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lastic-wave propagation in deviated wells in anisotropic formations
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ABSTRACT

A finite-difference time-domain �FDTD� formulation with
perfectly matched layer �PML� enables analysis of elastic-wave
propagation in a fluid-filled borehole in an arbitrarily anisotropic
formation. The FDTD formulation yields synthetic waveforms at
an array of receivers produced by a monopole or dipole source
placed on the borehole axis. Synthetic waveforms are then pro-
cessed by a modified matrix pencil algorithm to isolate both non-
dispersive and dispersive arrivals in the wavetrain. The process-
ing algorithm used in this study extracts phase slownesses of
plane waves that agree well with the corresponding phase slow-
nesses calculated for propagation along an arbitrary direction in
an anisotropic formation. The tube-wave phase velocity obtained
from the zero-frequency intercept of the Stoneley dispersion
compares well with the analytical results for deviated wellbores
in both fast and slow transversely isotropic �TI� formations.

Good agreement is also obtained between the low-frequency
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symptotes of borehole flexural dispersion and the correspond-
ng shear-wave velocities from a numerically exact solution of
elvin-Christoffel equations for plane-wave velocities in aniso-

ropic formations. Numerical results indicate that the Stoneley
ispersion changes by a rather small amount, whereas the dipole
exural dispersions exhibit larger changes with wellbore devia-

ions. The influence of a sonic tool structure on borehole elastic-
aves can be described by an equivalent heavy-fluid column
laced concentrically with the borehole axis. The effect of a
eavy-fluid column on the borehole flexural mode is larger in fast
han in slow formations. However, the Stoneley dispersion at low
requencies is affected by the presence of the tool structure in
oth the fast and slow formations. The present study confirms
hat the two orthogonal dipole flexural dispersions are nearly par-
llel to each other in slow formations and nonintersecting in fast
ormations, even in deviated wellbores and in the presence of a
onic tool structure described by a heavy-fluid column.
INTRODUCTION

Deviated drilling through the overburden shale is often required
o access horizontal wells in a reservoir. Large stress-induced shear
nisotropy in the borehole cross-sectional plane can be an indicator
f the potential instability for the chosen well deviation. Most of the
edimentary rocks exhibit some degree of anisotropy.Ahorizontally
ayered structure exhibits transversely isotropic �TI� anisotropy with
vertical �X3-� axis of symmetry. A TI anisotropy is also referred to
s polar anisotropy with five independent anisotropic moduli. The
rientation of a deviated wellbore is defined by rotating the TI-aniso-
ropy axes by angle � about the X1-axis in the isotropic plane. The ro-
ated anisotropic constants referred to the borehole axes consists of
ine nonzero, anisotropic moduli.

Manuscript received by the Editor January 25, 2006; revised manuscript re
1Schlumberger-Doll Research, 36 Old Quarry Road, Ridgefield, Connectic
2Duke University, Department of Electrical and Computer Engineering, D
2006 Society of Exploration Geophysicists.All rights reserved.
Analytical solutions of elastic-waves can be obtained only in a TI
ormation with its symmetry axis parallel to the borehole axis VTI
White and Tongtaow, 1981; Chan and Tsang, 1983; Ellefsen et al.,
991�. Most of the anisotropic environments, including a TI forma-
ion with horizontal axis of symmetry �HTI�, require the use of a per-
urbation technique or a numerical finite-difference time-domain
FDTD� formulation of the linear equations of motion in anisotropic
aterials �Wang and Tang, 2003�. Sinha et al. �1994� proposed the

se of an equivalent isotropic reference state in a perturbation model
o account for an arbitrary state of formation anisotropy. It has also
een demonstrated that a properly selected, equivalent isotropic
tate adequately accounts for most of the weakly anisotropic forma-
ions �Sinha and Zeroug, 1999; Thomsen, 1986�. This choice of an
quivalent isotropic reference state minimizes the amount of pertur-
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D192 Sinha et al.
ative correction in the modal dispersions to account for the remain-
ng formation structural anisotropy.

It is known that phase and group velocities of the three plane
aves can be different for propagation in nonprincipal directions of

nisotropic materials �Musgrave, 1970�. It is also known that tran-
ient elastic-waves caused by acoustic emission, friction, and dislo-
ation motion propagate at their group velocities. Kim and Sachse
1993� have demonstrated that a broadband point source and point
eceiver can be used to measure group velocities in a TI zinc crystal.
hey have experimentally confirmed that the detected pulse signal
ontains a compressional arrival at the first break, followed by a zero
rossing, and a sharp trough indicating the two shear-wave arrivals
t their corresponding group velocities. Processing algorithms de-
igned to estimate moveouts of sharp discontinuities in a pulse
ould yield group velocities of the three plane waves for any non-
rincipal propagation direction in anisotropic materials. It is there-
ore possible to estimate group velocities of the three plane waves
rom the recorded waveforms in deviated boreholes in highly aniso-
ropic formations. When the processing of recorded waveforms esti-

ates moveouts of the first break, the zero crossing, or a sharp crest
r trough, we can obtain the corresponding group velocities of plane
aves in anisotropic materials �Wang et al., 2002; Hornby et al.,
003�.

In contrast, the slowness-time-coherence �STC� algorithm is de-
igned to estimate phase velocity, or slowness of a coherent arrival,
rom an array of recorded waveforms �Kimball and Marzetta, 1984�.
imilarly, variations of Prony’s algorithm �such as a modified matrix
encil algorithm� are designed to isolate both dispersive and nondis-
ersive arrivals in the recorded wavetrain that estimate phase veloci-
ies or slownesses as a function of frequency from an array of record-
d waveforms �Lang et al., 1987; Ekstrom, 1995�.

This paper describes an FDTD formulation of elastic-wave propa-
ation in a fluid-filled borehole in an arbitrarily anisotropic forma-
ion with 21 independent elastic moduli. Both monopole and dipole
ynthetic waveforms have been obtained in deviated boreholes in
ast and slow TI formations. Processing of these waveforms with a
odified matrix pencil algorithm �Ekstrom, 1995� yields modal dis-

ersions, in terms of phase slowness as a function of frequency, asso-
iated with the Stoneley fast- and slow-dipole modes. The zero-
requency intercept of the Stoneley dispersion yields the tube-wave
elocity, whereas low-frequency asymptotes of the fast- and slow-
ipole dispersions correspond to the SH- and qSV-polarized shear-
ave velocities. We compare phase velocities, or slownesses, ob-

ained from our processing of synthetic waveforms with those from
heoretical calculations of both the phase and group velocities of
lane waves propagating in nonprincipal directions of anisotropic
ormations.

THEORY

The propagation of small-amplitude waves in homogeneous and
nisotropic solids is described by the linear equations of motion.
hese equations can be written in Cartesian coordinates as

� ��,� = �v�,t, �1�

� ��,t = C����v�,�, �2�

here � is the formation mass density, v j, t is the particle accelera-
ion, and C���� denotes the second-order elastic constant that satis-
es the following symmetry relations:
C���� = C���� = C���� = C����. �3�

n all of these equations, we have used the Cartesian tensor notation
nd the convention that a comma followed by an index � �denotes
ifferentiation with respect to X�, and a comma followed by an index
denotes differentiation with respect to time. The Greek letters �, �,
, and � take on the values 1, 2, and 3. The summation convention for
epeated tensor indices is implied also. Elastic plane waves can
ropagate along a given direction in an anisotropic solid in three dis-
inct and mutually orthogonal modes in the absence of any degenera-
y. These waves may not be either purely longitudinal or transverse
n an arbitrarily anisotropic medium.

Most geophysical formations exhibit anisotropy that is character-
zed by TI symmetry. When referred to the principal axes of the ma-
erial, there are five independent elastic constants for a TI solid.

hen the propagation direction is parallel to the TI symmetry axis,
here is one longitudinal wave and there are two degenerate trans-
erse waves that propagate with the same velocity. In contrast, when
he propagation direction is perpendicular to the TI symmetry axis,
here is one longitudinal wave and two distinct, mutually orthogo-
al, pure transverse waves with different velocities. However, when
he propagation direction is obliquely inclined to the TI symmetry
xis, as is the case in a deviated wellbore, the anisotropic medium
upports a purely transverse �SH� and two mixed �qP and qSV�
odes of plane waves.
There are two ways of obtaining the plane-wave solution for an ar-

itrary propagation direction in anisotropic materials: First, we can
olve equation 1 with only five independent elastic moduli in the
tiffness tensor Cijkl but with an additional number of independent
ariables X1 and X3. A plane-wave solution in this approach can be
xpressed as

uk = Ak exp�i�njXj/v� , �4�

here Ak is the normalized polarization vector, nj denotes the direc-
ion cosines of the propagation vector with respect to the fixed aniso-
ropy axes of the material, uk is the particle displacement associated
ith the elastic-wave propagation with velocity v, and the subscripts
and j take on values 1, 2, and 3. Substituting this solution into equa-

ion 1, the plane-wave velocity is then given by

�v2 = AiAkCijklnjnl, �5�

here � is the mass density. The polarization vector Ai is obtained
rom the solution of a 3	3 matrix eigenvalue problem, which is also
nown as the Kelvin-Christoffel equation �Fedorov, 1968; Mus-
rave, 1970; Norris and Sinha, 1993�. We assume that the wavenor-
al nj is parallel to the borehole axis. Second, we select the propaga-

ion direction parallel to the rotated X3�-axis rotate the stiffness tensor
ijkl to the new set of measurement axes and still work with only one

ndependent variable X3�. However, the rotated stiffness tensor re-
erred to the deviated wellbore axes exhibits nine nonzero, elastic
oduli that have to be accounted for in obtaining the wave solution.
e use the second approach for obtaining the solution in the case of

eviated wellbores. Figure 1 shows a schematic diagram of a vertical
ellbore parallel to the X3-axis and of a deviated wellbore with azi-
uth 
 measured from north and with deviation � measured from

he vertical direction.
The rotated elastic stiffness tensor Cpqrs� is obtained from the fol-

owing orthogonal transformation relations:
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Wave propagation in deviated wells D193
Cpqrs� = apiaqjarkaslCijkl, �6�

here api is the rotation matrix that defines the orthogonal transfor-
ation between the two sets of axes and is given by

api = � cos 
 sin 
 0

− cos � sin 
 cos � cos 
 sin �

sin � sin 
 − sin � cos 
 cos �
� , �7�

here 
 and � are the Euler angles between the rotated axes �primed�
nd the reference anisotropy axes �unprimed�. The angle 
 denotes
he rotation about the X3-axis that defines the well azimuth, and � de-
otes the rotation about the X1-axis that defines the deviation angle.

When the elastic moduli �or stiffnesses� are specialized to the case
f a TI anisotropy, they can be expressed in terms of a 6	6 matrix as
iven below:

Cij = �
C11 C12 C13 0 0 0

C11 C13 0 0 0

C33 0 0 0

C44 0 0

C44 0

C66

� , �8�

here C66 = �C11 − C12�/2 and we have used Voigt’s compressed
otation that combines the two indices into one using the following
ransformation: �11→1�, �22→2�, �33→3�, �23→4�, �31→5�,
nd �12→6�. When the TI elastic moduli are rotated by angle �
bout the X1-axis, with the rotated X3-axis parallel to the deviated
ellbore axis, the rotated elastic moduli for such a tilted TI forma-

ion take the form

Cij = �
C11 C12 C13 C14 0 0

C22 C23 C24 0 0

C33 C34 0 0

C44 0 0

C55 C56

C66

� . �9�

orris and Sinha �1996� have shown that the presence of C14, C24,
34, and C56 �referred to the rotated axes� in a tilted TI formation
ause anisotropy-induced coupling between the quasi-Stoneley and
uasi-flexural modes. However, these moduli affecting the coupling
o not have any influence on the low-frequency limit of the quasi-
toneley wave velocity. The low-frequency limit of the azimuthally
ymmetric Stoneley wave velocity, also referred to as the tube-wave
elocity, in an isotropic formation is given by �White, 1983�

VT = Vf �1 + Kf /��−1/2, �10�

able 1. Model parameters.

ormation
�

�kg/m3�
C11

�N/m2�

ustin Chalk 2200 22 E + 9 1
here Vf and Kf denote the borehole-fluid compressional velocity
nd bulk modulus, respectively, and � is the formation shear modu-
us. Recently, this analytical expression for the tube-wave velocity
as been extended to include weakly anisotropic formations �Norris
nd Sinha, 1996; Chi and Tang, 2004�. It has been shown that the
ube-wave velocity VT in a weakly anisotropic formation can be ex-
ressed in terms of an effective shear modulus �* given by �Norris
nd Sinha, 1996�

�* = �C11 + C22 − 2C12 + 4C66�/8. �11�

his expression for the effective shear modulus is not restricted to
ny particular material symmetry and is equally valid for a triclinic
r a TI formation. However, this result is derived for weakly aniso-
ropic formations that include most of the sedimentary rocks that we
ncounter in the oil and gas industry �Thomsen, 1986�. The shear
odulus C66

* = �* denotes shear rigidity in the borehole cross-
ectional plane and can be substituted in equation 10 to obtain the
ube-wave velocity in a general anisotropic formation.

The finite-difference formulation of equation 1 in 3D cylindrical
oordinates applied to a fluid-filled borehole is described in detail by
iu and Sinha �2003�. So we will now proceed to describe results

rom this FDTD formulation of the linear equations of motion.

COMPUTATIONAL RESULTS I: AUSTIN CHALK

The plane-wave velocities and associated polarization vectors are
btained from the solution of Kelvin-Christoffel equations for an ar-
itrary propagation direction from the TI symmetry axis. Table 1
ontains the elastic constants and mass density of Austin Chalk used

2�
C13

�N/m2�
C33

�N/m2�
C44

�N/m2�

9 12 E + 9 14 E + 9 2.4 E + 9

igure 1. Schematic diagram of a vertical well parallel to the X3-axis
nd a deviated well with azimuth 
 and deviation �.
C12

�N/m

5.8 E +

otton Valley Shale 2640 74.73 E + 9 14.75 E + 9 25.29 E + 9 58.84 E + 9 22.05 E + 9
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n this study �White, 1983�. The borehole fluid is assumed to have a
ompressional speed of 1500 m/s and mass density of 1000 kg/m3.
ll computational results are for a borehole of radius 10.16 cm

4 inches�. This formation is classified as a slow formation whose
hear slowness is larger than the borehole-fluid compressional slow-
ess. Because a TI material is invariant with respect to any rotation
bout the symmetry axis �or equivalently, about the well azimuth in a
ormation with a vertical TI symmetry axis�, we show in Figure 2a
nd b, respectively, the tube-wave velocity and qP-, qSV-, and SH-
ave velocities as a function of well deviation � from the TI symme-

ry axis. The solid and dashed curves, respectively, denote the phase
nd group velocities in Figure 2a and b. Differences between the
hase and group velocities of the qP- and SH-waves are largest for

igure 2. �a� The solid and dashed lines, respectively, denote the qP-
ave phase and group velocities as a function of propagation direc-

ion from the TI-symmetry axis in a slow Austin Chalk Formation.
he propagation direction coincides with the wavenormal direction

rom the TI-symmetry axis. �b� The black curve denotes the tube
ave velocity as a function of propagation direction from the TI-

ymmetry axis in a slow Austin chalk formation. The solid and
ashed curves, respectively, represent the phase and group velocities
f qSV- and SH-waves as a function of propagation direction from
he TI-symmetry axis in a slowAustin Chalk Formation.
ropagation directions ranging from 30° to 60° from the TI symme-
ry axis. In contrast, larger differences between the phase and group
elocities of the qSV-wave occur for propagation directions ranging
rom 10° to 30° and from 50° to 80° from the symmetry axis. Notice
hat the tube-wave velocity in Figure 2b changes by only about 3%
ver the entire range of wellbore deviations, whereas shear- and
ompressional-wave velocities change by up to about 12%–25%, re-
pectively.

lastic moduli versus well deviation

The bottom inset in Figure 1 shows the cross-sectional plane
1�-X2� of a deviated wellbore with azimuth 
 and deviation �. A di-
ole source oriented along the X1�-direction generates borehole flex-
ral waves propagating along the X3�-axis corresponding to the SH-
ave whose velocity is largely dependent on the rotated shear modu-

us C55 in the X1�-X3� plane.
Variations of plane-wave velocities follow the same trend as the

ominant elastic moduli that appear as the diagonal elements in the
lastic stiffness matrix. Figure 3a and b, respectively, displays varia-
ions in the elastic moduli C22 and C33 and in C44, C55, and C66 as a
unction of wellbore deviations. The compressional velocity along
he deviated wellbore is largely dependent on the variation of C33,
hereas the SH-wave velocity is dependent on the variation of C55

ith the deviation angle. The qSV-wave and tube-wave velocities
re dependent on certain combinations of elastic moduli. However,
he qSV-wave and tube-wave velocities follow the trend of the elas-
ic moduli C44 and C66, respectively, as shown in Figure 3b.

Norris and Sinha �1995, 1996� have shown that the Stoneley and
ipole flexural modes are coupled when the elastic moduli C14, C24,
34, and C56, referred to the deviated wellbore axes, are significantly

arge. This coupling can give rise to processing challenges in situa-
ions when the borehole Stoneley and flexural dispersions are close.

ustin Chalk: Wellbore deviation 0°

When the wellbore deviation is 0°, elastic-waves propagate paral-
el to the TI-symmetry axis, and the phase and group velocities coin-
ide. Figure 4a shows synthetic waveforms at an array of receivers
roduced by a monopole source placed on the borehole axis. These
aveforms are processed by a modified matrix pencil algorithm to

solate both dispersive and nondispersive arrivals in the wavetrain
Lang et al., 1987; Ekstrom, 1995�. Figure 4b displays the monopole
ompressional slowness and Stoneley dispersion in a fluid-filled
ellbore in the absence of any tool structure. The dashed blue lines
enote analytical results for the tube-wave ST and the qP-wave phase
lownesses. The low-frequency Stoneley dispersion agrees very
ell with the analytical result for the tube-wave phase slowness ST

or this configuration.
Figure 5a displays synthetic waveforms at an array of receivers

roduced by a dipole source placed on the borehole axis and oriented
long the X2�-axis in the deviated borehole cross-sectional plane. The
ow-frequency asymptote of this borehole flexural wave coincides
ith the qSV-wave velocity. The qSV-wave polarization vector is in

he X
2

− X3� plane, and the qSV-wave velocity is largely dependent
n the rotated shear modulus C44 in the X2� − X3� plane. There are two
ackets of coherent arrivals. The first is the dipole compressional
ode, and the second is the borehole flexural mode. Figure 5b shows

he flexural and dipole compressional dispersions obtained after pro-
essing the waveforms shown in Figure 5a. The dashed blue lines de-
ote analytical results for the SH- and qP-wave slownesses. The
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ow-frequency asymptote of flexural dispersion agrees very well
ith the analytical solution of the qSV-wave phase slowness ob-

ained from the solution of the Kelvin-Christoffel equations.

ustin Chalk: Wellbore deviation 60°

Next, we analyze our results from a wellbore with a deviation of
0° from the vertical; the propagation direction of elastic-waves in
uch a wellbore is 60° from the TI symmetry axis. We show in Figure
a synthetic waveforms at an array of receivers produced by a dipole
ource placed on the borehole axis and oriented parallel to the qSV-
ave polarization direction. The first coherent arrival is a dipole

ompressional mode, and the second one is the lowest-order bore-
ole flexural mode. Figure 6b displays the flexural and dipole com-
ressional dispersions obtained after processing the waveforms
hown in Figure 6a. The dashed blue lines denote analytical results

igure 3. �a� Elastic moduli C22 and C33 �in pascals� as a function of
ropagation direction from the TI-symmetry axis in a slow Austin
halk Formation. The modulus C11 = 2.2 E + 10 Pa, is a constant

or rotation about the X1-axis. �b� Elastic moduli C44, C55, and C66 �in
ascals� as a function of propagation direction from the TI symmetry
xis in a slowAustin Chalk Formation.
or the qSV- and qP-wave phase slownesses for a wavenormal coin-
ident with the well deviation angle. The solid blue line indicates the
orresponding group slowness of the qP-wave. The group slowness
327.6 �s/m� is slightly smaller than the phase slowness �333.5
s/m� for this deviated wellbore. Notice that the extracted qP-wave

lowness coincides with the calculated phase slowness. The low-fre-
uency asymptote of flexural dispersion agrees very well with the
nalytical solution of the qSV-wave slowness for this wellbore devi-
tion of 60°.

Figure 7a shows synthetic waveforms at an array of receivers pro-
uced by a dipole source placed on the borehole axis and oriented
arallel to the SH-wave polarization direction. Because the wave
ropagation is 60° from the TI-symmetry axis, the qSV- and SH-
aves travel with different velocities. We display in Figure 7b, the
orehole flexural and dipole compressional slownesses, as a func-
ion of frequency, obtained from the processing of the synthetic
aveforms in Figure 7a. The dashed blue lines denote analytical re-

ults for the SH- and qP-wave phase slownesses.Again, the low-fre-

igure 4. �a� Synthetic waveforms produced by a monopole source
laced on the borehole axis parallel to the TI symmetry axis in a slow
ustin Chalk Formation in the absence of any tool structure. �b�
onopole compressional slowness and Stoneley dispersion ob-

ained from synthetic waveforms shown in Figure 4a. Results are for
ropagation parallel to the TI symmetry axis in a slow Austin Chalk
ormation.
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D196 Sinha et al.
uency asymptote of the flexural dispersion agrees very well with
he SH-wave slowness obtained from the solution of the Kelvin-
hristoffel equations for this wellbore deviation of 60°.

onic tool effects on borehole dispersions
n slow formations

Next, we describe the influence of a sonic tool structure on elastic-
aves in a fluid-filled borehole in anisotropic formations �Pistre et

l., 2005�. The influence of this sonic tool structure on borehole dis-
ersions is described by a heavy-fluid column placed concentrically
ith the borehole axis. To study the influence of the tool structure on

he monopole Stoneley mode, we introduce a heavy-fluid column of
he same diameter as the tool structure and its mass density as the

ean density of the tool. The compressional velocity of the heavy
uid is estimated from calibrating this model parameter to properly
ccount for the tool bias as a function of the wellbore diameter and

igure 5. �a� Synthetic waveforms produced by a dipole source
laced on the borehole axis parallel to the TI symmetry axis in a slow
ustin Chalk Formation in the absence of any tool structure. Dipole
rientation is parallel to the SH-wave polarization. �b� Dipole com-
ressional slowness and borehole flexural dispersion obtained from
ynthetic waveforms shown in Figure 5a. Results are for propaga-
ion parallel to the TI symmetry axis in a slow Austin Chalk Forma-
ion.
ormation compressional velocity. However, the influence of the
ool structure on the borehole flexural mode is adequately accounted
or in terms of a fixed, heavy-fluid compressional velocity and the
ame heavy-fluid column diameter and mass density as that for the
onopole Stoneley mode. The heavy-fluid column is introduced as

n additional cylindrical member in the FDTD formulation with ap-
ropriate parameters for the monopole and dipole waves.

ustin Chalk: Wellbore deviation 30°

Figure 8a–c, respectively, compares the monopole Stoneley and
ipole compressional, and flexural dispersions in the absence �red
ircles� and in presence �blue crosses� of a heavy-fluid column with
alibrated parameters to account for the sonic tool structure bias on
onic data. The dashed blue lines in Figure 8a–c denote analytical re-
ults for the tube-wave, qP-, qSV-, and SH-wave phase slownesses.
hese results are for elastic-wave propagation in a deviated wellbore

igure 6. �a� Synthetic waveforms produced by a dipole source
laced on the borehole axis in a 60° deviated wellbore in a slowAus-
in Chalk Formation. Dipole orientation is parallel to the qSV-wave
olarization. �b� Dipole compressional and borehole flexural disper-
ion obtained from synthetic waveforms shown in Figure 6a. Results
re for propagation in a 60° deviated wellbore in a slowAustin Chalk
ormation.
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Wave propagation in deviated wells D197
deviation = 30°�. First, we notice that the nondispersive part of the
ipole compressional wave is not affected by the tool presence. Sec-
nd, the borehole flexural dispersion also is not affected by the tool
resence in this slow Austin chalk formation. However, we observe
hat the monopole Stoneley dispersion is affected by the tool pres-
nce at low frequencies and not affected at high frequencies.

Next, we provide a composite plot of monopole and dipole disper-
ions obtained in a 30° deviated borehole using a monopole and two
rthogonal dipole transmitters. Figure 9a shows borehole disper-
ions in the absence of any tool structure. The solid and dashed lines,
espectively, denote the phase and group slownesses for the qP-,
SV-, and SH-waves. Clearly, low-frequency asymptotes of flexural
ispersions coincide with the corresponding phase slownesses of
hear waves. Similarly, the extracted qP-wave slowness agrees with
he computed phase slowness using the Kelvin-Christoffel equa-
ions. Notice that the fast and slow dipole dispersions corresponding
o the SH- and qSV-waves are nearly parallel to each other as pre-
icted by a previously reported perturbation analysis �Sinha et al.,
994�. Figure 9b displays the monopole Stoneley and dipole flexural
ispersions in the presence of an equivalent heavy-fluid column to
escribe the tool bias on borehole dispersions. The notation is the
ame as in Figure 9a. Even though there is a discernible difference in
he Stoneley dispersion shown in Figure 9a in the absence of any tool
tructure to that shown in Figure 9b in the presence of an equivalent
eavy-fluid column, the fast and slow dipole dispersions are nearly
arallel. Consequently, nonintersecting dipole dispersions are indi-
ators of formation intrinsic anisotropy, whereas crossing dipole dis-
ersions are indicators of stress-induced anisotropy dominating the
onic data �Sinha and Kostek, 1996�. Interestingly, the dipole com-
ressional slowness is not affected by the presence of this tool struc-
ure. Both the inline and crossline dipole transmitters produce com-
ressional head waves with essentially the same compressional
lowness shown in Figure 9a and b.

COMPUTATIONAL RESULTS II:
COTTON VALLEY SHALE

Generally, borehole waves in fast formations propagate with larg-
r amplitude over a wider bandwidth than those in slow formations.
nlike slow formations, the monopole Stoneley mode is a normal
ode at all frequencies and is strongly excited in fast formations.
onic tool effects described in terms of a heavy-fluid column with
alibrated parameters are also larger in fast formations.

Next, we calculate the plane-wave velocities and associated po-
arization vectors from the solution of the Kelvin-Christoffel equa-
ions for an arbitrary propagation direction from the TI symmetry
xis. Table 1 contains the elastic constants and mass density of Cot-
on Valley Shale used in this study �Thomsen, 1986�. The shear slow-
ess of a fast formation is smaller than the borehole-liquid compres-
ional slowness. Because a TI material is invariant with respect to
ny rotation about the symmetry axis �or equivalently, about the well
zimuth in a formation with a vertical TI symmetry axis�, we show in
igure 10a–c, respectively, the qP-, tube-wave velocity, and qSV-
nd SH-wave velocities as a function of well deviation � from the TI
ymmetry axis. Notice that the tube-wave velocity changes by only
bout 1.5% over the entire range of wellbore deviations, whereas
hear- and compressional-wave velocities change by up to about
0% to 15%, respectively.
lastic moduli versus well deviation

We show in Figure 11a and b, respectively, variations in the elastic
oduli C22 and C33, and C44, C55, and C66 as a function of wellbore

eviation in a fast Cotton Valley Shale Formation.As is the case with
slow Austin Chalk Formation, the compressional velocity along

he deviated wellbore is largely dependent on the variation of C33 and
ncreases with increasing deviation angle. Similarly, the SH-wave
elocity is dependent on the variation of C55 with the deviation an-
le, and it also increases with increasing deviation angle. Even
hough the qSV-wave velocity is dependent on certain combinations
f elastic moduli, the variation of qSV-wave phase velocity with the
eviation angle follows the same trend as that of the dominant elastic
odulus C44 with the wellbore deviation. Likewise, the tube-wave

elocity is also dependent on a combination of elastic moduli. How-
ver, the variation of tube-wave phase velocity as a function of well-
ore deviation shown in Figure 10b also is remarkably similar to the
ariation of the modulus C66 with the propagation direction.

igure 7. �a� Synthetic waveforms produced by a dipole source in a
0° deviated wellbore in a slow Austin Chalk Formation in the ab-
ence of any tool structure. Dipole orientation is parallel to the SH-
ave polarization. �b� Dipole compressional and borehole flexural
ispersions obtained from synthetic waveforms shown in Figure 7a.
esults are for propagation in a 60° deviated wellbore in a slowAus-

in Chalk Formation.
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Norris and Sinha �1996� have shown that the Stoneley and dipole
exural modes are coupled for propagation in nonprincipal direc-

ions in a TI formation. The elastic moduli C14, C24, C34, and C56 be-
ome nonzero with respect to the measurement axes, as is the case in
eviated wellbores.

onic tool effects on borehole dispersions
n fast formations

Generally, the influence of a sonic tool structure on elastic-waves
n a fluid-filled borehole is larger in faster formations and in smaller
orehole diameters than in slower formations and larger boreholes.
lthough the low-frequency asymptotes of flexural dispersions are
ot affected by the tool presence, the Stoneley dispersion is affected

igure 9. �a� Monopole Stoneley and dipole dispersions and dipole
ompressional slowness in a 30° deviated borehole in the absence of
ny tool structure. The fast and slow shear waves correspond to the
H-and qSV-waves propagating along the borehole. The solid and
ashed lines, respectively, denote the phase and group slownesses
or the qP-, qSV-, and SH-waves.�b� Monopole Stoneley and dipole
exural dispersions and dipole compressional slowness in a 30° de-
iated borehole in the presence of a heavy-fluid column to account
or tool effects on borehole dispersions. The solid and dashed lines,
espectively, denote the phase and group slownesses for the qSV-
nd SH- waves.
igure 8. �a� Comparison of the monopole Stoneley dispersion in a
uid-filled borehole in the absence �red circles� and in the presence
f an equivalent heavy-fluid �HF� column to describe the tool bias on
easured data �solid blue curve�. Wellbore deviation is 30°. �b�
omparison of the dipole compressional and qSV-flexural disper-

ions in a fluid-filled borehole in the absence �red curve� and in the
resence of an equivalent heavy-fluid column to describe the tool
ias on measured data �blue curve�. Wellbore deviation is 30°. �c�
omparison of the dipole compressional and SH flexural disper-

ions in a fluid-filled borehole in the absence �red curve� and in the
resence of an equivalent heavy-fluid column to describe the tool
ias on measured data �blue crosses�. Wellbore deviation is 30°.
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Wave propagation in deviated wells D199
y the presence of any tool structure at all frequencies. To study the
nfluence of the tool structure, we use an equivalent heavy-fluid col-
mn placed concentrically with the borehole axis with the same
eavy-fluid parameters as in the case of slow formations. As before,
he compressional velocity of the heavy fluid is selected by calibrat-
ng this model parameter to properly account for the tool bias on the
orehole Stoneley dispersion as a function of the wellbore diameter
nd formation compressional velocity.

otton Valley Shale: Wellbore deviation 90°

When the wellbore deviation is 90°, elastic-waves propagate per-
endicular to the TI symmetry axis. Figure 12a shows synthetic
aveforms at an array of receivers produced by a monopole source
laced on the borehole axis in the absence of any tool structure.
hese waveforms are processed by a modified matrix pencil algo-

ithm to isolate both dispersive and nondispersive arrivals in the
avetrain.
Figure 12b compares the monopole Stoneley and pseudo-

ayleigh dispersions in the absence �red circles� and in the presence
blue crosses� of a heavy-fluid column with calibrated parameters to
ccount for the tool structure bias on sonic data. These results are for
lastic-wave propagation perpendicular to the TI symmetry axis

igure 11. �a� Elastic moduli C11 �or C22� and C33 �in Pa� as a function
f propagation direction from the TI symmetry axis in a fast Cotton
alley Shale Formation. �b� Elastic moduli C44, C55, and C66 �in Pa�
s a function of propagation direction from the TI symmetry axis in a
ast Cotton Valley Formation.
igure 10. �a� The solid and dashed lines, respectively, denote the qP
compressional� phase and group velocities as a function of propaga-
ion direction from the TI symmetry axis in a fast Cotton Valley
hale Formation. The propagation direction coincides with the
avenormal direction from the TI symmetry axis. �b� Tube wave
hase velocity as a function of propagation direction from the TI
ymmetry axis in a fast Cotton Valley Shale Formation. �c� The solid
nd dashed lines, respectively, denote the phase and group velocities
f the qSV- and SH- waves as a function of propagation direction
rom the TI symmetry axis in a fast Cotton Valley Shale Formation.
he propagation direction coincides with the wavenormal direction

rom the TI symmetry axis.
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wellbore deviation 90°� in a fast Cotton Valley Shale Formation.
ecause this is one of the principal propagation directions, both the
hase and group slownesses of all plane waves coincide. We observe
hat the monopole Stoneley dispersion is significantly affected by
he tool presence at all frequencies in fast formations. However, the
ondispersive part of the pseudo-Rayleigh mode is not affected
uch by the tool presence as shown in Figure 12b. The low-frequen-

y Stoneley dispersion or the tube-wave phase slowness agrees very
ell with the analytical result for this propagation direction in the

bsence of any tool structure. The low-frequency asymptote of the
seudo-Rayleigh mode also agrees well with the SH-wave phase
lowness for this propagation direction.

Figure 13a displays synthetic waveforms at an array of receivers
roduced by a dipole source placed on the borehole axis perpendicu-
ar to the TI symmetry axis and oriented along the SH-wave polar-
zation in the absence of any tool structure. There are two packets of

igure 12. �a� Synthetic waveforms produced by a monopole source
n the borehole axis perpendicular to the TI symmetry axis in a fast
otton Valley Shale Formation in the absence of any tool structure.

b� Monopole pseudo-Rayleigh and Stoneley dispersions obtained
rom synthetic waveforms in the absence �red circles� and in the
resence �blue crosses� of a heavy-fluid column to account for the
ool effects. Results are for propagation perpendicular to the TI sym-

etry axis in a fast Cotton Valley Shale Formation.
oherent arrivals. The first is the direct shear head wave followed by
dispersive borehole flexural mode. Figure 13b compares the low-
st-order flexural mode and a higher-order flexural mode that merg-
s with the shear head wave slowness at low frequencies in the ab-
ence �red circles� and in the presence �blue crosses� of a heavy-fluid
olumn with calibrated parameters to account for the tool structure
ias on sonic data. These results are for elastic-wave propagation
erpendicular to the TI symmetry axis �wellbore deviation 90°� in a
ast Cotton Valley Shale Formation. We observe that the borehole
exural dispersion is significantly affected by the tool presence in

his fast Cotton Valley Shale Formation except at very low frequen-
ies as shown in Figure 13b. However, the nondispersive SH head
ave in this fast formation is not affected by the tool presence as is

vident from Figure 13b. The low-frequency asymptote of flexural
ispersion agrees very well with the analytical solution for the SH-
ave phase slowness obtained from the solution of the Kelvin-
hristoffel equations.

igure 13. �a� Synthetic waveforms produced by a dipole source
laced on the borehole axis perpendicular to the TI symmetry axis in
fast Cotton Valley Shale Formation in the absence of any tool struc-

ure. Dipole orientation is parallel to the SH-wave polarization. �b�
ipole shear head wave and borehole flexural dispersion obtained

rom synthetic waveforms in the absence �red circles� and in the
resence �blue crosses� of a heavy-fluid column to account for the
ool effects. Results are for propagation perpendicular to the TI sym-

etry axis in a fast Cotton Valley Shale Formation.
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otton Valley Shale: Wellbore deviation 30°

Next we analyze our results from a wellbore with a deviation of
0° from the TI symmetry axis. Figure 14a shows synthetic wave-
orms at an array of receivers produced by a monopole source placed
n the borehole axis in the absence of any tool structure. These
aveforms are also processed by a modified matrix pencil algorithm

o isolate both dispersive and nondispersive arrivals in the wave-
rain.

Figure 14b compares the monopole Stoneley and pseudo-
ayleigh dispersions in the absence �red circles� and in the presence

blue crosses� of a heavy-fluid column with calibrated parameters to
ccount for a sonic tool structure bias on sonic data. These results are
or elastic-wave propagation 30° from the TI symmetry axis �well-
ore deviation 30°� in a fast Cotton Valley Shale Formation. The
ashed blue line �ST� denotes the tube-wave phase slowness for this

igure 14. �a� Synthetic waveforms produced by a monopole source
n a wellbore deviated 30° from the TI symmetry axis in a fast Cotton
alley Shale Formation in the absence of any tool structure. �b�
omparison of the monopole Stoneley and pseudo-Rayleigh disper-

ions in a fluid-filled borehole in the absence �red circles� and in the
resence �blue crosses� of an equivalent heavy-fluid column to de-
cribe the tool bias on measured data. Wellbore deviation is 30°. The
olid and dashed blue lines, respectively, denote the phase and group
lownesses for the SH-wave propagating at 30° from the TI symme-
ry axis.
ropagation direction. Notice that the monopole Stoneley dispersion
s significantly affected by the tool presence at all frequencies in de-
iated wellbores. However, the nondispersive part of the pseudo-
ayleigh mode is not affected much by the tool presence, as shown

n Figure 14b. The solid and dashed blue lines �SH� represent the
hase and group slownesses for the SH-wave. Notice that the group
lowness for this propagation direction is larger than the phase slow-
ess as shown in Figure 10c. The low-frequency Stoneley dispersion
grees very well with the analytical result for the tube-wave slow-
ess for this configuration. The low-frequency pseudo-Rayleigh dis-
ersion coincides with the analytical result for the SH-wave phase
lowness.

Figure 15a displays synthetic waveforms at an array of receivers
roduced by a dipole source placed on the borehole axis and oriented
arallel to the SH-wave polarization direction in the absence of any

igure 15. �a� Synthetic waveforms produced by a dipole source in a
0° deviated wellbore in a fast Cotton Valley Shale Formation in the
bsence of any tool structure. Dipole orientation is parallel to the
H-wave polarization. �b� Comparison of the SH-wave phase slow-
ess and SH flexural dispersion in a fluid-filled borehole in the ab-
ence �red circles� and in the presence �blue crosses� of an equivalent
eavy-fluid column to describe the tool bias on measured data. Well-
ore deviation is 30°. The solid and dashed blue lines, respectively,
enote the phase and group slownesses for the SH-wave propagating
t 30° from the TI symmetry axis.
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ool structure. There are two packets of coherent arrivals. The first is
nondispersive SH head wave followed by a dispersive borehole
exural mode.
Figure 15b compares the lowest-order flexural dispersion and a

igher-order flexural mode whose low-frequency slowness coin-
ides with the SH-wave phase slowness in the absence �red circles�
nd in the presence �blue crosses� of a heavy-fluid column with cali-
rated parameters to account for a sonic tool structure bias on sonic
ata. The solid and dashed blue lines �SH� represent analytical re-
ults for the phase and group slownesses for the SH-wave propagat-
ng at 30° from the TI symmetry axis �wellbore deviation 30°� in a
ast Cotton Valley Shale Formation. Notice that the borehole flexural
ispersion is significantly affected by the tool presence in this fast
otton Valley Shale Formation except at very low frequencies as

hown in Figure 15b. However, the nondispersive SH head wave
lowness is not affected by the tool presence.

CONCLUSIONS

We have used a 3D cylindrical FDTD with PML formulation of
he linear equations of motion in arbitrarily anisotropic materials to
tudy the influence of a sonic tool structure on elastic-wave propaga-
ion in a fluid-filled borehole in both TI and tilted TI formations. A
ilted TI formation refers to a wellbore with dipping beds or to a devi-
ted wellbore with its axis obliquely inclined with respect to the TI
ymmetry axis. Phase and group velocities of the three plane waves
an be different for propagation along deviated wellbores in aniso-
ropic formations. Processing of synthetic waveforms in deviated
ellbores using a conventional STC algorithm or a modified matrix
encil algorithm yields phase slownesses of the compressional and
hear waves propagating in the nonprincipal directions of anisotrop-
c formations. This has been confirmed by comparing the processed
esults with theoretical results for the phase and group slownesses
or velocities� for plane waves propagating along arbitrary direc-
ions in anisotropic formations. However, it is also possible to ex-
ract group slownesses or velocities of plane waves by monitoring

oveouts of sharp discontinuities or crests of the propagating pulse.
herefore, we conclude that different processing algorithms can be
sed to extract either phase or group velocities from an array of re-
orded waveforms excited by a broadband pulse.

Even though an FDTD formulation is expected to yield all coher-
nt arrivals supported by the surrounding formation, we observe that
eaker arrivals are not easily detected by processing the synthetic
aveforms using the modified matrix pencil algorithm. In particular,
e did not see any evidence of anisotropy-induced coupling be-

ween the Stoneley and dipole modes in deviated wellbores in either
he fast or slow TI formations. Earlier calculations of the degree of
nisotropy-induced coupling to the Stoneley mode produced by a di-
ole source in a 60° deviated wellbore in Austin Chalk indicate that
he magnitude of Stoneley amplitude is −20 to −30 dB below the
exural amplitude. Signals that are so much smaller than the peak
mplitude are not detected with the FDTD formulation together with
he processing algorithm used in this study.

Computational results for the Stoneley dispersion show negligi-
ly small changes consistent with small changes in the tube-wave
elocity for different wellbore deviations. In contrast, cross-dipole
ispersions exhibit relatively larger changes consistent with the
SV- and SH-wave velocities as a function of wellbore deviation.

The fast- and slow-dipole dispersions are nearly parallel in a slow

I formation for different well deviations. These results are consis-
ent with predictions from a previously reported perturbation analy-
is results.

The influence of this sonic tool structure is negligibly small on
oth the monopole pseudo-Rayleigh mode in fast formations and on
ipole compressional slownesses in slow formations. It is important
o note that the fast and slow dipole dispersions remain nearly paral-
el even in the presence of a heavy-fluid column as an equivalent

odel for the sonic tool structure at hand.
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