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Abstract— Equations of motion for harmonic waves in 
multilayered cylindrical structures are given in a compact 
form. This compact form helps us to efficiently form a 
boundary condition matrix of any N-layer structure based on 
material parameters for all cylindrical layers. Fluid-fluid, 
fluid-solid, and solid-fluid boundaries are supported. The 
search algorithm automatically searches for zeros of a 
boundary-condition determinant that yields the borehole 
velocity dispersion for a given frequency band. We describe 
how to obtain radial displacements and stress amplitudes for a 
chosen frequency that can be useful in estimating frequency 
dependent radial depth of investigation for the borehole 
Stoneley, flexural, and quadrupole modes in the presence of a 
casing and tool effects on sonic data.   An efficient 
formulation for calculating borehole dispersions plays an 
important role in the analysis and interpretation of measured 
borehole dispersions in the presence of a sonic tool structure 
and radially heterogeneous formation. Applications of this 
formulation in the analysis of field data will be presented. 
Keywords: Elastic wave propagation; multilayered 
cylindrical structures; borehole waves  

I.  INTRODUCTION  
Sonic techniques in geophysical prospecting involve elastic 
wave velocity measurements that are performed by placing 
acoustic transmitters and receivers in a fluid-filled borehole 
[1-7]. However, generally the geometry is more complicated 
than this. For example, a heavy fluid model can be used to 
account for the effect of a logging tool which makes it a 3-
layer structure. A steel collar is used to meet the strength 
requirements for tough logging conditions encountered in 
deviated and horizontal drilling. In addition steel casing is 
cemented to a formation that also introduces additional 
cylindrical layers in the logging environment. Moreover, 
Sinha et al. [8] have shown that the effect of near-wellbore 
alteration can be simulated by using several layers back to 
back where the layer parameters change gradually from casing 
properties to formation parameters. In this case, number of 
layers can be as large 20. 
Even though different configurations create different boundary 
conditions to be satisfied, from the sonic data analysis point of 
view, the ultimate goal is the same, i.e., process the signals 
recorded at an array of receivers to obtain compressional and 
shear wave velocities in the surrounding formation. These 
velocities are generally used in seismic surveys for the time-
to-depth conversion and for estimating other formation 

parameters, such as porosity and lithology. Depending upon 
the type of transmitter used and as a result of eccentering, one 
can excite axisymmetric (n=0), flexural (n=1), and quadrupole 
(n=2) family of modes propagating along the borehole. 
Sinha et al. have studied an open hole (2-layer) and a steel 
pipe in a fluid-filled borehole configuration in detail in [9, 10] 
and described how to build boundary condition matrices to 
obtain modal amplitudes for 2 and 4-layer cases. The aim of 
this work is to extend this approach to any N-layer structure.  
To this end, we first present a very general way of writing 
equations of motion for harmonic waves in multilayered 
cylindrical structures. Next, we describe an efficient method to 
form a boundary condition matrix whose determinant vanishes 
for certain frequency-slowness values that defines the 
slowness dispersion of a guided mode. The size of the matrix 
depends on the number of cylindrical layers and the type of 
boundary conditions. From the computational point of view, 
the number of layers can go up to 36 for n ≥ 1, and up to 50 
for n = 0, if double precision is used, which allows us to invert 
matrices as big as 200×200 accurately.   

II. MATHEMATICAL FORMULATION  

 
Figure 1 Six-layer geometry: fluid-1 (from center to r = e), fluid-2 (from r = e 
to r = d), solid-1 (from r = d to r = c), fluid-3 (from r = c to r = b), solid-2 
(from r = b to r = a), and solid-3 (formation, from r = a to r = ∞). 

Equations of motion for harmonic waves in cylindrical 
structures are given in [11]. A set of solutions for an open hole 
and a concentric steel pipe in a water-filled borehole are given 
in [9, 10, 12]. Here, we present a more general way of writing 
these equations which makes it possible to analyze any kind of 
multilayered cylindrical structures.  
Assume that we have an N-layer cylindrical structure, where 
each layer is an isotropic material. Layer-m is defined by ρm, 
Vc,m and Vs,m which are mass density, compressional and shear 
wave velocities, respectively. Figure 1 shows an example of 6-
layer geometry where the inner-most layer (a cylindrical 
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column) is the heavy-fluid column (tool); between the tool and 
casing, we have borehole fluid, between the casing and 
formation, we first have a thin liquid, then a solid layer. In this 
configuration, we have fluid-fluid, fluid-solid, and solid-solid 
boundaries.  
In earlier papers [9, 10, 12], equations of motions for 
harmonic waves are written with the variables of τrr, τθθ, τzz, τrz, 
τrθ, and τzθ which are the stress components; ur, uθ, and uz 
which are the displacement components. One can establish a 
search routine to find the resonant mode velocities (V) for a 
given frequency (f) in a (f, V) search domain. Here we have a 
slightly different search domain (Ω, ζ), where Ω = ωa/Vs,N and 
ζ  = ka which is converted to (f, V) by using  
 ,/2=,/= ,, aVfVV NsNs πζ ΩΩ  (1) 
where ω=2πf is the radial frequency, a = rN-1 is the borehole 
radius, k is the resonant mode's wavenumber. Figure 2 shows 
an example of the conversion from one domain to another one 
for a flexural mode discussed in the Numerical Results 
section. The blue circles denote zeros of boundary condition 
determinant matrix in (Ω, ζ) space. Red, green, and cyan 
dashed lines show formation compressional and shear 
velocities, and fluid compressional, respectively. (b) 
Slowness-frequency dispersion (f, V) obtained from results in 
Figure 2a. 

 
Figure 2 (a) The blue circles denote zeros of boundary condition determinant 
matrix in (Ω, ζ) space. Red, green, and cyan dashed lines show formation 
compressional and shear velocities, and fluid compressional, respectively. (b) 
Slowness-frequency dispersion (f, V) obtained from results in Figure 2a. 

In this work we look for the zeros of determinant matrix for a 
fixed ζ value over a range of Ω values. To speed up this 
process, which has to be done for each ζ separately, we can 
narrow the range by putting upper and narrow limits. For 
example, we know that resonant mode has to occur for a 
velocity (V) value, which is slower than or equal to the 
formation shear velocity. It should also be noted that Ω can be 
complex; in this case mode search domain becomes a two-
dimensional domain and the transformation in Eq. 1 should be 
carried out by using the real part of Ω. 
Expressing the displacement components in cylindrical 
coordinates in terms of a standard scalar and vector potentials 
and using constitutive relations for a homogeneous material, 
we obtain general expressions for the displacement and stress 
components as follows  
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 where Λ is r, θ, or z; Ξ is rr, rθ, or rz; )(m
pC 's are unknown 

coefficients to be determined in the mth layer. The elements of 
Eq.s 2 and 3 are given in Tables I, II, III, and IV. The detail of 
the formulation is as follows. For the inner-most layer (m=0), 

)(= rJF mnn ψψ  and 0=ψ
nG , while ψm is either αm or βm; for 

the outer-most layer (m = N), )(= rHF mnn ψψ  and 0=ψ
nG ; 

 for other layers (1<m<N), )(= rJF mnn ψψ  and 

)(= rYG mnn ψψ . Here, Jn and Yn are nth order first and second 
kind Bessel functions and Hn is nth order Hankel function of 
second kind.  
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Table 1Displacement Components 
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Table 3 Stress Component: )(
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Note that we use only first four terms when n = 0, for the 
lowest order axi-symmetric mode. 
The unknown amplitudes associated with different cylindrical 
layers are determined by satisfying the appropriate boundary 
conditions at the relevant interfaces. The solution to a 
cylindrically layered system can be obtained by satisfying 
appropriate boundary conditions at all the interfaces. These 
conditions can be expressed in terms of a matrix equation Lc 
= 0, where the vector c denotes the unknown amplitude 
coefficients. For nontrivial solutions of this matrix equation, 
we require that the determinant of coefficient matrix L be 
zero. By the provided formulation, we can form the L matrix 
automatically by inserting appropriate stress and velocity 
elements into corresponding boundary conditions at various 
interfaces. When we obtain |L| = 0 for a given pair of Ω and ζ, 
we know the mode velocity for a given frequency. We can 
then obtain the amplitude ratios by assigning one of the )(m

pC  

to an arbitrary number and calculate the other )(m
pC  values. 

Table 5 Material Properties of a 6-Layer Geometry 
m ρ (g/cm3) Vc,m (m/s) Vs,m (m/s) rinner (cm) 

1 5000 1000 - 0 
2 1000 1550 - 5 
3 7900 5800 3100 8 
4 1050 1500 - 9 
5 2850 4050 2550 10 
6 2800 4000 2500 11 

II. COMPUTATIONAL RESULTS 
Consider a 6-layer geometry, as shown in Figure 1. The 
material properties of each layer are given in Table V. To 
check the accuracy of our formulation and implementation, we 
first obtain borehole slowness dispersions by using the 
Green’s function formulation [13]. This formulation yields 
synthetic waveforms at an array of receivers produced by a 
monopole, dipole or quadrupole source placed on the borehole 
axis. Synthetic waveforms are then processed by a modified 
matrix pencil algorithm [14] to isolate both non-dispersive and 
dispersive arrivals in the wavetrain. For this problem, we use 
21 receivers. The distance between the source and first 
receiver is 1 m and inter-receiver spacing is 10 cm.  
Figure 3 shows the borehole slowness dispersions for a 
monopole (n = 0), a dipole (n = 1), and a quadrupole (n = 2) 
modes obtained by processing the recorded synthetic 
waveforms by a modified matrix pencil algorithm (blue 
crossed lines) and the Mode Search algorithm (red circles) 
described in this work. The results reveal a very good 
agreement between these two different formulations. 

 
Figure 3 Comparison of slownesses obtained with a Mode Search algorithm 
(red circles) and Green’s Function approach (blue crosses) for n = {0, 1, 2}. 

Next we plot relative displacement and stress amplitudes for 
the three different modes shown in Figure 3 at f = 6 kHz in 
Figures 4, 5, and 6. ur and τrr components show continuity for 
all of the cases, as expected. However, for the other 
components we observe jumps on the interfaces. The shear 
stress τrz is always zero in inviscid liquids.  

III. CONCLUSIONS 
We present an efficient way of writing equations of motion for 
harmonic waves in multilayered cylindrical structures. This 
compact form enables us to obtain boundary condition matrix 
and radial displacement and stress amplitudes in a systematic 
way. The accuracy of the algorithm is validated by comparing 
results from the Green’s function method. This work would 
help in the analysis and interpretation of sonic response in 
open as well as cased holes in the presence of near-wellbore 
alteration and tool effects.  

ββ ζββ 1
22 )(/ +−+− nmnm GrGn

rnFi n /βζ
rnGi n /βζ
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Figure 4 Radial variations of (a) displacements, and (b) stress amplitudes 
associated with the Stoneley mode at 6 kHz. Black vertical lines depict 
interfaces between different layers. 

 
Figure 5 Follows the notation in Figure 5 for a dipole source. 
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