1, �d� flexural P1, �e� quadrupole F1. The sol-
d and dashed lines show results for frequencies 2 and 7 kHz, respectively.
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igure 8. A concentric steel pipe in a water-filled borehole surrounded by a slow formation: Normalized displacements �Ur and Uz� and radial
tress �� rr� plotted as a function of r/a for the mode �a� monopole F1, �b� monopole P1, �c� flexural F1, �d� flexural P1, �e� quadrupole F1. The sol-
d and dashed lines show results for frequencies 1.5 and 5 kHz, respectively.
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ised by the near-wellbore alteration caused by stress concentra-
ions or mechanical damage. In addition, this study helps in the
esign of a sonic tool with proper placement of receivers to maxi-
ize sensitivity to a particular borehole mode of interest.

CONCLUSIONS

Important conclusions from this study follow.

� The radial depths of investigation of the formation Stoneley
and flexural modes vary as a function of frequency in a similar
fashion. Low frequencies of these modes probe deeper and high
frequencies probe shallower into the formation.

For the fast formation, radial depths of investigation for the
Stoneley mode are approximately 5 	 borehole radius at
2 kHz, and about 3 	 borehole radius at 7 kHz. The radial
depth of investigation for the formation flexural mode is ap-
proximately 7 	 borehole radius at 2 kHz, which is somewhat
larger than the Stoneley mode at the same frequency. Similarly,
the radial depth of investigation for the pseudo-Rayleigh mode
�n � 1; F2� is about 4 	 borehole radius at 12 kHz. The radial
depth of investigation for the formation quadrupole mode �n
� 2� is about 4 	 borehole radius at 7 kHz.

For the slow formation, radial depths of investigation for the
Stoneley mode are approximately 6 	 borehole radius at
2.5 kHz, and about 3 	 borehole radius at 6 kHz. Interestingly,
the radial depth of investigation for the monopole leaky com-
pressional mode �n � 0; F3� is about 10 	 borehole radius at
6 kHz. The radial depth of investigation for the formation flex-
ural mode is approximately 7 	 borehole radius at 2 kHz,
which is somewhat larger than the Stoneley mode at the same
frequency. The radial variation of modal amplitudes for the
lowest-order steel pipe mode �n � 1, F1� at higher frequencies
of 2 through 5 kHz exhibits a slow, oscillatory decay into the
formation. Note that at these frequencies the pipe mode slow-
nesses are less than the formation shear slowness causing it to
radiate energy into the formation. The radial depth of investiga-
tion for the formation quadrupole mode �n � 2� is about 5 	
borehole radius at 5 kHz.

� Modal amplitude distributions associated with the formation
flexural mode in the presence of a pipe tool suggest that hydro-
phones placed in the annulus between the pipe and formation
generally will be more sensitive to detecting formation arrivals
than those placed inside the pipe, where the pressure signal is
rather small. This emphasizes the importance of exposing hy-
drophone detectors to the fluid in the annulus through a slotted
pipe.

� The presence of sleeve/pipe modal dispersions causes signifi-
cant perturbations in the formation modal dispersions, particu-
larly in the frequency band where the two independent sets of
modes are in close proximity or crossing each other.

� The excitation spectra of the formation modes are mildly af-
fected by the presence of the steel pipe tool, based on a compar-
ison of these results for the case of a fluid-filled borehole in the
absence of any tool structure as presented by Sinha and Asva-
durov �2004�. As mentioned earlier, acoustic signal amplitude
at a receiver location is obtained by a convolution of the trans-
mitter �source� pulse and excitation spectrum �which is like an
impulse response� of the propagating system. Modal spectra or
excitation spectra help in an optimal bandwidth selection of the
transmitter for a particular logging.

For example, in the case of Stoneley logging, the modal spectra of
he formation and tool suggest that the monopole transmitter band-
idth should be less than 7 kHz for the fast formation and 5 kHz for

he slow formation to suppress the excitation of unwanted pipe
odes. On the other hand, in the case of compressional head-wave

ogging �Pand S modes�, the modal spectra or excitation spectra sug-
est that two unwanted pipe modes propagating close to the pipe ma-
erial compressional and shear slownesses are likely to be excited
long with formation arrivals in the frequency band above 10 kHz.

There are two choices to deal with such situations. Either we use
he processing algorithm to filter out the pipe arrivals, or we limit the

onopole transmitter bandwidth to less than 10 kHz even for com-
ressional head-wave logging.

Similarly, modal analyses suggest that the dipole transmitter
andwidth should be below 7 kHz for the fast formation and 5 kHz
or the slow formation to suppress the excitation of unwanted flexur-
l pipe modes. Above 10 kHz, both of these pipe flexural modes are
ikely to be excited, and they must be filtered out by the processing
lgorithm for proper interpretation of the formation flexural signals.

Interestingly, the pipe quadrupole modes appear to be well sepa-
ated from the lowest-order formation quadrupole mode �n � 2; F1�
n the frequency band below 10 kHz. Therefore, quadrupole logging
or estimating the formation shear slowness is preferred in the indus-
ry.

REFERENCES

ki, K., and P. G. Richards, 1980, Quantitative seismology: Theory and
methods: W. H. Freeman.

ristégui, C., M. J. S. Lowe, and P. Cawley, 2001, Guided waves in fluid-
filled pipes surrounded by different fluids: Ultrasonics, 39, 367–375.

tkinson, K. E., 1988, An introduction to numerical analysis, 2nd ed.: John
Wiley and Sons, Inc.

uld, B. A., 1973, Acoustic fields and waves in solids: John Wiley and Sons,
Inc.

aker, L. J., 1984, The effect of the invaded zone on full wavetrain acoustic
logging: Geophysics, 49, 796–809.

iot, M., 1952, Propagation of elastic waves in a cylindrical bore containing
a fluid: Journal ofApplied Physics, 23, 997–1005.

urns, D. R., C. H. Cheng, and M. N. Toksöz, 1985, Energy partitioning and
attenuation of guided waves in a radially layered borehole: SEG Technical
Program ExpandedAbstracts, 4, 46–47.

heng, C. H., and M. N. Toksöz, 1981, Elastic wave propagation in a fluid-
filled borehole and synthetic acoustic logs: Geophysics, 46, 1042–1053.

azis, D., 1959, Three-dimensional investigation of the propagation of
waves in hollow circular cylinders: Part 1 — Analytical foundation; Part 2
— Numerical results: Journal of the Acoustical Society of America, 31,
568–577.

su, C.-J., S. Kostek, and D. Johnson, 1997, Tube waves and mandrel
modes: Experiment and theory: Journal of theAcoustical Society ofAmer-
ica, 102, 3277–3289.

ua, Y., and T. K. Sarkar, 1990, Matrix pencil method for estimating parame-
ters of exponentially damped/undamped sinusoids in noise: IEEE Trans-
actions onAcoustics, Speech, and Signal Processing, 38, 814–824.

en, C., A. Safaai-Jazi, and G. Farnell, 1986, Leaky modes in weakly guiding
fiber acoustic waveguides: IEEE Transactions on Ultrasonics, Ferroelec-
trics, and Frequency Control, 33, 634–643.

ai, J., E. Dowell, and T. Tauchert, 1971, Propagation of harmonic waves in a
composite elastic cylinder: Journal of the Acoustical Society of America,
49, 220–227.

ee, H. Y., 1991, Drillstring axial vibration and wave propagation in bore-
holes: Ph.D. thesis, Massachusetts Institute of Technology.

u, C., and Q. Liu, 1994, Three-dimensional dyadic Green’s function for
elastic waves in multilayer cylindrical structures: Journal of theAcoustical
Society ofAmerica, 96, 3337–3338.
eeker, T., and A. Meitzler, 1964, Guided wave propagation in elongated
cylinders and plates:Academic Press.



M

P

R

S

—

S

S

S

S

T

Pipe tool influence on borehole modes E123
uller, D. E., 1956, A method for solving algebraic equations using an auto-
matic computer: Mathematical Tables and OtherAids to Computation, 10,
208–215.

lona, T., B. K. Sinha, S. Kostek, and S. Chang, 1992, Axi-symmetric wave
propagation in fluid-loaded cylindrical shells: Part 2 — Theory versus ex-
periment: Journal of theAcoustical Society ofAmerica, 92, 1144–1155.

ama Rao, V. N., and J. K. Vandiver, 1999, Acoustics of fluid-filled bore-
holes with pipe: Guided propagation and radiation: Journal of theAcousti-
cal Society ofAmerica, 105, 3057–3066.

chmitt, D., 1988, Shear wave logging elastic formations: Journal of the
Acoustical Society ofAmerica, 84, 2215–2229.

—–, 1993, Dipole logging in cased boreholes: Journal of the Acoustical
Society ofAmerica, 93, 640–657.
inha, B. K., and S. Asvadurov, 2004, Dispersion and radial depth of investi-
gation of borehole modes: Geophysical Prospecting, 52, 271–286.

inha, B. K., A. Norris, and S. Chang, 1994, Borehole flexural modes in an-
isotropic formations: Geophysics, 59, 1037–1052.

inha, B. K., T. Plona, S. Kostek, and S. Chang, 1992, Axi-symmetric wave
propagation in fluid-loaded cylindrical shells: Part 1 — Theory: Journal of
theAcoustical Society ofAmerica, 92, 1132–1143.

tevens, J., and S. Day, 1986, Shear velocity logging in slow formations us-
ing the Stoneley wave: Geophysics, 51, 137–147.

ubman, K. M., C. H. Cheng, and M. N. Toksöz, 1984, Synthetic full wave-

form acoustic logs in cased boreholes: Geophysics, 49, 1051–1059.


