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Elastic-wave propagation in deviated wells in anisotropic formations

Bikash K. Sinha', Ergiin Simsek?, and Qing-Huo Liu®

ABSTRACT

A finite-difference time-domain (FDTD) formulation with
perfectly matched layer (PML) enables analysis of elastic-wave
propagation in a fluid-filled borehole in an arbitrarily anisotropic
formation. The FDTD formulation yields synthetic waveforms at
an array of receivers produced by a monopole or dipole source
placed on the borehole axis. Synthetic waveforms are then pro-
cessed by a modified matrix pencil algorithm to isolate both non-
dispersive and dispersive arrivals in the wavetrain. The process-
ing algorithm used in this study extracts phase slownesses of
plane waves that agree well with the corresponding phase slow-
nesses calculated for propagation along an arbitrary direction in
an anisotropic formation. The tube-wave phase velocity obtained
from the zero-frequency intercept of the Stoneley dispersion
compares well with the analytical results for deviated wellbores
in both fast and slow transversely isotropic (TI) formations.
Good agreement is also obtained between the low-frequency

asymptotes of borehole flexural dispersion and the correspond-
ing shear-wave velocities from a numerically exact solution of
Kelvin-Christoffel equations for plane-wave velocities in aniso-
tropic formations. Numerical results indicate that the Stoneley
dispersion changes by a rather small amount, whereas the dipole
flexural dispersions exhibit larger changes with wellbore devia-
tions. The influence of a sonic tool structure on borehole elastic-
waves can be described by an equivalent heavy-fluid column
placed concentrically with the borehole axis. The effect of a
heavy-fluid column on the borehole flexural mode is larger in fast
than in slow formations. However, the Stoneley dispersion at low
frequencies is affected by the presence of the tool structure in
both the fast and slow formations. The present study confirms
that the two orthogonal dipole flexural dispersions are nearly par-
allel to each other in slow formations and nonintersecting in fast
formations, even in deviated wellbores and in the presence of a
sonic tool structure described by a heavy-fluid column.

INTRODUCTION

Deviated drilling through the overburden shale is often required
to access horizontal wells in a reservoir. Large stress-induced shear
anisotropy in the borehole cross-sectional plane can be an indicator
of the potential instability for the chosen well deviation. Most of the
sedimentary rocks exhibit some degree of anisotropy. A horizontally
layered structure exhibits transversely isotropic (TI) anisotropy with
a vertical (X;-) axis of symmetry. A TI anisotropy is also referred to
as polar anisotropy with five independent anisotropic moduli. The
orientation of a deviated wellbore is defined by rotating the TI-aniso-
tropy axes by angle #about the X;-axis in the isotropic plane. The ro-
tated anisotropic constants referred to the borehole axes consists of
nine nonzero, anisotropic moduli.

Analytical solutions of elastic-waves can be obtained only in a TI
formation with its symmetry axis parallel to the borehole axis VTI
(White and Tongtaow, 1981; Chan and Tsang, 1983; Ellefsen et al.,
1991). Most of the anisotropic environments, including a TI forma-
tion with horizontal axis of symmetry (HTT), require the use of a per-
turbation technique or a numerical finite-difference time-domain
(FDTD) formulation of the linear equations of motion in anisotropic
materials (Wang and Tang, 2003). Sinha et al. (1994) proposed the
use of an equivalent isotropic reference state in a perturbation model
to account for an arbitrary state of formation anisotropy. It has also
been demonstrated that a properly selected, equivalent isotropic
state adequately accounts for most of the weakly anisotropic forma-
tions (Sinha and Zeroug, 1999; Thomsen, 1986). This choice of an
equivalent isotropic reference state minimizes the amount of pertur-
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bative correction in the modal dispersions to account for the remain-
ing formation structural anisotropy.

It is known that phase and group velocities of the three plane
waves can be different for propagation in nonprincipal directions of
anisotropic materials (Musgrave, 1970). It is also known that tran-
sient elastic-waves caused by acoustic emission, friction, and dislo-
cation motion propagate at their group velocities. Kim and Sachse
(1993) have demonstrated that a broadband point source and point
receiver can be used to measure group velocities in a TI zinc crystal.
They have experimentally confirmed that the detected pulse signal
contains a compressional arrival at the first break, followed by a zero
crossing, and a sharp trough indicating the two shear-wave arrivals
at their corresponding group velocities. Processing algorithms de-
signed to estimate moveouts of sharp discontinuities in a pulse
would yield group velocities of the three plane waves for any non-
principal propagation direction in anisotropic materials. It is there-
fore possible to estimate group velocities of the three plane waves
from the recorded waveforms in deviated boreholes in highly aniso-
tropic formations. When the processing of recorded waveforms esti-
mates moveouts of the first break, the zero crossing, or a sharp crest
or trough, we can obtain the corresponding group velocities of plane
waves in anisotropic materials (Wang et al., 2002; Hornby et al.,
2003).

In contrast, the slowness-time-coherence (STC) algorithm is de-
signed to estimate phase velocity, or slowness of a coherent arrival,
from an array of recorded waveforms (Kimball and Marzetta, 1984).
Similarly, variations of Prony’s algorithm (such as a modified matrix
pencil algorithm) are designed to isolate both dispersive and nondis-
persive arrivals in the recorded wavetrain that estimate phase veloci-
ties or slownesses as a function of frequency from an array of record-
ed waveforms (Lang et al., 1987; Ekstrom, 1995).

This paper describes an FDTD formulation of elastic-wave propa-
gation in a fluid-filled borehole in an arbitrarily anisotropic forma-
tion with 21 independent elastic moduli. Both monopole and dipole
synthetic waveforms have been obtained in deviated boreholes in
fast and slow TI formations. Processing of these waveforms with a
modified matrix pencil algorithm (Ekstrom, 1995) yields modal dis-
persions, in terms of phase slowness as a function of frequency, asso-
ciated with the Stoneley fast- and slow-dipole modes. The zero-
frequency intercept of the Stoneley dispersion yields the tube-wave
velocity, whereas low-frequency asymptotes of the fast- and slow-
dipole dispersions correspond to the SH- and qSV-polarized shear-
wave velocities. We compare phase velocities, or slownesses, ob-
tained from our processing of synthetic waveforms with those from
theoretical calculations of both the phase and group velocities of
plane waves propagating in nonprincipal directions of anisotropic
formations.

THEORY

The propagation of small-amplitude waves in homogeneous and
anisotropic solids is described by the linear equations of motion.
These equations can be written in Cartesian coordinates as

Taﬁ,a = pvﬁ,f’ (1)

TaBr = Caﬁyﬁvy,ﬁ? (2)

where p is the formation mass density, v; , is the particle accelera-
tion, and C,g,s denotes the second-order elastic constant that satis-
fies the following symmetry relations:

Ca,By(? = Cﬁayﬁ = C,Buz&'y = Cﬁyﬁa' (3)

In all of these equations, we have used the Cartesian tensor notation
and the convention that a comma followed by an index « (denotes
differentiation with respect to X,,, and a comma followed by an index
t denotes differentiation with respect to time. The Greek letters «, 3,
v, and dtake on the values 1, 2, and 3. The summation convention for
repeated tensor indices is implied also. Elastic plane waves can
propagate along a given direction in an anisotropic solid in three dis-
tinct and mutually orthogonal modes in the absence of any degenera-
cy. These waves may not be either purely longitudinal or transverse
in an arbitrarily anisotropic medium.

Most geophysical formations exhibit anisotropy that is character-
ized by TI symmetry. When referred to the principal axes of the ma-
terial, there are five independent elastic constants for a TI solid.
When the propagation direction is parallel to the TI symmetry axis,
there is one longitudinal wave and there are two degenerate trans-
verse waves that propagate with the same velocity. In contrast, when
the propagation direction is perpendicular to the TI symmetry axis,
there is one longitudinal wave and two distinct, mutually orthogo-
nal, pure transverse waves with different velocities. However, when
the propagation direction is obliquely inclined to the TI symmetry
axis, as is the case in a deviated wellbore, the anisotropic medium
supports a purely transverse (SH) and two mixed (qP and qSV)
modes of plane waves.

There are two ways of obtaining the plane-wave solution for an ar-
bitrary propagation direction in anisotropic materials: First, we can
solve equation 1 with only five independent elastic moduli in the
stiffness tensor Cyj, but with an additional number of independent
variables X; and X;. A plane-wave solution in this approach can be
expressed as

uy = A exp(ionX;/v), (4)

where A, is the normalized polarization vector, n; denotes the direc-
tion cosines of the propagation vector with respect to the fixed aniso-
tropy axes of the material, u, is the particle displacement associated
with the elastic-wave propagation with velocity v, and the subscripts
kand j take on values 1, 2, and 3. Substituting this solution into equa-
tion 1, the plane-wave velocity is then given by

pv® = AACiunn, (5)

where p is the mass density. The polarization vector A; is obtained
from the solution of a 3 X 3 matrix eigenvalue problem, which is also
known as the Kelvin-Christoffel equation (Fedorov, 1968; Mus-
grave, 1970; Norris and Sinha, 1993). We assume that the wavenor-
mal n; is parallel to the borehole axis. Second, we select the propaga-
tion direction parallel to the rotated Xj-axis rotate the stiffness tensor
Cijii to the new set of measurement axes and still work with only one
independent variable X5. However, the rotated stiffness tensor re-
ferred to the deviated wellbore axes exhibits nine nonzero, elastic
moduli that have to be accounted for in obtaining the wave solution.
We use the second approach for obtaining the solution in the case of
deviated wellbores. Figure 1 shows a schematic diagram of a vertical
wellbore parallel to the X;-axis and of a deviated wellbore with azi-
muth ¢ measured from north and with deviation # measured from
the vertical direction.

The rotated elastic stiffness tensor Cy,, is obtained from the fol-
lowing orthogonal transformation relations:
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!
Cpqrs = apiaqjarkaslcijkh (6)

where a,,; is the rotation matrix that defines the orthogonal transfor-
mation between the two sets of axes and is given by

cos ¢ sin ¢ 0
a, =|—cos@singd cosbcosdp sin6 |, (7)
sin #sin ¢ — sin fcos ¢ cos 6

where ¢ and fare the Euler angles between the rotated axes (primed)
and the reference anisotropy axes (unprimed). The angle ¢ denotes
the rotation about the X;-axis that defines the well azimuth, and 6 de-
notes the rotation about the X -axis that defines the deviation angle.

When the elastic moduli (or stiffnesses) are specialized to the case
of a Tl anisotropy, they can be expressed in terms of a 6 X 6 matrix as
given below:

Ciy Cp C3 0 0 0
C;, Cs 0 0 0
co - Cy; 0 0 0 ®)
Y Cy 0 0|
Cy O
L C66..

where Cg = (C,; — C,)/2 and we have used Voigt’s compressed
notation that combines the two indices into one using the following
transformation: (11 —1), (22—2), (33—3), (23—4), (31—15),
and (12— 6). When the TI elastic moduli are rotated by angle 6
about the X;-axis, with the rotated X;-axis parallel to the deviated
wellbore axis, the rotated elastic moduli for such a tilted TI forma-
tion take the form

Ci Cp C3 Cy 0 0
C22 C23 C24 0 0
C,= Cy Gy 00 ©)
Cu 0 0
Css Cse
- C66-

Norris and Sinha (1996) have shown that the presence of Cyy, Cay,
C,4, and Cs; (referred to the rotated axes) in a tilted TI formation
cause anisotropy-induced coupling between the quasi-Stoneley and
quasi-flexural modes. However, these moduli affecting the coupling
do not have any influence on the low-frequency limit of the quasi-
Stoneley wave velocity. The low-frequency limit of the azimuthally
symmetric Stoneley wave velocity, also referred to as the tube-wave
velocity, in an isotropic formation is given by (White, 1983)

Ve= V(1 + Kp)™'2, (10)

Table 1. Model parameters.
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where V; and K, denote the borehole-fluid compressional velocity
and bulk modulus, respectively, and u is the formation shear modu-
lus. Recently, this analytical expression for the tube-wave velocity
has been extended to include weakly anisotropic formations (Norris
and Sinha, 1996; Chi and Tang, 2004). It has been shown that the
tube-wave velocity Vrin a weakly anisotropic formation can be ex-
pressed in terms of an effective shear modulus u* given by (Norris
and Sinha, 1996)

1w = (Cpy+ Cp— 2C), + 4Cge) /8. (11)

This expression for the effective shear modulus is not restricted to
any particular material symmetry and is equally valid for a triclinic
or a TI formation. However, this result is derived for weakly aniso-
tropic formations that include most of the sedimentary rocks that we
encounter in the oil and gas industry (Thomsen, 1986). The shear
modulus Cg = u* denotes shear rigidity in the borehole cross-
sectional plane and can be substituted in equation 10 to obtain the
tube-wave velocity in a general anisotropic formation.

The finite-difference formulation of equation 1 in 3D cylindrical
coordinates applied to a fluid-filled borehole is described in detail by
Liu and Sinha (2003). So we will now proceed to describe results
from this FDTD formulation of the linear equations of motion.

COMPUTATIONAL RESULTS I: AUSTIN CHALK

The plane-wave velocities and associated polarization vectors are
obtained from the solution of Kelvin-Christotfel equations for an ar-
bitrary propagation direction from the TI symmetry axis. Table 1
contains the elastic constants and mass density of Austin Chalk used
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Figure 1. Schematic diagram of a vertical well parallel to the X;-axis
and a deviated well with azimuth ¢ and deviation 6.

P Cy Cp Ci; Cs; Cuy
Formation (kg/m?) (N/m?) (N/m?) (N/m?) (N/m?) (N/m?)
Austin Chalk 2200 22E+9 I58E+9 I2E+9 I4E+9 24E+9
Cotton Valley Shale 2640 T473E+9 1475E+9 2529E+9 5884 E+9 2205E+9
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in this study (White, 1983). The borehole fluid is assumed to have a
compressional speed of 1500 m/s and mass density of 1000 kg/m?.
All computational results are for a borehole of radius 10.16 cm
(4 inches). This formation is classified as a slow formation whose
shear slowness is larger than the borehole-fluid compressional slow-
ness. Because a TI material is invariant with respect to any rotation
about the symmetry axis (or equivalently, about the well azimuth in a
formation with a vertical TI symmetry axis), we show in Figure 2a
and b, respectively, the tube-wave velocity and gP-, qSV-, and SH-
wave velocities as a function of well deviation 6 from the TI symme-
try axis. The solid and dashed curves, respectively, denote the phase
and group velocities in Figure 2a and b. Differences between the
phase and group velocities of the qP- and SH-waves are largest for
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Figure 2. (a) The solid and dashed lines, respectively, denote the gP-
wave phase and group velocities as a function of propagation direc-
tion from the TI-symmetry axis in a slow Austin Chalk Formation.
The propagation direction coincides with the wavenormal direction
from the TI-symmetry axis. (b) The black curve denotes the tube
wave velocity as a function of propagation direction from the TI-
symmetry axis in a slow Austin chalk formation. The solid and
dashed curves, respectively, represent the phase and group velocities
of gSV- and SH-waves as a function of propagation direction from
the TI-symmetry axis in a slow Austin Chalk Formation.

propagation directions ranging from 30° to 60° from the TI symme-
try axis. In contrast, larger differences between the phase and group
velocities of the gSV-wave occur for propagation directions ranging
from 10° to 30° and from 50° to 80° from the symmetry axis. Notice
that the tube-wave velocity in Figure 2b changes by only about 3%
over the entire range of wellbore deviations, whereas shear- and
compressional-wave velocities change by up to about 12%-25%, re-
spectively.

Elastic moduli versus well deviation

The bottom inset in Figure 1 shows the cross-sectional plane
X1-X5 of a deviated wellbore with azimuth ¢ and deviation 6. A di-
pole source oriented along the X{-direction generates borehole flex-
ural waves propagating along the Xj-axis corresponding to the SH-
wave whose velocity is largely dependent on the rotated shear modu-
lus Css in the X{-X4 plane.

Variations of plane-wave velocities follow the same trend as the
dominant elastic moduli that appear as the diagonal elements in the
elastic stiffness matrix. Figure 3a and b, respectively, displays varia-
tions in the elastic moduli Cy, and Cs; and in Cy, Css, and Cy as a
function of wellbore deviations. The compressional velocity along
the deviated wellbore is largely dependent on the variation of Cj;,
whereas the SH-wave velocity is dependent on the variation of Cs;s
with the deviation angle. The qSV-wave and tube-wave velocities
are dependent on certain combinations of elastic moduli. However,
the gSV-wave and tube-wave velocities follow the trend of the elas-
tic moduli Cy, and Cgg, respectively, as shown in Figure 3b.

Norris and Sinha (1995, 1996) have shown that the Stoneley and
dipole flexural modes are coupled when the elastic moduli Cy4, Cy4,
Cs4, and Csg, referred to the deviated wellbore axes, are significantly
large. This coupling can give rise to processing challenges in situa-
tions when the borehole Stoneley and flexural dispersions are close.

Austin Chalk: Wellbore deviation 0"

When the wellbore deviation is 0°, elastic-waves propagate paral-
lel to the TI-symmetry axis, and the phase and group velocities coin-
cide. Figure 4a shows synthetic waveforms at an array of receivers
produced by a monopole source placed on the borehole axis. These
waveforms are processed by a modified matrix pencil algorithm to
isolate both dispersive and nondispersive arrivals in the wavetrain
(Langetal., 1987; Ekstrom, 1995). Figure 4b displays the monopole
compressional slowness and Stoneley dispersion in a fluid-filled
wellbore in the absence of any tool structure. The dashed blue lines
denote analytical results for the tube-wave S and the qP-wave phase
slownesses. The low-frequency Stoneley dispersion agrees very
well with the analytical result for the tube-wave phase slowness Sy
for this configuration.

Figure 5a displays synthetic waveforms at an array of receivers
produced by a dipole source placed on the borehole axis and oriented
along the X3-axis in the deviated borehole cross-sectional plane. The
low-frequency asymptote of this borehole flexural wave coincides
with the gSV-wave velocity. The qSV-wave polarization vector is in
the X, — Xj plane, and the qSV-wave velocity is largely dependent
on the rotated shear modulus Cy, in the X5 — X4 plane. There are two
packets of coherent arrivals. The first is the dipole compressional
mode, and the second is the borehole flexural mode. Figure 5b shows
the flexural and dipole compressional dispersions obtained after pro-
cessing the waveforms shown in Figure 5a. The dashed blue lines de-
note analytical results for the SH- and qP-wave slownesses. The
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low-frequency asymptote of flexural dispersion agrees very well
with the analytical solution of the qSV-wave phase slowness ob-
tained from the solution of the Kelvin-Christoffel equations.

Austin Chalk: Wellbore deviation 60°

Next, we analyze our results from a wellbore with a deviation of
60° from the vertical; the propagation direction of elastic-waves in
such a wellbore is 60° from the TI symmetry axis. We show in Figure
6a synthetic waveforms at an array of receivers produced by a dipole
source placed on the borehole axis and oriented parallel to the qSV-
wave polarization direction. The first coherent arrival is a dipole
compressional mode, and the second one is the lowest-order bore-
hole flexural mode. Figure 6b displays the flexural and dipole com-
pressional dispersions obtained after processing the waveforms
shown in Figure 6a. The dashed blue lines denote analytical results
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Figure 3. (a) Elastic moduli C», and Cs; (in pascals) as a function of
propagation direction from the TI-symmetry axis in a slow Austin
Chalk Formation. The modulus C,, = 2.2 E + 10 Pa, is a constant
for rotation about the X;-axis. (b) Elastic moduli C,4, Css, and Cgg (in
pascals) as a function of propagation direction from the TI symmetry
axis in a slow Austin Chalk Formation.

for the qSV- and qP-wave phase slownesses for a wavenormal coin-
cident with the well deviation angle. The solid blue line indicates the
corresponding group slowness of the qP-wave. The group slowness
(327.6 ws/m) is slightly smaller than the phase slowness (333.5
us/m) for this deviated wellbore. Notice that the extracted qP-wave
slowness coincides with the calculated phase slowness. The low-fre-
quency asymptote of flexural dispersion agrees very well with the
analytical solution of the qSV-wave slowness for this wellbore devi-
ation of 60°.

Figure 7a shows synthetic waveforms at an array of receivers pro-
duced by a dipole source placed on the borehole axis and oriented
parallel to the SH-wave polarization direction. Because the wave
propagation is 60° from the TI-symmetry axis, the qSV- and SH-
waves travel with different velocities. We display in Figure 7b, the
borehole flexural and dipole compressional slownesses, as a func-
tion of frequency, obtained from the processing of the synthetic
waveforms in Figure 7a. The dashed blue lines denote analytical re-
sults for the SH- and qP-wave phase slownesses. Again, the low-fre-
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Figure 4. (a) Synthetic waveforms produced by a monopole source
placed on the borehole axis parallel to the TI symmetry axis in a slow
Austin Chalk Formation in the absence of any tool structure. (b)
Monopole compressional slowness and Stoneley dispersion ob-
tained from synthetic waveforms shown in Figure 4a. Results are for
propagation parallel to the TI symmetry axis in a slow Austin Chalk
Formation.
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quency asymptote of the flexural dispersion agrees very well with
the SH-wave slowness obtained from the solution of the Kelvin-
Christoffel equations for this wellbore deviation of 60°.

Sonic tool effects on borehole dispersions
in slow formations

Next, we describe the influence of a sonic tool structure on elastic-
waves in a fluid-filled borehole in anisotropic formations (Pistre et
al., 2005). The influence of this sonic tool structure on borehole dis-
persions is described by a heavy-fluid column placed concentrically
with the borehole axis. To study the influence of the tool structure on
the monopole Stoneley mode, we introduce a heavy-fluid column of
the same diameter as the tool structure and its mass density as the
mean density of the tool. The compressional velocity of the heavy
fluid is estimated from calibrating this model parameter to properly
account for the tool bias as a function of the wellbore diameter and
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Figure 5. (a) Synthetic waveforms produced by a dipole source
placed on the borehole axis parallel to the TI symmetry axis in a slow
Austin Chalk Formation in the absence of any tool structure. Dipole
orientation is parallel to the SH-wave polarization. (b) Dipole com-
pressional slowness and borehole flexural dispersion obtained from
synthetic waveforms shown in Figure 5a. Results are for propaga-
tion parallel to the TI symmetry axis in a slow Austin Chalk Forma-
tion.

formation compressional velocity. However, the influence of the
tool structure on the borehole flexural mode is adequately accounted
for in terms of a fixed, heavy-fluid compressional velocity and the
same heavy-fluid column diameter and mass density as that for the
monopole Stoneley mode. The heavy-fluid column is introduced as
an additional cylindrical member in the FDTD formulation with ap-
propriate parameters for the monopole and dipole waves.

Austin Chalk: Wellbore deviation 30°

Figure 8a—c, respectively, compares the monopole Stoneley and
dipole compressional, and flexural dispersions in the absence (red
circles) and in presence (blue crosses) of a heavy-fluid column with
calibrated parameters to account for the sonic tool structure bias on
sonic data. The dashed blue lines in Figure 8a—c denote analytical re-
sults for the tube-wave, qP-, qSV-, and SH-wave phase slownesses.
These results are for elastic-wave propagation in a deviated wellbore
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Figure 6. (a) Synthetic waveforms produced by a dipole source
placed on the borehole axis in a 60° deviated wellbore in a slow Aus-
tin Chalk Formation. Dipole orientation is parallel to the qSV-wave
polarization. (b) Dipole compressional and borehole flexural disper-
sion obtained from synthetic waveforms shown in Figure 6a. Results
are for propagation in a 60° deviated wellbore in a slow Austin Chalk
Formation.
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(deviation = 30°). First, we notice that the nondispersive part of the
dipole compressional wave is not affected by the tool presence. Sec-
ond, the borehole flexural dispersion also is not affected by the tool
presence in this slow Austin chalk formation. However, we observe
that the monopole Stoneley dispersion is affected by the tool pres-
ence at low frequencies and not affected at high frequencies.

Next, we provide a composite plot of monopole and dipole disper-
sions obtained in a 30° deviated borehole using a monopole and two
orthogonal dipole transmitters. Figure 9a shows borehole disper-
sions in the absence of any tool structure. The solid and dashed lines,
respectively, denote the phase and group slownesses for the qP-,
qSV-, and SH-waves. Clearly, low-frequency asymptotes of flexural
dispersions coincide with the corresponding phase slownesses of
shear waves. Similarly, the extracted qP-wave slowness agrees with
the computed phase slowness using the Kelvin-Christoffel equa-
tions. Notice that the fast and slow dipole dispersions corresponding
to the SH- and qSV-waves are nearly parallel to each other as pre-
dicted by a previously reported perturbation analysis (Sinha et al.,
1994). Figure 9b displays the monopole Stoneley and dipole flexural
dispersions in the presence of an equivalent heavy-fluid column to
describe the tool bias on borehole dispersions. The notation is the
same as in Figure 9a. Even though there is a discernible difference in
the Stoneley dispersion shown in Figure 9a in the absence of any tool
structure to that shown in Figure 9b in the presence of an equivalent
heavy-fluid column, the fast and slow dipole dispersions are nearly
parallel. Consequently, nonintersecting dipole dispersions are indi-
cators of formation intrinsic anisotropy, whereas crossing dipole dis-
persions are indicators of stress-induced anisotropy dominating the
sonic data (Sinha and Kostek, 1996). Interestingly, the dipole com-
pressional slowness is not affected by the presence of this tool struc-
ture. Both the inline and crossline dipole transmitters produce com-
pressional head waves with essentially the same compressional
slowness shown in Figure 9a and b.

COMPUTATIONAL RESULTS II:
COTTON VALLEY SHALE

Generally, borehole waves in fast formations propagate with larg-
er amplitude over a wider bandwidth than those in slow formations.
Unlike slow formations, the monopole Stoneley mode is a normal
mode at all frequencies and is strongly excited in fast formations.
Sonic tool effects described in terms of a heavy-fluid column with
calibrated parameters are also larger in fast formations.

Next, we calculate the plane-wave velocities and associated po-
larization vectors from the solution of the Kelvin-Christoffel equa-
tions for an arbitrary propagation direction from the TI symmetry
axis. Table 1 contains the elastic constants and mass density of Cot-
ton Valley Shale used in this study (Thomsen, 1986). The shear slow-
ness of a fast formation is smaller than the borehole-liquid compres-
sional slowness. Because a TI material is invariant with respect to
any rotation about the symmetry axis (or equivalently, about the well
azimuth in a formation with a vertical TI symmetry axis), we show in
Figure 10a—c, respectively, the qP-, tube-wave velocity, and qSV-
and SH-wave velocities as a function of well deviation 6 from the TI
symmetry axis. Notice that the tube-wave velocity changes by only
about 1.5% over the entire range of wellbore deviations, whereas
shear- and compressional-wave velocities change by up to about
10% to 15%, respectively.

Elastic moduli versus well deviation

We show in Figure 11a and b, respectively, variations in the elastic
moduli C», and Cs3, and Cy, Css, and Cy as a function of wellbore
deviation in a fast Cotton Valley Shale Formation. As is the case with
a slow Austin Chalk Formation, the compressional velocity along
the deviated wellbore is largely dependent on the variation of C3; and
increases with increasing deviation angle. Similarly, the SH-wave
velocity is dependent on the variation of Css with the deviation an-
gle, and it also increases with increasing deviation angle. Even
though the qSV-wave velocity is dependent on certain combinations
of elastic moduli, the variation of qSV-wave phase velocity with the
deviation angle follows the same trend as that of the dominant elastic
modulus C,, with the wellbore deviation. Likewise, the tube-wave
velocity is also dependent on a combination of elastic moduli. How-
ever, the variation of tube-wave phase velocity as a function of well-
bore deviation shown in Figure 10b also is remarkably similar to the
variation of the modulus Cg with the propagation direction.
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Figure 7. (a) Synthetic waveforms produced by a dipole source in a
60° deviated wellbore in a slow Austin Chalk Formation in the ab-
sence of any tool structure. Dipole orientation is parallel to the SH-
wave polarization. (b) Dipole compressional and borehole flexural
dispersions obtained from synthetic waveforms shown in Figure 7a.
Results are for propagation in a 60° deviated wellbore in a slow Aus-
tin Chalk Formation.



D198 Sinhaetal.

a)

1200 T T T T T !
w= Empty hole |: : : : : i
1100( === HF model |- : ; : :

1000F i

ot B N AR .
800 ......... Peeeees
FOO o b e

%) NS S S W S SN SR S S

Slowness (us/m)

500- ......... fronstaivia ....... ......... -
400}

300

2000 ; i H ‘.1 é é i i
Frequency (kHz
b) quency (kHz)
1200

m Empty hole '
1100 === HF model |

1000

T T T T T

©
[=,
O

800 : : :
700 .......... : AAAAAAAAAA . .......... .. .......... ,‘.. AAAAAAAAA
600

Slowness (us/m)

500
400F
300

L

000 1 2 3 4 5 6
Frequency (kHz)

=== Empty hole H : H
1200 _HF model x( .......... .A, .......... ‘ ......... -

Fle;(ural
1000 i

800

Slowness (us/m)

) - SN W TOWR: W - S . S

400} -

200

4 5 6
Frequency (kHz)

Figure 8. (a) Comparison of the monopole Stoneley dispersion in a
fluid-filled borehole in the absence (red circles) and in the presence
of an equivalent heavy-fluid (HF) column to describe the tool bias on
measured data (solid blue curve). Wellbore deviation is 30°. (b)
Comparison of the dipole compressional and qSV-flexural disper-
sions in a fluid-filled borehole in the absence (red curve) and in the
presence of an equivalent heavy-fluid column to describe the tool
bias on measured data (blue curve). Wellbore deviation is 30°. (c)
Comparison of the dipole compressional and SH flexural disper-
sions in a fluid-filled borehole in the absence (red curve) and in the
presence of an equivalent heavy-fluid column to describe the tool
bias on measured data (blue crosses). Wellbore deviation is 30°.
Dashed lines denote phase slownesses for the SH- and qP-waves.

Norris and Sinha (1996) have shown that the Stoneley and dipole
flexural modes are coupled for propagation in nonprincipal direc-
tions in a TI formation. The elastic moduli C,4, C4, C34, and Csg be-
come nonzero with respect to the measurement axes, as is the case in
deviated wellbores.

Sonic tool effects on borehole dispersions
in fast formations

Generally, the influence of a sonic tool structure on elastic-waves
in a fluid-filled borehole is larger in faster formations and in smaller
borehole diameters than in slower formations and larger boreholes.
Although the low-frequency asymptotes of flexural dispersions are
not affected by the tool presence, the Stoneley dispersion is affected
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Figure 9. (a) Monopole Stoneley and dipole dispersions and dipole
compressional slowness in a 30° deviated borehole in the absence of
any tool structure. The fast and slow shear waves correspond to the
SH-and qSV-waves propagating along the borehole. The solid and
dashed lines, respectively, denote the phase and group slownesses
for the qP-, qSV-, and SH-waves.(b) Monopole Stoneley and dipole
flexural dispersions and dipole compressional slowness in a 30° de-
viated borehole in the presence of a heavy-fluid column to account
for tool effects on borehole dispersions. The solid and dashed lines,
respectively, denote the phase and group slownesses for the qSV-
and SH- waves.
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Figure 10. (a) The solid and dashed lines, respectively, denote the qP
(compressional) phase and group velocities as a function of propaga-
tion direction from the TI symmetry axis in a fast Cotton Valley
Shale Formation. The propagation direction coincides with the
wavenormal direction from the TI symmetry axis. (b) Tube wave
phase velocity as a function of propagation direction from the TI
symmetry axis in a fast Cotton Valley Shale Formation. (c) The solid
and dashed lines, respectively, denote the phase and group velocities
of the qSV- and SH- waves as a function of propagation direction
from the TI symmetry axis in a fast Cotton Valley Shale Formation.
The propagation direction coincides with the wavenormal direction
from the TI symmetry axis.

by the presence of any tool structure at all frequencies. To study the
influence of the tool structure, we use an equivalent heavy-fluid col-
umn placed concentrically with the borehole axis with the same
heavy-fluid parameters as in the case of slow formations. As before,
the compressional velocity of the heavy fluid is selected by calibrat-
ing this model parameter to properly account for the tool bias on the
borehole Stoneley dispersion as a function of the wellbore diameter
and formation compressional velocity.

Cotton Valley Shale: Wellbore deviation 90°

When the wellbore deviation is 90°, elastic-waves propagate per-
pendicular to the TI symmetry axis. Figure 12a shows synthetic
waveforms at an array of receivers produced by a monopole source
placed on the borehole axis in the absence of any tool structure.
These waveforms are processed by a modified matrix pencil algo-
rithm to isolate both dispersive and nondispersive arrivals in the
wavetrain.

Figure 12b compares the monopole Stoneley and pseudo-
Rayleigh dispersions in the absence (red circles) and in the presence
(blue crosses) of a heavy-fluid column with calibrated parameters to
account for the tool structure bias on sonic data. These results are for
elastic-wave propagation perpendicular to the TI symmetry axis
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(wellbore deviation 90°) in a fast Cotton Valley Shale Formation.
Because this is one of the principal propagation directions, both the
phase and group slownesses of all plane waves coincide. We observe
that the monopole Stoneley dispersion is significantly affected by
the tool presence at all frequencies in fast formations. However, the
nondispersive part of the pseudo-Rayleigh mode is not affected
much by the tool presence as shown in Figure 12b. The low-frequen-
cy Stoneley dispersion or the tube-wave phase slowness agrees very
well with the analytical result for this propagation direction in the
absence of any tool structure. The low-frequency asymptote of the
pseudo-Rayleigh mode also agrees well with the SH-wave phase
slowness for this propagation direction.

Figure 13a displays synthetic waveforms at an array of receivers
produced by a dipole source placed on the borehole axis perpendicu-
lar to the TI symmetry axis and oriented along the SH-wave polar-
ization in the absence of any tool structure. There are two packets of

3.2825

2.9900

26975

2.4050

Receiver distance (m)

21125

1.8200 e M

2 .
b) Time (ms)
Tt 1 7 & o 1

Stofneley

700k -

e T S W W W W W,

Slowness (us/m)

N (S P D W W T S S

300

o Empty hole | SH
*  HF model |: ; :
1 2 3 4 5
Frequency (kHz)

8 9

20('.70

Figure 12. (a) Synthetic waveforms produced by a monopole source
on the borehole axis perpendicular to the TI symmetry axis in a fast
Cotton Valley Shale Formation in the absence of any tool structure.
(b) Monopole pseudo-Rayleigh and Stoneley dispersions obtained
from synthetic waveforms in the absence (red circles) and in the
presence (blue crosses) of a heavy-fluid column to account for the
tool effects. Results are for propagation perpendicular to the TI sym-
metry axis in a fast Cotton Valley Shale Formation.

coherent arrivals. The first is the direct shear head wave followed by
a dispersive borehole flexural mode. Figure 13b compares the low-
est-order flexural mode and a higher-order flexural mode that merg-
es with the shear head wave slowness at low frequencies in the ab-
sence (red circles) and in the presence (blue crosses) of a heavy-fluid
column with calibrated parameters to account for the tool structure
bias on sonic data. These results are for elastic-wave propagation
perpendicular to the TI symmetry axis (wellbore deviation 90°) in a
fast Cotton Valley Shale Formation. We observe that the borehole
flexural dispersion is significantly affected by the tool presence in
this fast Cotton Valley Shale Formation except at very low frequen-
cies as shown in Figure 13b. However, the nondispersive SH head
wave in this fast formation is not affected by the tool presence as is
evident from Figure 13b. The low-frequency asymptote of flexural
dispersion agrees very well with the analytical solution for the SH-
wave phase slowness obtained from the solution of the Kelvin-
Christoffel equations.
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Figure 13. (a) Synthetic waveforms produced by a dipole source
placed on the borehole axis perpendicular to the TI symmetry axis in
afast Cotton Valley Shale Formation in the absence of any tool struc-
ture. Dipole orientation is parallel to the SH-wave polarization. (b)
Dipole shear head wave and borehole flexural dispersion obtained
from synthetic waveforms in the absence (red circles) and in the
presence (blue crosses) of a heavy-fluid column to account for the
tool effects. Results are for propagation perpendicular to the TI sym-
metry axis in a fast Cotton Valley Shale Formation.
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Cotton Valley Shale: Wellbore deviation 30°

Next we analyze our results from a wellbore with a deviation of
30° from the TI symmetry axis. Figure 14a shows synthetic wave-
forms at an array of receivers produced by a monopole source placed
on the borehole axis in the absence of any tool structure. These
waveforms are also processed by a modified matrix pencil algorithm
to isolate both dispersive and nondispersive arrivals in the wave-
train.

Figure 14b compares the monopole Stoneley and pseudo-
Rayleigh dispersions in the absence (red circles) and in the presence
(blue crosses) of a heavy-fluid column with calibrated parameters to
account for a sonic tool structure bias on sonic data. These results are
for elastic-wave propagation 30° from the TI symmetry axis (well-
bore deviation 30°) in a fast Cotton Valley Shale Formation. The
dashed blue line (S7) denotes the tube-wave phase slowness for this
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Figure 14. (a) Synthetic waveforms produced by a monopole source
in a wellbore deviated 30° from the TI symmetry axis in a fast Cotton
Valley Shale Formation in the absence of any tool structure. (b)
Comparison of the monopole Stoneley and pseudo-Rayleigh disper-
sions in a fluid-filled borehole in the absence (red circles) and in the
presence (blue crosses) of an equivalent heavy-fluid column to de-
scribe the tool bias on measured data. Wellbore deviation is 30°. The
solid and dashed blue lines, respectively, denote the phase and group
slownesses for the SH-wave propagating at 30° from the TI symme-
try axis.

propagation direction. Notice that the monopole Stoneley dispersion
is significantly affected by the tool presence at all frequencies in de-
viated wellbores. However, the nondispersive part of the pseudo-
Rayleigh mode is not affected much by the tool presence, as shown
in Figure 14b. The solid and dashed blue lines (SH) represent the
phase and group slownesses for the SH-wave. Notice that the group
slowness for this propagation direction is larger than the phase slow-
ness as shown in Figure 10c. The low-frequency Stoneley dispersion
agrees very well with the analytical result for the tube-wave slow-
ness for this configuration. The low-frequency pseudo-Rayleigh dis-
persion coincides with the analytical result for the SH-wave phase
slowness.

Figure 15a displays synthetic waveforms at an array of receivers
produced by a dipole source placed on the borehole axis and oriented
parallel to the SH-wave polarization direction in the absence of any
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Figure 15. (a) Synthetic waveforms produced by a dipole source in a
30° deviated wellbore in a fast Cotton Valley Shale Formation in the
absence of any tool structure. Dipole orientation is parallel to the
SH-wave polarization. (b) Comparison of the SH-wave phase slow-
ness and SH flexural dispersion in a fluid-filled borehole in the ab-
sence (red circles) and in the presence (blue crosses) of an equivalent
heavy-fluid column to describe the tool bias on measured data. Well-
bore deviation is 30°. The solid and dashed blue lines, respectively,
denote the phase and group slownesses for the SH-wave propagating
at 30° from the TT symmetry axis.
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tool structure. There are two packets of coherent arrivals. The firstis
a nondispersive SH head wave followed by a dispersive borehole
flexural mode.

Figure 15b compares the lowest-order flexural dispersion and a
higher-order flexural mode whose low-frequency slowness coin-
cides with the SH-wave phase slowness in the absence (red circles)
and in the presence (blue crosses) of a heavy-fluid column with cali-
brated parameters to account for a sonic tool structure bias on sonic
data. The solid and dashed blue lines (SH) represent analytical re-
sults for the phase and group slownesses for the SH-wave propagat-
ing at 30° from the TI symmetry axis (wellbore deviation 30°) in a
fast Cotton Valley Shale Formation. Notice that the borehole flexural
dispersion is significantly affected by the tool presence in this fast
Cotton Valley Shale Formation except at very low frequencies as
shown in Figure 15b. However, the nondispersive SH head wave
slowness is not affected by the tool presence.

CONCLUSIONS

We have used a 3D cylindrical FDTD with PML formulation of
the linear equations of motion in arbitrarily anisotropic materials to
study the influence of a sonic tool structure on elastic-wave propaga-
tion in a fluid-filled borehole in both TI and tilted TI formations. A
tilted TI formation refers to a wellbore with dipping beds or to a devi-
ated wellbore with its axis obliquely inclined with respect to the TI
symmetry axis. Phase and group velocities of the three plane waves
can be different for propagation along deviated wellbores in aniso-
tropic formations. Processing of synthetic waveforms in deviated
wellbores using a conventional STC algorithm or a modified matrix
pencil algorithm yields phase slownesses of the compressional and
shear waves propagating in the nonprincipal directions of anisotrop-
ic formations. This has been confirmed by comparing the processed
results with theoretical results for the phase and group slownesses
(or velocities) for plane waves propagating along arbitrary direc-
tions in anisotropic formations. However, it is also possible to ex-
tract group slownesses or velocities of plane waves by monitoring
moveouts of sharp discontinuities or crests of the propagating pulse.
Therefore, we conclude that different processing algorithms can be
used to extract either phase or group velocities from an array of re-
corded waveforms excited by a broadband pulse.

Even though an FDTD formulation is expected to yield all coher-
ent arrivals supported by the surrounding formation, we observe that
weaker arrivals are not easily detected by processing the synthetic
waveforms using the modified matrix pencil algorithm. In particular,
we did not see any evidence of anisotropy-induced coupling be-
tween the Stoneley and dipole modes in deviated wellbores in either
the fast or slow TI formations. Earlier calculations of the degree of
anisotropy-induced coupling to the Stoneley mode produced by a di-
pole source in a 60° deviated wellbore in Austin Chalk indicate that
the magnitude of Stoneley amplitude is —20 to —30 dB below the
flexural amplitude. Signals that are so much smaller than the peak
amplitude are not detected with the FDTD formulation together with
the processing algorithm used in this study.

Computational results for the Stoneley dispersion show negligi-
bly small changes consistent with small changes in the tube-wave
velocity for different wellbore deviations. In contrast, cross-dipole
dispersions exhibit relatively larger changes consistent with the
qSV-and SH-wave velocities as a function of wellbore deviation.

The fast- and slow-dipole dispersions are nearly parallel in a slow
TI formation for different well deviations. These results are consis-

tent with predictions from a previously reported perturbation analy-
sis results.

The influence of this sonic tool structure is negligibly small on
both the monopole pseudo-Rayleigh mode in fast formations and on
dipole compressional slownesses in slow formations. It is important
to note that the fast and slow dipole dispersions remain nearly paral-
lel even in the presence of a heavy-fluid column as an equivalent
model for the sonic tool structure at hand.

ACKNOWLEDGMENTS

The authors thank the associate editor Vladimir Grechka and
anonymous reviewers for many constructive comments and sugges-
tions.

REFERENCES

Chan, A. K., and T. Tsang, 1983, Propagation of acoustic waves in a fluid-
filled borehole surrounded by a concentrically layered transversely isotro-
pic formation: Journal of the Acoustical Society of America, 74, 1605—
1616.

Chi, S., and X. M. Tang, 2004, Stoneley wave speed modeling in general an-
isotropic formations: 74th Annual International Meeting, SEG, Expanded
Abstracts, 338-341.

Ekstrom, M. E., 1995, Dispersion estimation from borehole acoustic arrays
using a modified matrix pencil algorithm: Proceedings of the 29th Asilo-
mar Conference on Signals, Systems and Computers, IEEE Computer So-
ciety, 449-453.

Ellefsen, K. J., C. H. Cheng, and M. N. Toksoz, 1991, Effects of anisotropy
upon the normal modes in a borehole: Journal of the Acoustical Society of
America, 89,2597-2616.

Fedorov, F. 1., 1968, Theory of elastic-waves in crystals: Plenum Press.

Hornby, B., X. Wang, and K. Dodds, 2003, Do we measure phase or group
velocity with dipole sonic tools?: 65th Annual Meeting, EAGE, Paper
F29.

Kim, K. Y., and W. Sachse, 1993, Determination of all elastic constants of
transversely isotropic media with a cusp around the symmetric axis by use
of elastic pulses propagating in two principal directions: Physical Review
B, 47, 10993-11000.

Kimball, C. V., and T. M. Marzetta, 1984, Semblance processing of borehole
acoustic array data: Geophysics, 49, 264-281.

Lang, S. W., A. L. Kurkjian, J. H. McClellan, C. F. Morris, and T. W. Parks,
1987, Estimating slowness dispersion from arrays of sonic logging wave-
forms: Geophysics, 52, 530-544.

Liu, Q. H., and B. K. Sinha, 2003, A 3D cylindrical PML/FDTD method for
elastic-waves in fluid-filled pressurized boreholes in triaxially stressed
formations: Geophysics, 68, 1731-1743.

Musgrave, M. J. P., 1970, Crystal acoustics: Holden-Day.

Norris, A. N., and B. K. Sinha, 1993, Weak elastic anisotropy and the tube
wave: Geophysics, 58, 1091.

, 1995, The speed of a wave along a fluid/solid interface in the presence

of anisotropy and prestress: Journal of the Acoustical Society of America,

98, 1147-1154.

, 1996, Anisotropy-induced coupling in borehole acoustic modes:
Journal of Geophysical Research, 101 (B7), 15945-15952.

Pistre, V., T. Kinoshita, T. Endo, K. Schilling, J. Pabon, B. Sinha, T. Plona, T.
Tkegami, and D. Johnson, 2005, A modular wireline sonic tool for mea-
surements of 3D (azimuthal, radial, and axial) formation acoustic proper-
ties: Presented at the 46th Annual Logging Symposium, Society of Profes-
sional Well Logging Analysts.

Sinha, B. K., and S. Kostek, 1996, Stress-induced azimuthal anisotropy in
borehole flexural waves: Geophysics, 61, 1899-1907.

Sinha, B. K., A.N. Norris, and S. K. Chang, 1994, Borehole flexural modes in
anisotropic formations: Geophysics, 59, 1037-1052.

Sinha, B. K., and S. Zeroug, 1999, Geophysical prospecting using sonics and
ultrasonics, in John G. Webster, ed., Wiley Encyclopedia of Electrical and
Electronics Engineering: Wiley Interscience, 340-365.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954—1966.

Wang, X., B. Hornby, and K. Dodds, 2002, Dipole sonic response in deviated
boreholes penetrating an anisotropic formation: 72nd Annual Meeting,
SEG, Expanded Abstracts, 360-363.

Wang, X., and X. Tang, 2003, Finite-difference modeling of elastic-wave
propagation: A non-splitting perfectly matched layer approach: Geophys-
ics, 68, 1749-1755.

White, J. E., 1983, Underground Sound: Elsevier Science Publ. Co., Inc.

White, J. E., and C. Tongtaow, 1981, Cylindrical waves in transversely
isotropic media: Journal of the Acoustical Society of America, 70, 1147—
1155.




