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A 3-D Spectral Integral Method (SIM)
for Surface Integral Equations
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Abstract—An efficient 3-D spectral integral method (SIM) has
been proposed to speed up the method of moments (MOM) cal-
culation of induced currents on a cuboid. This method utilizes the
Toeplitz structure in the impedance matrix and the fast Fourier
transform to accelerate the MOM solution. It reduces the memory
and CPU time per iteration from O(N?) in the MOM to O(N*-?)
and O(IN'-® log N), respectively. Thus, the SIM can be also used
as an efficient radiation boundary condition for the finite element
method. Numerical results confirm the effectiveness of this method.

Index Terms—Fast Fourier transform (FFT), finite ele-
ment-boundary integral (FEM-BI) method, method of moments
(MOM), spectral integral method (SIM).

1. INTRODUCTION

URFACE integral equations in electromagnetic scattering
S problems have traditionally been solved by the method of
moments (MOM) [1]. However, it is well known that the MOM
solution for surface integral equations is inefficient as it requires
O(N?) memory, and O(N?) CPU time per iteration in an it-
erative solver for the matrix equation, where N is the number
of surface unknowns. The development of the fast multipole
method [2], [3] and adaptive integral method [4] significantly
improves the computational efficiency of MOM solution to sur-
face integral equations.

We propose an alternative approach, the spectral integral
method (SIM), for solving 3-D surface integral equations on
a cuboid [9]. This method makes use of the Toeplitz structure
of the impedance matrix on the cuboid surface to apply the
fast Fourier transform (FFT) algorithm for accelerating ma-
trix-vector multiplications. It thus reduces the memory cost
to O(N'?) and CPU time to O(N'®log N) per iteration,
significantly more efficient than the MOM method.

As an application, the surface integral equations can be used
as an exact radiation boundary condition for the finite element
method, as in the hybrid finite-element/boundary integral
(FEM-BI) method [8]. This hybrid method is effective in that
arbitrary inhomogeneities can be modeled and the radiation
boundary condition is highly accurate. In the special case of a
flat surface (such as a cavity-backed aperture, the fast Fourier
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transform (FFT) algorithm can be used to speed up this compu-
tation as in the conjugate-gradient (CG) FFT algorithm [5]-[7].
However, for general 3-D surfaces, this FFT acceleration has
not been developed, although in principle this can be achieved
by using the fast multipole method [2], [3] and adaptive integral
method [4]. We have also hybridized the SIM with the FEM.

II. FORMULATION

It is well known that the electromagnetic scattering of a ho-
mogeneous object in a homogeneous background medium can
be formulated through the electric field integral equations or
magnetic field integral equations [1]. In particular, the electric
field integral equation for the exterior problem is

f x BR(r)=—M(r)+n x / |:jkb77b9b(r_rl)'](rl)

_i_%vgb(r—r’)V’ J(r")+V gy (r—r') x M(I‘/)} ds(r') (1)

where j = VvV—1; ks, m, and g, are the wavenumber, intrinsic
impedance, and Green’s function of the background medium,
respectively; J and M are the equivalent surface electric and
magnetic current densities, respectively. A similar electric field
integral equation can be written for the interior problem but is
omitted here for brevity.

Using the conventional MOM, the integral equations can be
discretized with basis functions for the unknown electric and
magnetic current densities

Nom

N,
J() = jufa(r), M(r) =1 mufu(r) (@

where j,, and m,, are the unknown expansion coefficients of
electric and magnetic current densities and {f,, } are vector basis
functions such as the rooftop (RWG) basis functions. In general,
we choose the same number of unknowns for the electric and
magnetic current densities such that N; = N,,, or the total
number of unknowns is N = 2NV;.

To reduce the memory and CPU time requirements of O(N?)
in an iterative MOM solution of the resultant system matrix,
here we propose an alternative method for surface integral equa-
tions on a cuboid of dimensions L, X L, x L by using the FFT
algorithm. We divide the cuboid surface with N, x N, x N,
uniform elements, each element having a size h; = L;/N; in
the i-th direction (¢ = x,y, z). The RWG basis functions asso-
ciated with the current densities in the ith direction (i = z,y, z)

£0)(r) = {%(1— li|/hi), —hi <i < h; 3)

" 0, otherwise.
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Using these basis functions in the standard MOM for (1), we
obtain an algebraic equation for the exterior problem

[A+B]JJ+CM =V “

where, with slight abuse of notations, J and M denote the
column vectors representing the unknown coefficients {3, } and
{my}, respectively; V is the source vector; and the impedance
sub-matrices A, B, C (sub-matrices of Z) are

Apn = jhomp / ds(r)Em) (r) - / ds(r' gy (r—2 )£ (¢)
Bon= UT/ s(r)V - f,(,im)(r)x/ ds(
s

1 .
Crnn= jin /db (r)fm) (x)- [ §f,(f”)(r)
4

+[a

S

g (r—2)V' - f’(lin)(r/)

s(r’)ng(r—r’) « fr(lin) (r/):l ]

If the same RWG basis functions are used for both J and M on
the cuboid surfaces, the total number of unknowns is

The total impedance matrix Z has the dimensions of N x N.
The evaluation procedure for an impedance element is iden-
tical to the conventional MOM; in particular, the self-interaction
term has been evaluated using the Duffy transformation. How-
ever, the SIM only needs to evaluate a small number of MOM
impedance matrix elements, as explained below.

Given the uniform surface elements on the cuboid, there are
some special Toeplitz structures in these impedance matrices be-
cause of the shift invariance of the Green’s function for a homo-
geneous background medium. We will just consider the struc-
ture of matrix A because matrices B and C are similar. Obvi-
ously, under the uniform mesh, the impedance matrix element
An is afunction of the distance R, ,, between the observation
and source points. In general

Rm,n = Rmx,my,m:;n“ny,n: (6)

where m = (m,, m,,m.) and n = (n,,n,,n.) are the com-
pound indices for the observation and source points, respec-
tively. Noting that the unknown current on an edge is shared by
two orthogonal surfaces, we have m;,n; = 1,2,..., N;. De-
pending on which surfaces of the cuboid the observation point
r and source point 1’ are located, under the uniform mesh, the
impedance matrix has three different structures as detailed:

Case 1: Source and Observation Points on Orthogonal Sur-
faces: In this case, the distance between the source and obser-
vation points depends on the difference in one of the indices,
either m, —n,, or my, —n,, or m, —n, depending on whether
the shared direction is z, y, or z directions. For example, if the
source elements are on the top zy plane at z = L, /2, and the
observation elements are on the zz plane at y = L, /2, matrix
element A,,,, and the distance R,, , are

Amn = A(zz,zy) (Rmzfnz,ny,m;)
R'rznT—nT,ny,my (mﬂ? - nl?)2h3’ + (NJ ny)zh?/
+ (m. — N.)*h2. (7
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In this case, only one direction (z direction) is Toeplitz for the
impedance matrix. Thus, the FFT algorithm can be applied to
one direction to speed up the matrix-vector multiplications. In
this example, the memory requirement is O(N,[N? + NZ]),
while the CPU time requirement is O(N,[N;? + NZ]log N,.).
Case 2: Source and Observation Points on the Same or Par-
allel Surfaces: For the source and observation points on the
bottom and top surfaces (xy surfaces) away from the edges

Apn = A(myzy) (Rmzfnz,my 7ny) )
R2, = (ma = na)*h + (my — ny)*hy

+ L2 (1= 6 n.)- ®)

Note that L2(1 — 8,5, . ) is zero if the source and observation
elements are on the same surface (i.e., m. = n.), and is LZ if
they are on opposite surfaces (i.e., m, # n.). Obviously, for
this case the impedance matrix is Toeplitz in two directions (x
and y directions). Thus, the FFT algorithm can be applied to
two directions to speed up matrix-vector multiplications. In this
example, the memory requirement is O(N, N, ), while the CPU
time requirement is O(N, N, log[N.. N, ]).

Case 3: Edge Effects—Source and/or Observation Points
on an Edge of a Surface: The basis and testing functions on
an edge are different from those away from edges since in
this case the currents are no longer planar; they now represent
current going from one plane to the adjacent orthogonal plane.
Therefore, the impedance matrix has to be modified from the
above impedance matrix in Case 1 and Case 2 with the Toeplitz
properties. Specifically, for the example in Case 1 above,
the edge effects will require an additional correction matrix
which is sparse and requires O(N,N? + N2N.) memory and
O(N,N? + N2N.) CPU time. Similarly, for the example in
Case 2 above, the edge effects will require an additional correc-
tion matrix which is sparse and requires O(N, N,/ 2+ N2N,)
memory and O(N,N2log N, + N2N, log N,) CPU time.

From the above dlscuss10ns the total impedance matrix can
be written in three parts

z=7"+72% + 7y )

where Z(T1 ) are the Toeplitz parts of the system matrix (the
superscript indicates 1-D and 2-D Toeplitz matrices), and Zg is
the remainder part of the system matrix which is highly sparse.
Then the matrix-vector multiplication for the Toeplitz matrices
can be obtained through FFT as

(28 + 2| x = FFT{! [FFT, (23)) FFT) (x)]
+FFT;? [FFT2 (z§?>) FFTQ(X):| (10)

where FFT; and FFT5 denote the one- and two-dimensional
FFT operations, respectively. Note that zero-padding is required
as in the CG-FFT algorithm [5].

For the special case where N, = N, = N., the above
Toeplitz matrix-vector multiplication requires O(N19)
memory and O(N'®log N) CPU time. For the remainder
matrix, the corresponding cost is O(N!'-®) memory and
O(N'3) CPU time. This computational complexity is signif-
icantly better than the MOM with O(N?) for memory and
CPU time. It is similar to the fast multipole method with the
one-level implementation and the adaptive integral method
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Fig. 1. Comparison of the bistatic RCS from SIM and MOM [10] at (a) ¢ = 0°
and (b) @ = 90° for a4 m PEC cube under a 0.3 GHz plane wave incident along
the z direction with x-polarization.
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Fig. 2. CPU time (a) and memory (b) usage in the SIM and MOM.

for surface integral equations. The advantage of the spectral
integral method is that there is no approximation involved; its
disadvantage is that it is only applicable to surface integral
equations on a cuboid.

III. NUMERICAL RESULTS

To validate the 3-D SIM we first show an example of plane
wave scattering from a perfect electric conductor (PEC) cube of
side length 4 m, a case also studied by [10]. The plane wave is
incident along the z direction with z-polarization, and the oper-
ating frequency is 0.3 GHz. Figs. 1(a) and (b) compare bistatic
radar cross section (RCS) results obtained by the SIM and the
reference results in [10] for ¢ = 0° and ¢ = 90°, respectively.
Excellent agreement has been obtained.

The computational complexity of the SIM is studied by
varying N, the number of unknowns. The CPU time and
memory costs in the SIM and MOM are shown in Fig. 2(a)
and (b), indicating that the SIM has a CPU time complexity
of O(N'3log N), and memory complexity of O(N'-3), com-
pared to the O(N?) complexity for MOM in both CPU time
and memory. In particular, we find that the CPU time for MOM
is about six times higher for N = 20 000. The SIM acceleration
factor increases rapidly for larger problems.

One important application of the spectral integral method
is its usage as an exact radiation boundary condition for the
finite-element method and other partial-differential equation
methods. Here, the SIM has been hybridized with the finite
element method so that an inhomogeneous medium can be
accurately modeled in the interior domain. Fig. 3 shows the
RCS of a PEC cube of side length 1 m coated by a dielectric
material (¢, = 2.5) of thickness 0.25 m on each face. The
bistatic RCS results from the hybrid SIM-FEM technique for
¢ = 0° and ¢ = 90° for this coated PEC cube are compared
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Fig. 3. RCS of a PEC cube of side length 1 m coated by a dielectric material of
thickness 0.25 m on each side. (a) RCS versus ¢ for ¢ = 0° and (b) ¢ = 90°.
The 0.1-GHz plane wave is incident along the z direction and has x-polarization.

in Fig. 3 with the enlarged cell technique [11], [12] (a version
of the conformal finite-difference time-domain method without
reduction in time step increment). Excellent agreement has
been observed.

IV. CONCLUSION

A 3-D spectral integral method (SIM) has been proposed as
an alternative method for surface integral equations on cuboid
objects. This method significantly reduces the computation
time and memory requirements over the traditional method of
moments. It can be used as a highly efficient radiation boundary
condition for the finite-element method. Numerical results
confirm that the method requires only O(N'-®) memory and
O(N'3log N) CPU time per iteration without making any
approximation other than numerical discretization.
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