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Abstract—This work deals with efficient frequency domain
solvers specifically developed to design optical and plasmonic
devices. Homogeneous and inhomogeneous objects embedded in
multilayered media are analyzed using Method of Moment (MoM)
and hybrid MoM-Finite Element Method (FEM), respectively. The
capability of working with materials of complex permittivity makes
these algorithms valid and useful for both microwave and optical
regimes. Based on the good match between numerical results
obtained with these algorithms and the ones found in the literature,
we propose an optical antenna optimum for a semiconductor laser
diode operating at a wavelength of 830 nm and an infrared sensor
compatible with present silicon technology based optical devices.

I. INTRODUCTION

Over the last two decades, there has been enormous progress
in nanoscale fabrication and characterization techniques, which
motivate many researchers around the globe to develop novel
optical nano devices and apparatus. Plasmonic waveguides [1],
[2], power dividers, ring resonators, directional couplers [3],
optical antennas [4], [5] and filters [6] are some of those de-
vices under intensive investigations. In the pre-fabrication stage,
numerical solvers are quite helpful for researchers to select
design parameters (such as material composition, dimensions,
placement, etc.) for their specific problem of interest. For this
purpose, time domain solvers are commonly used. However, it
is very well known that time-domain methods might not be able
to provide very accurate results for high-Q structures. One way
to overcome this problem is using a frequency domain method.

Frequency domain solvers discretize the solution domain,
build a matrix, and invert that matrix to obtain the solution.
Smaller solution domain means smaller matrix, and smaller
matrix means less memory to store and less CPU time to
invert. This is why every single step decreasing the size
of the solution domain may greatly reduce CPU time and
memory requirements. In this direction, this work deals first
with developing a surface integral equation (SIE) frequency
domain solver based on Method of Moments to calculate

electromagnetic (EM) scattered field from homogeneous objects
embedded in a layered medium. Then, this SIE solver is adopted
as a radiation boundary, where the volume enclosed by that
boundary is meshed and solved with a finite element method
(FEM) frequency domain solver. For the implementation of
3D radiation boundary condition, an artificial boundary, Γ, is
applied to truncate the arbitrarily 3D shaped inhomogenous
scatterer(s) from the layered medium. The FEM is applied in
the interior region to calculate the field, while the method of
moments is applied on the outer boundary, Γ, to relate the field
and the induced current. Due to the form of the chosen basis
functions and meshing, the fields and currents on the boundary
for the FEM are obtained from the solution of the final matrix
equation without using any interpolation. This algorithm stores
the sparse and symmetric FEM matrix by using a row-indexed
scheme to reach its the non-zero elements quickly for the sake
of computational efficiency; and it solves for the coupled SIE-
FEM matrix by using the biconjugate-gradient method that
requires O(KN4/3) CPU time and O(N4/3) memory for the
MoM part and O(KN) CPU time and O(N) memory for the
FEM part, where N is the number of unknowns and K is
the number of iterations. In addition, the CPU time for the
evaluation of layered medium Green’s functions is reduced by
a simple interpolation technique. An important feature of the
implementation is the use of wavelength dependent complex
permittivity to describe metals [7], which is extremely crucial
for the design and analyses of plasmonic structures and optical
antennas.

The accuracy of the implementation is validated by several
numerical examples demonstrating the optical near field en-
hancement and surface plasmon resonance of a single nanopar-
ticle (with MoM) and multiple nanoparticles (with MoM-FEM)
in a multilayered background. In this work, we present two
interesting outcomes of this research: an optical antenna specif-
ically designed for a semiconductor laser diode operating at
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a wavelength of 830 nm and an infrared sensor with present
silicon technology based optical devices.

II. FORMULATION

In this section, we briefly describe the theory behind MoM,
FEM, and hybrid MoM-FEM solver.

A. Method of Moments

Assume that there is an arbitrarily shaped homogeneous
object with the surface S, electrical permittivity εs, and perme-
ability µs. The object is located in a multilayered background.
Layer-i is described by its own permittivity, permeability, and
height (εi, µs, and hi), where i = 1, 2, · · · , NL and NL is the
number of layers. In order to calculate the scattered EM field
from the object, one can solve for the electric field integral
equations (EFIE) for the exterior and interior problems. The
former can be written as follows

E = −jωµi〈K̄ J ;J〉
+ 1

jωεi
∇〈GEJ

Φ ,∇′ · J〉 + 〈ḠEM ;M〉 (1)

where J and M are induced electric and magnetic currents,
respectively, due to incident fields; ω is the angular frequency;
K̄J , GEJ

Φ , ḠEM are different forms of dyadic layered medium
Green’s functions [8]. For the numerical solution, the unknown
currents, J and M, are expended in terms of the basis functions,
fn and bn, as

J(r) =
∑Nb

n=1 jnfn(r),
M(r) =

∑Nb

n=1 mnbn(r),
(2)

where Nb is the number of interior edges on the surface of
the object, jn and mn are the unknown coefficients for electric
and magnetic current densities, respectively. When we apply
the Galerkin type MoM, with the same type of functions for
the testing fm and bm, we obtain

Sm =
Nb∑

n=1

jn

[
Z(1)

mn + Z(2)
mn

]
+

Ns∑

n=1

mnZ(3)
mn (3)

where
Sm =

∫

s
fm · Eincds, (4)

Z(1)
mn = jkiηi

∫

s

∫

s′
fm · KJ fnds′ds, (5)

Z(2)
mn =

jηi

ki

∫

s

∫

s′
∇ · fm · GEJ

Φ ∇′ · fnds′ds, (6)

Z(3)
mn = P .V .

∫
s

∫
s′ fm ·∇′GEM × fnds′ds

− 1
2

∫
s fm · fnds,

(7)

where ki and ηi wavenumber and intrinsic impedance of layer-
i, respectively. EFIE for the interior problem is not provided
for the sake of brevity.

The surface of the object is modeled using planar triangular
patches and RWG (Rao, Wilton, Glisson) basis functions [9]
are used to approximate the surface currents. For the numerical
integration, Gaussian quadrature rules are followed and Duffy
transformation is used for the self interaction terms. In order
to reduce the CPU time for the evaluation of layered medium
Green’s functions, a simple interpolation technique is imple-
mented.

B. Finite Element Method

Assume that a finite domain is discretized with tetrahedral
elements and volume basis functions Φn(r) to expand the
unknown electric field along the whole volume. The numbers
of inner and boundary edges are Ni and Nb, respectively, where
N = Ni +Nb. Then, we can expand the unknown electric field
and current as

E =
∑N

n=1 EnΦn(r)
=

∑Ni

n=1 Ei
nΦn(r) +

∑Nb

n=1 Eb
nΦn(r),

(8)

n̂ × H =
Nb∑

n=1

jnfn(r) (9)

Then, the weak form volume electric field integral equation can
be written as

[A′ + B′]E + GJ = Si (10)

where En, Jn are unknown coefficients, Si are source and
A′,B′,G are stiffness matrices defined as,

Si = −jk0η0

∫

v
Φi(r) · Sdv

A′
i,n =

∫

v
(µ−1

r ∇× Φn(r)) · (∇× Φi(r))dv

B′
i,n = −ε̄rk

2
0

∫

v
Φn(r) · Φi(r)dv

Gi,n = jwµ0

∮

s
fn(r) × Φi(r)ds (11)

Furthermore, the matrix form can be written as,

AEi + BEb = Si (12)

BTEi + CEb + GJ = 0 (13)

where matrices A,B, and, C are sub-matrices of the stiffness
matrix {A′ + B′}.

C. Coupling FEM and MoM Matrices

By using M(r) = −n̂×E|s, we can couple FEM and MoM
equations as




A B
BT C G

Z(3) D








Ei

Eb

J



 =




Si

0
Se



 , (14)
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where D = Z(1) + Z(2). However, it should be noted that the
above formulation is valid only if the FEM mesh matches MoM
mesh on the boundary. In order to couple arbitrary meshes, some
additional interpolation functions are required.

The matrix Eq. 14 is a straight-forward solution but not the
most efficient way. In order to take advantage of having a sparse
and symmetric FEM matrix, the matrix equations 3 and 14 are
reformulated as follows

D J + F Eb = Se, (15)

and
[

A B
BT C

] [
Ei

Eb

]
=

[
0 0
0 G

] [
0
J

]
+

[
Si

0

]
, (16)

respectively, where F = Z(3). In Eq. 15, we can leave the
electric current alone on the left hand side and substitute it
into Eq. 16

[
A B
BT C − GD−1F

] [
Ei

Eb

]
=

[
Si

D−1Se

]
, (17)

which is more compact than Eq. 14.
Since the FEM matrix is symmetric, the Hermitian of this

matrix is simply its complex conjugate. Moreover, the FEM
matrix is sparse. By using a row-indexed scheme [10], we
can easily and efficiently reach the non-zero elements of the
FEM matrix, which is a very important property for the solvers
constructed on the biconjugate-gradient (BCG) method . As a
result of these, it is more efficient to store the FEM and MoM
matrices seperately as follows,

([
A B
BT C

]
+

[
0 0
0 −GD−1F

])

×
[

Ei

Eb

]
=

[
Si

D−1Se

] . (18)

In this work, the biconjugate-gradient (BCG) method is used
to solve the matrix equation which requires O(KN4/3) CPU
time and O(N4/3) memory for the MoM part and, O(KN)
CPU time and O(N) memory for the FEM part, where N is
the number of unknowns and K is the number of iterations.

III. NUMERICAL RESULTS

For both examples, the experimental values for the optical
constants of gold and silver are used [7].

A. An Optical Antenna

In [4], researchers studied optical antennas both experimen-
tally and numerically. Similarly, in this work we try to design an
antenna for the optimum field confinement and enhancement,
assuming the laser in use works at a wavelength of 830 nm.
Fig. 1 (a) shows the geometrical design parameters for the
nanorods with rounded ends, which are half spheres with radius

L

R
dL

(a)

c

Fig. 1. Optical antenna consists of a two nanorods with rounded ends. (a) 2D
view with design parameters, (b) 3D view with triangular mesh.

R. Between these half spheres, there is a cylinder with a radius
of R and a height of Lc, and hence the total length of each
nanorod is L = Lc + 2R. The distance between nanorod pairs
is d. Fig. 1 (b) shows the MoM mesh used for SIE solution,
where the surface is sampled with 60 points per wavelength
sampling density.

In order to find the optimum antenna parameters, we set R
and d to a fixed value first, and then changed Lc for the range
of wavelength between 600 nm and 1000 nm, and we repeat
this step for several values of R and d. At the end of these
simulations, we concluded that gold nanorods with Lc = 60
nm, R = d = 40 nm yields the optimum design for λ = 830
nm. Fig. 2 shows the average power recorded 300 nm above
the center of the optical antenna for the range of wavelengths
between 650 nm and 950 nm.
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Fig. 2. Average power received 300 nm above the optical antenna for range
of wavelengths between 650 nm and 950 nm for gold nanorods with Lc = 60
nm, R = d = 40 nm.

B. An Infrared Sensor

Periodically aligned metal nanoparticles are commonly used
to design plasmonic sensors working in the visible light regime
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[1], [2]. In this work, we investigate the possibility of such a
sensor working in the infrared band. Fig. 3 shows the reflection
from/transmission through a cubic silver nanoparticle array
embedded on top of a silicon slide, where the dimensions of
each silver cube are 1µm × 1µm × 0.5µm , and inter-particle
spacing (d, edge to edge distance) is 1µm; refractive index of
the silicon is assumed to be 3.45.

In the absence of an enhanced transmission, periodic metal
micro-particle array can still be used as an infrared sensor
with a resonance wavelength of 2.06 µm, which can work
efficiently with optically pumped semiconductor disk lasers.
Another interesting result is that the reflection is less than 17%
for the wavelengths shorter than 2µm. Gold micro-particles
provide higher transmission for the same setup and frequency
range. Major outcomes of this study will be discussed in great
detail at the conference.
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Fig. 3. Reflection from/transmission through cubic silver nanoparticle array
embedded on top of a silicon slide.

IV. CONCLUSION

We have implemented classical frequency domain solvers
and hybridized them to design optical and plasmonic devices
accurately. The use of layered medium Green’s functions and
Lorentz-Drude model for metals enable us to work both in mi-
crowave and optical regimes. Based on the good match between
numerical results obtained with these algorithms and the ones
found in the literature, we propose an optical antenna optimum
for a semiconductor laser diode operating at a wavelength of
830 nm and an infrared sensor compatible with present silicon
technology based optical devices.
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