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ABSTRACT 

We fabricate and characterize mono- and few- layers of MoS2 and WSe2 on glass and SiO2/Si substrates. PbS quantum 
dots and/or Au nanoparticles are deposited on the fabricated thin metal dichalcogenide films by controlled drop casting 
and electron beam evaporation techniques. The reflection spectra of the fabricated structures are measured with a 
spatially resolved reflectometry setup. Both experimental and numerical results show that surface functionalization with 
metal nanoparticles can enhance atomically thin transition metal dichalcogenides’ absorption and scattering capabilities, 
however semiconducting quantum dots do not create such effect. 
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1. INTRODUCTION 
Being in the family of two-dimensional (2D) layered transition metal dichalcogenides (TMD), mono- and a few- layer of 
molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) show fine absorption and emission features, which 
change as a function of TMD thickness and excitation wavelength [1-9]. Their absorption spectra show three major 
peaks in the visible part of the electromagnetic spectrum, which correspond to their bandgap and excitons A and B [1, 2, 
6-9]. The strength and the width of these absorption peaks change with Fermi energy, in other words with temperature, 
doping level, and voltage (if applied). 

Metal nanoparticles and quantum dots also exhibit absorption resonances in the visible and near infrared regions. In fact, 
we can control where this resonance occurs by changing their dimensions, composition, and density [10]. In this work, 
we are primarily interested in how these different resonance mechanisms affect each other when we illuminate complex 
structures composed of TMDs, metal nanoparticles, and quantum dots.  

The interactions between TMD excitons and surface plasmons that are excited on the surface of metal nanoparticles are 
not completely understood. When we illuminate a TMD film decorated with metal nanoparticles, three additional 
interactions happen compared to illuminating a bare TMD film: (i) since metal nanoparticles absorb some of the incident 
energy, TMDs receive less light; (ii) induced dipole moment of metal nanoparticles make them act like local antennas 
and create secondary fields; and (iii) this secondary field gets reflected back from the substrate to the metal nanoparticle. 
If we neglect the third interaction for the sake of simplicity, we can expect having no enhanced field if the metal 
nanoparticles are so small compared to the wavelength and their density is low to have a localized plasmonic resonance. 
And if we think about the opposite scenario (i.e. metal nano-particles are not so small and the inter-particle distance is 
equal to or less than their diameter), we might observe an enhancement or a weakening. The question is under what 
condition(s) field enhancement occurs? 
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Preparation of Quantum Dots 

PbS nanocrystalline quantum dots are prepared via wet chemical reaction techniques; as synthesized quantum dots are 
shown by the Transmission Electron Microscopy (TEM) images in Figure 3 (a, b). Especially in the high resolution 
image, we can clearly see the crystalline planes of quantum dots. In Fig. 3 (c), we plot the absorption spectra of 
nanocrystalline quantum dots solutions with two different particles sizes (3.8 nm and 4.8 nm) measured using a 
Shimadzu UV-VISNIR UV-3600 spectrophotometer. PbS quantum dot sample has band edge absorption at infrared (IR) 
range however it also possesses good absorption at visible wavelength range.  

For the transfer of these quantum dots on to substrates, we use the layer-by-layer sequential spin coating technique. 
Ligand exchange process is performed with mercaptopropionic acid (MPA) for each layer. First, the touluene solution of 
PbS nanocrystals is spin coated on the substrate with a speed of 3000 rpm for 10 seconds. Subsequently few drops of 
MPA solution in methanol is added to the film on the substrate and wait for 20 seconds then spin with same speed and 
time. Finally, the film is washed by methanol and toluene. The process is repeated for 8 layers which results the 
thickness around 50-60 nm. Figure 3 (d) is an AFM image that shows the quantum dots on top of the substrate. 

Digital micropipet is used to drop cast metal nanoparticle solutions. 

Spectroscopy Experiments 

We measure the intensity of the light reflected from and transmitted through (if substrate is transparent) using a home-
made spectroscopy setup that consists of a halogen lamp, spectrometer, optical fibers, objective lenses, and irises. For 
details, please see [8].  

3. RESULTS 
TMDs and Quantum Dots 

 
Figure 4. (a) Reflection spectra measured on (red) MoS2-only, (blue) PbS quantum decorated only, and (green) PbS quantum dot 

decorated over MoS2 coated substrate. (b) Simulated absorption spectra of trilayer MoS2 with and without PbS quantum dots.   

First, we investigate the interaction between TMDs and quantum dots. Unlike metal nanoparticles of moderate size (i.e. 
diameter is 0.1 λ or bigger), the quantum dots we deal with are so small compared to the wavelength and their 
semiconducting nature prevents them to act like good tiny antennas. This is why here we do not expect any field 
enhancement. In order to verify this claim, we measure the reflectance from 3 different spots on the same silicon wafer: 
where there is only MoS2 film, only quantum dot decoration, and quantum dot decorated MoS2 film. Measurement 
results are shown by red, blue, and green lines in Fig. 4 (a), respectively. Our aim is to determine how much loss is 
experienced in TMD and/or quantum dot region but the lossy nature of silicon wafer prevents us to determine this 
directly from reflectance measurements. This is why in [9], we first show the excellent agreement between experimental 
and numerical results that we produce with Lumerical FDTD (www.lumerical.com) for the reflectance; then we calculate 
the absorptance within the TMD and quantum dot region based on the numerical solution only, as shown in Fig. 4 (b). 
Our simulation results infer that the average absorption of PbS/MoS2 film is equal to addition of quantum dots film into 
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