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This paper presents a perturbation model to obtain flexural mode dispersions of noncircular
fluid-filled boreholes in homogeneous elastic formations. The perturbation model is based on
Hamilton’s principle with a modified procedure for the reference state selection in order to handle
the directional sensitivity of the flexural modes. The accuracy of the perturbation model has been
confirmed by comparison to boundary integral solutions. Numerical results confirm that for a fast
formation, even modes, and for a slow formation, odd modes are more sensitive to changes in the
borehole elongation and azimuth. Even though the focus of this work is on elliptical boreholes and
breakouts, the formulation is valid for any kind of noncircular borehole.

© 2008 Acoustical Society of America. [DOI: 10.1121/1.2931954]

PACS number(s): 43.40.Ph, 43.20.Bi, 43.20.Ks, 43.20.Mv [RAS]

I. INTRODUCTION

Borehole cross section affects the propagation of guided
modes, such as the lowest-order axisymmetric Stoneley, flex-
ural, and quadrupole modes. Breakouts, which are com-
monly encountered during underbalance drilling in the pres-
ence of large tectonic stresses, can cause complex
perturbations to the borehole cross section. The influence of
breakouts on the borehole Stoneley, flexural, and quadrupole
dispersions has been studied by using finite-difference time
domain (FDTD),1 finite element,” and boundary integral
equations (BIEs).3 Since the breakout azimuth coincides with
the minimum horizontal stress direction, the distorted bore-
hole cross section can be used to estimate the maximum
horizontal stress magnitude.‘l’7 Ellefsen ef al.® have also pre-
sented a perturbation model (PM) for analyzing modes in
noncircular boreholes in anisotropic formations. However,
computational results for noncircular boreholes are described
only for axisymmetric tube waves.

It has been indicated that the presence of a symmetric
breakout causes the flexural wave splittings in the interme-
diate frequency band similar to the case of an elliptical hole.
The two canonical dispersions in a fast formation approxi-
mately correspond to the largest and smallest diameters of
the distorted borehole cross section." When the influence of
breakouts on borehole dispersions is obtained by using
FDTD formulation, small changes in the borehole elongation
or angular spread are not distinguished very easily. However,
such small changes in the borehole cross section can be iden-
tified by monitoring perturbations in the guided mode disper-
sions from a reference circular borehole case. Hence, to un-
derstand the effect of breakouts on borehole dispersions, we
develop a PM based on Hamilton’s principle, which is more
sensitive than FDTD. A PM relates fractional changes in the
harmonic frequency to fractional changes in the model pa-
rameters for a fixed propagation constant. In addition, we

“Electronic mail: sinhal @slb.com

J. Acoust. Soc. Am. 124 (1), July 2008

0001-4966/2008/124(1)/213/5/$23.00

Pages: 213-217

analyze the effects of noncircular boreholes on flexural dis-
persions by using a BIE solver. In other words, we use two
different approaches (PM and BIE) to analyze elliptical bore-
holes and symmetric breakouts that lead to splitting of flex-
ural waves into two canonical waves which are largely sen-
sitive to the long and short diameters of the distorted
borehole.

We describe an appropriate method for the selection of
reference state for the PM to minimize the difference be-
tween perturbed and reference states. We compare results
obtained from these two different approaches for both fast
and slow formations. Both methods confirm that flexural
modes split into two distinct branches (odd and even modes)
according to radial polarization parallel to the minor and
major axes of the borehole.

The organization of this paper is as follows. In the first
section, we briefly describe the implementation of variational
principle to the case of a noncircular borehole and a selection
procedure for a reference state for even and odd modes. We
review a boundary integral formulation and present some
illustrative examples. In the second section, we present nu-
merical results obtained from these two different approaches
and compare their sensitivity to borehole elongation/
breakout azimuth to show the accuracy of the model. Finally,
some conclusions are provided.

Il. THEORY

In this work, we use two different numerical techniques
to analyze noncircular boreholes: a PM and a BIE solver.

Different ways of deriving PMs for elastodynamic prob-
lems have been reported.g_11 In this work, we follow a PM
developed by Sinha'? based on Hamilton’s principle that
conveniently predicts changes in dispersion curves due to
small alterations in either borehole cross section or any of
the six fundamental material parameters of the borehole
model (borehole fluid mass density p;, fluid compression
modulus A;, formation mass density p, formation elastic
moduli N\ and u, and borehole radius a).
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FIG. 1. Outward surface normal n; is defined on internal surface of discon-
tinuity S; which is a fluid-solid boundary.

To deal with noncircular boreholes or effects of altered
borehole diameter on modal propagation, we express pertur-
bations in the harmonic frequency Aw and wavenumber Ak,
in terms of the following integrals:12
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where the surface normal is n; and the Lagrangian energy
density in a volume V is expressed as a functional of dis-
placements associated with the wave solution uj, harmonic
frequency o, wavenumber k_, elastic moduli c;j;, mass den-
sity p, stress tensor elements 7;;=c;it;, associated strains
€;;=0.5(u; ;+u;;), and locations of interfaces or internal sur-
faces of discontinuity S;. We have used a Cartesian tensor
notation, and the convention that a comma followed by an
index j denotes differentiation with respect to x;. The sum-
mation convention for repeated tensor indices is also im-
plied. The integral on an internal surface of discontinuity S;
between V") and V@ is calculated in terms of outward sur-
face normal n;, as shown in Fig. 1. Note that the unperturbed
cross section corresponds to a circular borehole whose solu-
tion is known.

Since the displacement and traction are continuous at a
solid-solid interface, and only normal components of the dis-
placements and traction are continuous at a fluid-solid inter-
face, the resulting perturbation in the harmonic frequency w
can be calculated for a fixed wavenumber k, as follows:

1
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where £ is the radial displacement along n; and h.; denotes
change in the normal between the perturbed and unperturbed
interfaces.

For each value of the axial wavenumber k_, the unper-
turbed modal eigenfunction is first obtained. Then the inte-
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FIG. 2. Noncircular borehole examples for fixed m and changing e.

grals in Eq. (2) are performed to obtain the frequency per-
turbation Aw. These are added to the eigenfrequency w for
various values of k_ to obtain the final dispersion curves for
the perturbed case.

Phase slowness dispersions can be readily obtained by
expressing the slowness perturbation in terms of the fre-
quency perturbation at a given wavenumber. Let the unper-
turbed modal phase slowness be S, and the actual phase
slowness be S=(Sy+eAS) at a given wavenumber k.. Then

k.= wS=(w+eAw)(Sy+eAS), (3)

which yields the following relationship between the slowness
and frequency perturbations at a given wavenumber:

S
AS=-—Aw, 4)
w

where terms of order higher than € are neglected.

Closed form expressions for the integrals in the denomi-
nator are given in Appendix B of Ref. 11, and closed form
expressions are given for the ¢ integration of the flexural
wave solution in cylindrical coordinates in Sec. B of Ref. 12.

A major contribution of this work is in modeling of
modal dispersions for noncircular boreholes and an optimal
selection of reference state. We use the following equation to
define elliptical boreholes and breakouts:

Foe(0) = repe(1 + € cos™ 6), (5)

where r,.(6) is the radial distance at an angle 6, rg,. is the
radius of the circular borehole, € is the borehole elongation,
and different angular spreads can be obtained by using dif-
ferent m values. For example, m=4 provides a good approxi-
mation of an elliptical case as shown in Fig. 2 which depicts
five different geometries obtained by using €
={0.1,0.2,0.3,0.4,0.5}, m=4, and rg,.=10 cm. Figure 3
shows four different geometries obtained by using m
={4,12,24,48} and €=0.5; clearly increasing m decreases
the angular spread.

To minimize the difference between the reference and
perturbed states, we use a circular borehole with a radius 7.¢
that depends on the shape of noncircular borehole as follows:
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FIG. 3. Noncircular borehole examples for fixed € and changing m.
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where n is a parameter appropriately selected for even and
odd modes. Equation (6) clearly indicates that borehole ra-
dius in the reference state is sensitive to radial polarization
direction. Based on our simulation results, we obtain opti-
mum values for n, which are n=6 for even modes and n=2
for odd modes for a fast formation, and n=2 for even modes
and n=6 for odd modes for a slow formaiton. Figure 4 shows
the radius of the reference state for different m values for e
=0.5.

Another approach for obtaining modal dispersions of
noncircular boreholes is to solve a BIE.” In this method, the
displacement and stresses on the borehole wall are expressed
as integrals over a surface distribution of effective sources, in
the frequency-axial wave number (w-k,) domain. The un-
known sources are approximated by sums of finite basis
functions, which are then determined by enforcing boundary
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FIG. 4. The radius of the reference state vs m for even and odd modes.
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TABLE I. Formation and borehole fluid properties.

Formation Vp (km/s) Vs (km/s) p (g/cm?)
Fast 4.848 2.601 2.16
Slow 2.545 1.018 2.00
Fluid 1.5 e 1.0

conditions. The discretized equations form a homogeneous
system whose determinant vanishes when (w-k.) correspond
to a nontrivial solution for the mode of interest.

Again, we have four boundary conditions: the continuity
of normal displacement, the continuity of normal stress, the
vanishment of the radial-axial stress, and the vanishment of
the radial-hoop stress at the solid/liquid boundary. These
conditions can be written as

J [A(s) - Glu(s,s’)f[(s') —n(s) - Gflf(s,s’)Q(s’)]ds' =0,
c

()

f [A(s) - Gifs.s")E'(s") = Glyls.s")Q(s")]ds' =0, (8)

C

f S(s) - Glf(s,s’)fl(s’)ds’ =0, 9)
C

J (s) - GL(s,s")f'(s")ds' =0, (10)
C

where f and Q are the distribution of forces and sources,
respectively, over the borehole surface S and Glﬂ(s,s’)’s are
transformed Green’s tensors.” To solve above equations nu-
merically, we approximate the unknowns (f/ and Q) by sums
of triangular basis functions, remove the integrable singulari-
ties, and calculate their contribution analytically. The re-
maining smooth functions are integrated by a third-order
Gaussian quadrature.

Note that a typical “mode-search” routine requires
evaluation of the above integrals for N, X Ny, times, where N,
is the number of the frequency samples of interest and Ny, is
the number of the velocity samples to calculate the determi-
nants. By analyzing the sign changes in these determinant
values, we roughly know where the root is. A simple inter-
polation technique can provide us more accurate estimate of
the root location. Higher Ny value gives more accurate and
more smoother results but it requires more computation time.
The interpolation and low Ny might create some oscillations
in the final result.

lll. NUMERICAL RESULTS

To check the accuracy of our PM, we conduct two sets
of numerical experiments: one with a fast formation and one
with a slow formation. The properties of these formations are
presented in Table I.

For each numerical experiment, we first analyze ellipti-
cal boreholes, then borehole breakouts for even and odd
modes separately. The radius of the circular borehole in Eq.
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FIG. 5. Fast formation, even modes, fixed m, and changing e€: Dispersion
curves obtained by two different approaches: PT (top) and BIE (bottom),
Fere=10 cm, m=4, €={0.1,0.2,0.3,0.4,0.5}.

(5) is 10 cm, and then we generate five different elliptical
boreholes using €={0.1,0.2,0.3,0.4,0.5} for m=4, shown in
Fig. 2. To mimic breakouts, we use m={4,12,24,48} for €
=0.5, shown in Fig. 3. We obtain dispersion curves for each
case separately. For example, Fig. 5 shows even mode dis-
persions obtained by a perturbation theory (PT) and BIE for
five different elliptical boreholes. Clearly, the dispersion
curves obtained from the PT and BIE methods agree well
with each other.

However, sometimes it is not easy to distinguish differ-
ences between dispersions due to small changes in the bore-
hole elongation or angular spread. To make the comparison
easier, we plot relative slowness difference (AS) between the
dispersion curve of a noncircular borehole (S,.) and a corre-
sponding reference dispersion of a circular borehole (S.)
with r=rg;,» Such as

Sc _ Snc
Se

AS= (11)

Figure 6 shows sensitivity analyses for a fast formation
using two different techniques: PT (regular lines) and BIE
(dashed lines). In the top row, we plot the sensitivity of even
(a) and odd (b) modes to changes in borehole elongation,
whereas the bottom row depicts the sensitivity of even (c)
and odd (d) modes to changes in breakout azimuth. Notice
that the sensitivity of the odd mode to breakout azimuth
could not be evaluated smoothly using BIE due to the inter-
polation scheme used for the calculation of the modal disper-
sion. However, the main conclusions of these comparisons
are (i) the results obtained with PM agree well with BIE
solver results confirming the accuracy of our PM, (ii) even
modes are more sensitive than odd modes to changes in
borehole elongation/breakout azimuth for a fast formation.

Figure 7 follows the same notation and results for a slow
formation (see Table I for the formation properties). Even
though the difference between the results of PT and BIE is
more significant than the fast formation case, we can still
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FIG. 6. Fast formation: sensitivity analysis using two different approaches:
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conclude that for a slow formation odd mode is more sensi-
tive to borehole elongation/breakout azimuth than the even
mode.

We also analyze the influence of the breakout parameters
on the maximum perturbations in slowness dispersions. Fig-
ure 8 shows € versus AS,,, in linear-linear scale (top row)
and m versus AS,.,. in log-linear scale (bottom row) for the
fast and slow formations in the left and right columns, re-
spectively. We can conclude that the maximum perturbation
changes linearly with the change in the borehole elongation,
whereas there is a logarithmic relationship between m and
the maximum perturbation. Again, from Fig. 8 we can con-
clude that even modes are more sensitive to breakout
elongation/azimuth than odd modes in fast formations; in
contrast, odd modes are more sensitive to breakout
elongation/azimuth than even modes in slow formations.
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FIG. 7. Slow formation: sensitivity analysis using two different approaches:
PT (lines) and BIE (dashed lines). (a) Odd mode for m=4 and changing e,
(b) even mode for m=4 and changing €, (c) odd mode for e=0.5 and chang-
ing m, and (d) even mode for €=0.5 and changing m.
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We observe that evaluation of boundary integrals at high
frequencies becomes less accurate because of a need for an
increasingly finer discretization of the geometry. In contrast,
a PM is likely to become less accurate with an increasing
amount of perturbation from a chosen reference state. We are
able to maintain a high degree of accuracy with the PM
because of a new technique used for calculating the circular
borehole reference state for both the fast and slow forma-
tions. Consequently, we find that the PM results are more
sensitive to small perturbations in borehole shape than the
BIE results.

IV. CONCLUSION

A PM based on Hamilton principle enables us to obtain
flexural dispersions of noncircular boreholes in homoge-
neous elastic formations. We use different reference states
depending on borehole elongation and its angular spread for
even and odd modes. The accuracy of the method has been
validated with a BIE solver. It has been observed that even
modes are more sensitive to breakout elongation/azimuth
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than odd modes in fast formations; whereas odd modes are
more sensitive to breakout elongation/azimuth than even
modes in slow formations. We have observed that the maxi-
mum slowness perturbation from a reference circular bore-
hole exhibits a linear dependence on breakout elongation €
and a logarithmic dependence on breakout width parameter
m. These can be used for inversion of formation parameters
and also as indicators of the presence of breakouts. The re-
sults of sensitivity of flexural dispersions to changes in bore-
hole breakout parameters are very similar using either PM or
BIE technique. However, numerical results show that our
PM is even more sensitive than BIE solution, since in a BIE
approach, the modes are obtained via an interpolation tech-
nique. Even though we have analyzed elliptical boreholes
and breakouts, the formulation is valid for any kind of non-
circular borehole.
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