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Abstract—This paper first presents a spectral integral method
(SIM) for electromagnetic scattering from homogeneous dielectric
and perfectly electric conducting objects straddling several layers
of a multilayered medium. It then uses this SIM as an exact ra-
diation boundary condition to truncate the computational domain
in the finite-element method (FEM) to form a hybrid SIM/FEM,
which is applicable to arbitrary inhomogeneous objects. Due to
the high accuracy of the SIM, the sampling density on the radi-
ation boundary requires less than five points per wavelength to
achieve 1% accuracy. The efficiency and accuracy of the developed
methods have been demonstrated with several numerical experi-
ments for theTM case. TheTE case can be obtained by duality.

Index Terms—Boundary-element method (BEM), finite-element
method (FEM), layered media, radiation boundary condition
(RBC), spectral integral method (SIM), surface integral equation
(SIE).

I. INTRODUCTION

ELECTROMAGNETIC scattering from inhomogeneous
objects of arbitrary shape embedded in a layered medium

has been a very important research topic because of its wide
application in areas such as geophysical exploration, remote
sensing, landmine detection, biomedical imaging, interconnect
simulations, microstrip antennas, and monolithic microwave
integrated circuits. The complex background and the large
number of unknowns associated with realistic targets make the
problem more challenging.

For homogeneous objects embedded in a layered medium,
surface integral equations (SIEs) are more appropriate than
volume integral equations (VIEs). However, for inhomoge-
neous objects, the SIE must be combined with other methods
such as the finite-element method (FEM) in order to account
for the inhomogeneity. In this approach, the computational do-
main can be truncated by using a radiation boundary condition
(RBC). Over the last three decades, several RBCs have been
developed [1]–[21]. One of them is the hybrid finite-element
method/boundary-element method (FEM/BEM), which uses
the SIE as an RBC on the boundary surrounding the scat-
terer(s), and the FEM in the bounded region [2]–[6], [11], [13].
In this approach, the evaluation of the layered-medium Green’s
functions is a time-consuming step of the overall procedure,
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which is , where is the number of the samples taken
on the boundary. The classical methods such as the method of
moments (MoM) requires at least ten points per wavelength
sampling density to achieve 1% accuracy. If one can reduce this
requirement to the half: 1) this time-consuming step takes only
a quarter of the classical approach and 2) the matrix size of the
problem is reduced. Fortunately, the number of the required
samples taken on the boundary can be decreased depending on
the accuracy of the SIE. Due to this lower memory requirement
and geometrical and material adaptability, the FEM/BEM is
a useful and powerful method for analysis of scattering by
inhomogeneous objects in layered media.

The matrix size of the FEM problem depends on the accuracy
of the basis functions used for both the FEM and BEM. Most of
the published results use zeroth- and first-order basis functions,
thus requiring at least ten points per wavelength sampling den-
sity in the discretization. The usage of higher order methods can
reduce the minimum required sampling density.

A spectral integral method (SIM), which has been developed
to solve the SIE for electromagnetic scattering by homogeneous
objects with a smooth boundary in a homogeneous background
[22] and in layered media [23] is an efficient higher order
method. The usage of the fast Fourier transform (FFT) algo-
rithm provides exponentially accurate results, and it has been
shown that approximately three points per wavelength guaran-
tees an error less than 1%. As a result, using this exponentially
accurate method, i.e., SIM, as an RBC can reduce the minimum
required sampling density on the radiation boundary. Recently,
Liu and Liu propose that the SIM can be utilized as an efficient
RBC to truncate the computational domain in the FEM for a
homogeneous background medium [24].

This study is the extension of the SIM/FEM to lay-
ered-medium problems. It has two new contributions: first,
it extends the SIM for objects completely embedded in a single
layer, as described in [23], to objects straddling several layers.
To achieve this, we improve the SIM to handle the fields and
Green’s function across the layer interfaces so that SIM can
now be applied to a scatterer straddling several layers. This
new feature is nontrivial and greatly expands the applicability
of the SIM. Secondly, the SIM is used as an RBC for the FEM
in layered-medium problems. This allows the objects inside
the surface to be arbitrarily inhomogeneous. The high-order
accuracy of the SIM greatly reduces the number of unknowns
on the boundary integral and, hence, greatly reduces CPU
time used for the evaluation of the layered-medium Green’s
functions.

This paper is organized as follows. In Section II, the im-
proved SIM for objects straddling several layers is described.
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Section III presents the hybrid SIM/FEM for arbitrarily inhomo-
geneous objects in a layered medium. The SIM and SIM/FEM
are validated with several numerical examples in Section IV.

II. SIM FOR A HOMOGENEOUS SCATTERER

STRADDLING SEVERAL LAYERS

Consider a general multilayered medium consisting of
layers separated by interfaces parallel to the -axis. Layer

exists between and (
and ) and is characterized by relative complex per-
mittivity and relative permeability ; the wavenumber
inside the layer is given by . Assume that the
scatterer is a homogeneous object residing in several layers of
the background. The boundary of the scatterer is described as

or, equivalently, in terms of
a parameter (in this case, the azimuthal angle ).
An incident wave is assumed and the time dependence of

is implied.
For the case, the two-dimensional (2-D) Helmholtz

equation for the scalar field is

(1)

where subscript indicates the region outside or inside
the object, is the source excitation, ,

and .
For a smooth dielectric object embedded in a layered

medium, one boundary integral equation on the outside of
surface of the scatterer can be obtained as

(2)

for , where is assumed zero, is the incident wave
from outside the object (i.e., ), is the outward
unit normal, and is the layered-medium Green’s func-
tion given by

(3)

where is the spectral-domain counterpart. can be
written as

(4)

where

(5)

and is the th layer’s relative permeability where the field
point is and . Finally, (3) can be written as

(6)

where , and is the zeroth-
order Hankel function of the second kind. This formulation is
the same as the primary field term subtraction when source and
field points are in the same layer [23], [25]–[28]. The impor-
tant caution is that this subtraction procedure is used even if the
source and field points are in different layers. Hence, we can sep-
arate the layered media Green’s function into two parts: singular
and nonsingular. As described in [29], we can define an infin-
itely smooth function to handle the singular behavior in terms
of as follows:

(7)

Similar procedure follows for the derivative of the Green’s func-
tion , as described in [23], not only for the pri-
mary field term, but also for reflection terms.

The unknown field and its derivative can be approximated
by truncated Fourier series in terms of along the boundary of
the scatterer. The two integrations in (2) can then be calculated
using the FFT with high accuracy. After collocation at
points, (2) can be written in a compact form as follows:

(8)

where and are the Fourier’s coefficients of and
, respectively, is the number of discretized

Fourier transform points,
and , in which , are
the indices of basis and testing points on the discrete boundary,

and are Fourier transforms of the smooth parts, and
and are Fourier transforms of the two nonsmooth

terms of the Green’s function and its normal derivative (see [23]
for the expressions). Due to the use of singularity subtraction
and the FFT, the calculations of these terms are convergent, fast,
and have high accuracy.

The second boundary integral equation for the interior
problem can be discretized in the same way. The final form
of the equations can be solved for the scalar field and its
normal derivative on the boundary of the scatter.
From the solution of these field variables on the boundary, the
fields everywhere can be obtained by the Green’s theorem.

To sum up, the SIM formulation presented in [23] is devel-
oped in such a way that now it can solve scattering problems
for homogeneous objects residing in several layers of the lay-
ered medium. As mentioned above, the subtraction method de-
scribed in [28] has been implemented by using the layer pa-
rameters where the field point is located even when the source
point is not in that same layer. The SIM has a spectral accuracy
for smooth homogeneous objects. For objects with corners, the
method is still valid, but the expected accuracy decreases from
smooth objects. In order to simulate inhomogeneous objects, we
next develop a hybrid method combining the SIM with the FEM.

III. HYBRID SIM/FEM FOR LAYERED MEDIA

Consider arbitrary 2-D inhomogeneous objects in a layered
medium, as shown in Fig. 1. To solve the electromagnetic wave
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Fig. 1. Arbitrary inhomogeneous objects in an N -layer medium where each
layer is characterized by relative complex permittivity ~� and relative perme-
ability � . @� is a smooth boundary containing all the scatterers.

scattering problem using the FEM, an RBC is required to trun-
cate the computational domain so that the FEM is used in the
interior region (Region I) without having to discretize the lay-
ered medium. With a correct RBC on the surface , the field
in the layered medium, the exterior region (Region II) can be
calculated once the field in Region I (including the boundary)
is solved. In Region I, the material is inhomogeneous with rel-
ative permeability and complex relative permittivity

. There may also exist metallic materials and electric/
magnetic sources in Region I. Region II is a layered medium
described in Section II. The goal is to solve for the electromag-
netic fields scattered by the inhomogeneous object.

For waves, the total electric field in Region
I (bounded by ) can be determined from the solution of the
scalar wave equation (1). To discretize (1), we multiply the
equation by the testing function, and integrate over Region I.
For the FEM solution, Region I is discretized into triangular
elements and linear pyramid basis functions are used to expand
the electric field in the interior Region I, and trian-
gular basis functions are used to expand the boundary value

on (with nodal points collocated with the nodal
points of the pyramid basis function on the boundary).

Additional conditions are provided by the RBC. In order to
use the SIM as an RBC for the FEM, we need to relate the elec-
tric field and its normal derivative on the boundary . Since

and are the Fourier coefficients of the electric field and
its normal derivative on the boundary, the pyramid basis expan-
sion coefficients and can be obtained by and ,
which are obtained from (8) through trigonometric interpolation

(9)

(10)

where are the positions of the FEM nodal points on the
boundary in terms of the parameter , and is the first dis-

cretization point for the SIM. Finally, we obtain the following
system of equations (see [24] for the details):

(11)

(12)

Combining (11) and (12) with (8), one can solve the linear equa-
tions for and , thus obtaining the electric field in
Region I. Using the inverse FFT, the electric field and its
normal derivative are obtained on the boundary .

Due to the high accuracy of SIM and trigonometric interpola-
tion operations, even a small sampling density of approximately
five points per wavelength (5 PPWs) can give an accuracy better
than 1%. On the other hand, the FEM used for the interior re-
gion has a second-order accuracy; thus, the overall accuracy of
the hybrid SIM/FEM will depend on the accuracy of the FEM
part. In fact, in all the calculations, we choose much smaller
than to accomplish SIM and trigonometric interpolation with
the same accuracy as the FEM. The system in (8), (11), and (12)
and is overdetermined because we have equations
and unknowns, therefore, an iterative solver would be
preferred to solve this system. Alternatively, multiplying (12) by

, the conjugate transpose of the trigonometric interpolation
matrix , the system matrix becomes square and, thus, a direct
solver can also be used.

The advantage of the hybrid SIM/FEM method is the highly
accurate RBC with very few discretization points on the
boundary. Indeed, the number of unknowns in the original
FEM is points points for the electric field,
and points for the normal derivative of the electric field on
the boundary), the SIM/FEM hybrid method has un-
knowns, where the ratio of as the sampling density
in FEM and SIM is approximately ten points per wavelength
(or more) and 5 PPWs for roughly 1% accuracy. Therefore,
the number of unknowns in the SIM/FEM hybrid method is
actually smaller than the FEM with a Neumann boundary
condition. Furthermore, the time-consuming step of the overall
method, which is the evaluation of the layered media Green’s
functions, is reduced by a factor of 4 (for ), which is
a crucial reduction in terms of CPU time. In Section IV, we will
show the numerical results of the hybrid SIM/FEM method.

IV. NUMERICAL RESULTS

For all the examples presented here, the scatterer is excited
with plane wave incident normally to the interface

. The case can be easily obtained by using duality. In
the figures describing the geometry of the example, an artificial
radiation boundary , which is placed at least one element
away from the scatterers, is plotted with a dashed line enclosing
all the scatterers.

A. Numerical Example for the SIM

First we present an example to show the validity of the
SIM for a homogeneous object straddling a layer interface. A
circular perfect electric conductor (PEC) cylinder with radius

cm is partially buried in a two-layer
medium, as shown in Fig. 2(a). The frequency of the in-
cident wave is 300 MHz; the two layers have properties
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Fig. 2. (a) Partially buried PEC cylinder of radius r = 12:5 cm, whose center is
6.5 cm below the interface. � = � = � = 1; � = 4; f = 300 MHz.
(b) Magnitude of current induced on the object. (c) Phase of current (in degree).
(d) Convergence of error with the number of discretization points on the surface
of the scatterer.

. The center of the object
is 6.5 cm below the interface.

Fig. 2(b) and (c) compares the magnitude and phase of the
current induced on the scatterer obtained with the SIM and mag-
netic-field integral-equation (MFIE) formulation [30]. There is
a very good agreement between these two results. The conver-
gence of error with the number of discretization points per wave-
length is obtained by using the case with 82 PPWs as a refer-
ence and is plotted in Fig. 2(d). The error decreases exponen-
tially with the number of discretization points, confirming that
the SIM has a spectral accuracy. The result shows that even with
a small discretization number (or at 5.0 PPWs) on the
boundary of the cylinder, the relative error is smaller than 1%.
Note that the Green’s functions for the background have been
calculated with 10 relative error tolerance, and the minimum
relative error that can be obtained is approximately on this level.

B. Circular Cylinder/Circular Boundary by SIM/FEM

Next, a circular PEC object with radius of 0.5 m is centered
on the interface of a two-layer medium. The top layer is air

and the bottom layer is soil
. The frequency is 300 MHz and the radiation boundary is

a circle with radius of 0.6 m. To apply the FEM in the inte-
rior region, the interior domain is discretized into triangular ele-
ments using NETGEN (NETGEN/NGSolve V4.4, developed at
Johannes Kepler University, Linz, Austria). The number of tri-
angular elements is 2102, and the number of FEM nodes is 1257.
Fig. 3 shows the scattered field along the radiation boundary ob-
tained in two different ways. First, the SIM (30 PPWs) is used
to solve the problem for on the surface of the
scatterer, and then the scattered field is calculated by using the
SIE. Second, the SIM (30 PPWs) is used as an RBC on the radi-
ation boundary, and the FEM is used for the interior region, as
explained. An excellent agreement has been observed between
these results. In the same figure, the result that is obtained by
using 5 PPWs only is also depicted, which has very good agree-
ment with others.

Fig. 3. Scattered field along the radiation boundary (r = 0:6 m) for a
circular PEC object centered on the interface of a two-layer medium. r =

0:5 m, � = � = � = 1; � = 4; f = 300 MHz.

Fig. 4. Convergence of error for Example A: (a) with the number of discretiza-
tion points along the radiation boundary and (b) with decreasing frequency.

The convergence of the SIM/FEM method is analyzed in two
different ways. First, as shown in Fig. 4(a), the number of SIM
points on the radiation boundary is changed for the fixed fre-
quency and sampling density for the interior region. Clearly,
5 PPWs guarantees 1% accuracy. Second, the frequency of the
problem is changed for the same mesh, the number of the SIM
points is 36 (4.77 PPWs for MHz). Fig. 4(b) shows
the convergence of error with decreasing frequency. Note that
this result shows an overall second-order convergence because
of using linear basis and testing functions in the FEM part.

Note that there are 224 FEM boundary nodes in this example,
which is 6.2 times the number of SIM boundary nodes. The lay-
ered-medium Green’s function calculation took a 38.7 times less
amount of time then an FEM with a Neumann boundary condi-
tion implementation. Moreover, in the SIM/FEM method, the
total number of unknowns is ; by contrast, for
an FEM with a Neumann boundary condition, the number of un-
knowns would have been , which is still greater
than the number of unknowns in the SIM/FEM method. To fur-
ther reduce the number of unknowns in the SIM/FEM method,
in the future one can ideally combine the SIM with a higher
order FEM to improve the efficiency of the overall scheme.

We have also modeled a circular PEC object with radius of
0.125 m (same as [30]), which is four times smaller than the
above presented example, and the SIM results agree well with
[26] and [30], but are not shown here for brevity.
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Fig. 5. Normalized magnitude of current induced on a half buried rectangular
PEC object (12.5 cm� 5 cm). � = � = � = 1; � = 4; f =
300 MHz.

Fig. 6. Scattered field along the radiation boundary (r = (0:2; 0:1) m) for
a rectangular PEC object (12.5 cm� 5 cm) in a two-layer medium. � =
� = � = 1; � = 4; f = 300 MHz.

C. Rectangular Cylinder/Elliptical Boundary

The circular PEC object presented in the previous example is
then replaced by a rectangular PEC object (12.5 cm 5 cm).
In this case, an elliptical radiation boundary with major axis

m and minor axis m is used. The number
of triangular elements is 2670, and the number of FEM nodes
is 1525. Fig. 5 shows the normalized magnitude of current in-
duced on the object, the SIM/FEM result (5 PPWs) agrees very
well with the MFIE solution [30]. Fig. 6 shows the scattered
field along the radiation boundary obtained with the SIM/FEM
method (5 and 45 PPWs), and SIM alone (10 PPWs). Again, an
excellent agreement has been observed. The difference between
the SIM/FEM results obtained by using 5 and 45 PPWs is less
than 1%.

D. Circular Scatterer With Coating

The previous two examples show that the hybrid SIM/FEM
works well for homogeneous objects. In this example, the scat-
terer, shown in Fig. 7(a), is an inhomogeneous scatterer. The
frequency is 300 MHz, m, m,

m, and . The number of triangular

Fig. 7. Inhomogeneous scatterers. (a) Circular and (b) rectangular PEC
cylinder surrounded with coating in a two-layer medium, � = 4; � = 1.

TABLE I
CIRCULAR COATING MODELS

Fig. 8. Magnitude and phase of the scattered fields along the radiation
boundary for a circular PEC object surrounded with coating, r = 0:6 m,
r = 0:55 m, and r = 0:5 m in a two-layer medium. f = 300 MHz.

elements is 2462, and the number of FEM nodes is 1437. In
this example, we used four different sets of values,
which are given in Table I. Note that case (d) is the same as
the example in Fig. 3. Fig. 8 shows the magnitude and phase of
the scattered fields for the four different cases, respectively. The
gradual change in the scattered field from (a) through (d) clearly
depicts the effect of coating.

E. Rectangular Scatterer With Coating

Similarly, a rectangular PEC object used in Fig. 6 is
coated with different materials, as shown in Fig. 7(b). Again,

MHz, cm for the elliptical outer
boundary, cm, cm; cm,

cm; , and . The center of the object
is on the interface. The number of triangular elements is 3376,
and the number of FEM nodes is 1878. Four different sets
of values are used for the coating, which
are given in Table II. Note that case (d) is the same as Fig. 6.
Fig. 9 shows the magnitude and phase of the scattered fields for
the four different cases, respectively. Similar to the previous
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TABLE II
RECTANGULAR COATING MODELS

Fig. 9. Magnitude and phase of the scattered fields along the radia-
tion boundary for a coated rectangular PEC object, w = 12:5 cm,
h = 5:0 cm; w = 1:0 cm, w = 1:5 cm; � = 4, and � = 1 in a
two-layer medium. f = 300 MHz.

Fig. 10. Inhomogeneous scatterer residing in four layers of a six-layer back-
ground.

example, we can see the gradual change in the scattered field
from (a) through (d).

F. Inhomogeneous Scatterer Residing in Four Layers

Finally, an inhomogeneous scatterer residing in four layers of
a six-layer background, shown in Fig. 10, is analyzed. The in-
homogeneous scatterer is centered at the origin, which is 30-cm
long in the -direction and 20-cm long in the -direction. The
middle part of the scatterer is a PEC with a width of 10 cm.
There are dielectric coatings on the left and right sides of the
scatterer with and cm thick. The frequency of the
incident field is 300 MHz. A circular boundary with a radius of

Fig. 11. Scattered field along the radiation boundary for an inhomogeneous
scatterer residing in four layers.

20 cm is used as a radiation boundary, which has a circumfer-
ence of . The number of triangular elements is 4736, and
the number of FEM nodes is 2558.

Fig. 11 shows the scattered field along the radiation boundary
by using 5.7 PPWs (32 points) and 22.9 PPWs (144 points).
A very good agreement has been observed between these two
results.

As illustrated in this example, the hybrid FEM/SIM method
is capable of solving scattering problems with inhomogeneous
and composite structures residing in several layers of a layered
medium.

V. CONCLUSION

In this paper, we have extended the SIM to the problems
having a scatterer straddling several layers of a multilayered
medium. Furthermore, we use the SIM as a novel RBC to trun-
cate the computational domain of the FEM in a layered medium.
Once we calculate the layered-medium Green’s function for the
RBC, we can use it several times for any type of object inside
the artificial boundary. This hybrid SIM/FEM method is suit-
able for objects with arbitrary boundaries and structures. Nu-
merical results show an overall second-order convergence be-
cause of using linear basis and testing functions in the FEM
part. The number of points on the radiation boundary is only
around 5 PPWs, thus giving substantial saving in memory and
CPU time requirements. Applications are also demonstrated for
inhomogeneous and composite structures.
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