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Abstract—This paper presents a comprehensive study of op-
tical frequency comb generation in a silicon nitride microres-
onator coupled to a silicon nitride waveguide. We provide a
complete numerical framework combining mode solvers, coupled-
mode theory, and the Lugiato-Lefever equation to accurately
model the system. Both numerical simulations and experimental
measurements demonstrate the generation of a frequency comb
with a 99.6 GHz free spectral range, characterized by a resonant
linewidth (full width at half maximum) of 120 MHz, corre-
sponding to a high quality factor of 1.6 million. Discrepancies
between the calculated and experimental spectra are attributed
to experimental limitations, such as photodetector noise and
fabrication imperfections.

Index Terms—Dielectric waveguides, dielectric rings, coupled
mode theory, Lugiato-Lefever equation, optical frequency comb
generation.

I. INTRODUCTION

Optical frequency combs, generated via nonlinear pro-
cesses in microresonators, have emerged as a transformative
technology for producing coherent, equally spaced spectral
lines from a single laser source. As illustrated in Fig. 1,
this process begins when a continuous-wave laser excites a
dielectric waveguide coupled to a microresonator (e.g., a ring
resonator), generating an optical field into the cavity. Inside
the microresonator, strong light confinement and nonlinear ef-
fects—primarily four-wave mixing—broaden the pump spec-
trum, creating a comb-like output [1]-[8]. Frequency combs
have become indispensable across diverse fields due to their
exceptional stability and precision. For instance, they serve as
the backbone for optical atomic clocks [4], enable ultrafast
spectroscopy [5], and enhance high-capacity telecommunica-
tions through wavelength-division multiplexing [6]. Moreover,
their applications extend to microwave photonics and funda-
mental physics, where they provide unmatched frequency ref-
erences for testing physical constants and quantum phenomena
[7].

To analyze the efficiency, stability, and spectral characteris-
tics of frequency comb generation, it is essential to determine
the electromagnetic modes within both the dielectric waveg-
uide and the microresonator. Coupled-mode theory (CMT)
[2], [8]-[11] and the Lugiato-Lefever Equation (LLE) [12]-
[16] are widely used to model the linear and nonlinear
dynamics of frequency comb formation in microresonators, but
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Fig. 1. A dielectric bus waveguide next to a dielectric ring: (a) three- and (b)

two-dimensional views. The ring is centered at the origin. R, w,, and h,
are the ring’s central radius, width, and height. g is the gap between the ring
and waveguide. wy, and hy, are the bus waveguide’s width and height. The bus
waveguide is excited with a laser at the wavelength of A. The computation
domain is meshed with a rectangular grid on the zz (or pz) plane. The mesh
density is set to A/30.

these require accurate mode characterization. Key parameters
such as resonance frequencies, effective mode volumes (Veg),
nonlinear coefficient (), first and second-order dispersion
coefficients (D7 and D-) can be determined through numerical
mode solvers. Then, these parameters can be incorporated into
CMT [2], [9]-[11] to obtain the transmission spectrum around
the resonance wavelength and quality factor (Q). In the final
steps, these features can be incorporated into LLE [12]-[16] to
analyze the nonlinear nature of the frequency comb generation.

In this work, we first provide compact formulations to
calculate the modes of electromagnetic waves propagating
in dielectric waveguides and rings. Since the final equations
are non-linear, we use the shooting method [17], [18] to
find the resonant modes. Second, we use CMT [2], [9]-
[11] for analyzing energy transfer between the waveguide
and resonator, capturing the resonance conditions and modal
interactions critical for optical frequency comb design. Third,
we briefly describe how we solve the LLE [12]-[16] to predict
the generation of a frequency comb over a wide range of
frequencies. After explaining our experimental characteriza-
tion setup, we provide comparisons of our numerical and
experimental results, and we conclude.

II. FORMULATION: MODE SOLVERS
A. Dielectric Waveguide Mode Solver

Assume an infinitely long dielectric waveguide with a width
of wp and thickness of hy; is placed parallel to the y-axis



as illustrated in Fig. 1 (a). It is excited with a laser light
with a wavelength of A. The electric field component of
the electromagnetic wave propagating inside the dielectric
waveguide is given by the following expression using the
phasor notation

E(z,y,2) = [#F(x, 2) + §Ey(z, 2) + 2E.(x, 2)] e Y,
1

where [, is the propagation constant of the mode concen-
trated in the dielectric waveguide. Since the fields outside the
waveguide decay exponentially [19], we do not assume two
different propagation constants, e.g., one for the fields inside
and another one for the fields outside the waveguide.

To determine the field profiles and the propagation constant,
we substitute Eq. (1) into the vector wave equation for the
electric field given by

1
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where kg = w./lo€g is the free-space wavenumber, and ¢, =
€/eo is the relative permittivity, which is a function of position.
Then, we expand all the terms in Cartesian coordinates, obtain
three equations, and cast these equations into the following
matrix equation

is an integer representing the azimuthal mode order and S is
the propagation constant. Then, the electric (E) and magnetic
(H) fields can be represented as sums of three orthogonal
vectors as follows due to the cylindrical symmetry

E(p,¢,2) = {ﬁEp(p, 2) + ¢By(p, z) + 2Ez(p,z)} e—imé.
12)

H(P, ¢7 Z) = {ﬁHP(pv Z) + ¢H¢(p7 Z) + éHz(pa Z)} 6_]m¢7

(13)
where p is the radial distance from the origin to the point
projected onto the xy plane, ¢ is the azimuthal angle, and 2
is the height or vertical distance from the zy plane.

We derive the wave equations in cylindrical coordinates
from Maxwell’s equations. Then we express Hy in terms of E,
and I/, and express Iy in terms of H, and H, and obtain a set
of equations. After moving all the terms with m? to the right
sides, replacing those m?s with 32 R%’s, and multiplying both
sides of all equations with p?/R2, we cast the final versions
of equations into the following matrix equation
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The unknown quantity (3, appears in Eqgs. (7) and (9). This
quantity must be determined in parallel with the field compo-
nents, as we will discuss shortly.

B. Dielectric Ring Mode Solver

We follow a similar procedure in the cylindrical coordinate
system to determine the field profiles and propagation constant
for an electromagnetic wave confined in a dielectric ring.

Assume a dielectric ring with a central radius of R, is placed
at the origin as illustrated in Fig. 1. When an electromagnetic
wave propagates inside this ring without any loss, in other
words, when the resonance condition is satisfied, then the pha-
sor term should have an e~7™¢ dependence, where m = SR,
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The unknown quantity m appears in Egs. (17), (18), (23) and
(24).

C. Shooting Method

Since we have the unknown propagation constant 3, and m
in the first and second Hamiltonians, respectively, we first use
approximate [, [17] and m [18] values to solve the Egs. (3)
and (14), and we obtain approximate eigenvalues (propagation
constants). Then, we use these new propagation constants
to form the new Hamiltonian matrices and solve the matrix
equations again. We repeat this process till the differences
between the previous and current eigenvalues are negligibly
small.

D. Numerical Solution with Finite Differences

We discretize the computational domain along a rectangular
grid by selecting N, (or N,) uniformly distributed samples
along the = (or p) direction for the dielectric waveguide (ring)
and N, uniformly distributed samples along the z-direction.
We approximate the first-order derivatives 0 f/0¢ and second-
order derivatives 9%f/9¢? at a point ¢ using the following
fourth-order stencil formulas

of —I(CHM B+ -BIC=R4I(C=2D) (37
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where h is the unit mesh length along the ¢ direction.

We impose Neumann boundary conditions [20] by setting
the normal derivatives of the field to zero at the outer bound-
aries of the computational domain.

III. CMT, FOUR-PORT MODEL, AND LLE

Assume that now we have both a dielectric waveguide and
a dielectric ring resonator. They are separated by a gap g. The
electric and magnetic field distributions of the fundamental
modes in the waveguide and resonator are denoted as E,,,
H, and E,, H,, respectively, which are determined with our
mode solvers. The coupling strength between the two modes
is governed by the overlap integral:

WEeQ
I'=—
4 Jv
where w is the angular frequency of the optical mode and Z,
is the impedance of free space.
The mode overlap factor is given by the normalized integral
of the fields in the coupling region:

(E;,-E, + ZgH;, - H,)dV, (33)
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Note that 2 is dimensionless, and it determines the efficiency
of energy transfer between the waveguide and the ring res-
onator.

The four-port model, as depicted in Fig. 2, treats the bus
waveguide as if it is made from input and output waveguides
connected through a resonant ring cavity. The optical fields in

K (34)

Four Port
System

a; b,

Fig. 2. A four-port system consisting of a bus dielectric waveguide and a
ring resonator. The parameter a1 represents the incident wave amplitude at
the input port of the waveguide, while b2 is the amplitude of the wave coupled
from the waveguide to the ring. This wave travels through the ring, and its
amplitude becomes a4 after experiencing propagation effects such as phase
shift and attenuation.

the system are described by the coupling matrix:

e T

where 7 is the transmission coefficients, respectively, and
satisfy the relation |7|? 4 || = 1. The field circulating inside
the resonator undergoes attenuation and phase accumulation,
leading to the relation: ay = bze™*Le™78L, where a is the
loss coefficient.

We define ¢ = e~“% and # = BL to analyze the system’s
transmission properties. The power transmission ratio from
port a; to port by is then given by

(35)
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(36)

which characterizes the frequency-dependent response of the
system, essential for understanding comb generation.
The coupling quality factor, ()., determines how efficiently
energy is coupled into the resonator and is given by:
kon L
Qc = J )

K2

(37)

where kg = w/co and L = 27 R, is the round-trip length of
the resonator.

The group index, which describes the dispersion properties
of the ring resonator, is given by:

rin neg®lforar — nogtlr—ar
ng = ngg®ls + fo | = . . (3%)

2Af
where n’® = B/ko = BAo/27 is the effective refractive
index of the ring at a given frequency. Once n is determined,
then we can estimate the free spectral range (FSR) with the
following approximate formula

Co

FSRa rox ¥ 55 -
PP 2mng R,

(39)

Note that we can obtain the second-order dispersion coefficient
(D3), which is needed for the LLE solver, with the following
expression

2 ring
2d Mot
dw?

ring

c dn

Dy = —— |2w eff
w dw




As previously mentioned, we can also solve the LLE, given
by the following formula, to study frequency comb generation
6E 1 . Ny . 82E
i (2Tp +z50> E+zn—0|E|2E+zD2W
where 7, = 1/Apwnnm is the photon lifetime, Apwpwm is
the resonance linewidth, §o = w, — wp is the pump-resonance
detuning, w,, is the pump frequency, wy is the closest resonance
frequency of the microresonator, ng is the linear refractive
index of the resonator material, no is the nonlinear refractive
index (Kerr nonlinearity), 6 represents the azimuthal angle
around the microresonator, and F' is the external continuous
wave pump field [12]-[16].

We employ a split-step Fourier method to efficiently and ac-
curately solve the LLE for time evolution [14]. This approach
leverages the computational advantages of solving linear and
nonlinear components in their respective domains. Specifically,
the linear part is solved in the Fourier domain, while the
nonlinear part is solved in the azimuthal domain. To mitigate
first-order inaccuracies arising from the non-commutative na-
ture of these operations, we implement a symmetric second-
order splitting scheme. This involves solving the linear part
for half a step, followed by a full step for the nonlinear
part, and concluding with another half-step for the linear part.
This symmetric splitting minimizes computational cost while
maintaining a second-order accuracy [14].

+ F, (40)

IV. EXPERIMENTAL SETUP

Figure 3 depicts the experimental setup designed to investi-
gate frequency comb formation dynamics, spectral broadening,
and coherence properties. This system utilizes a primary pump
laser to initiate soliton frequency comb generation through
nonlinear effects such as Kerr nonlinearity and four-wave mix-
ing. An auxiliary laser is employed to stabilize the resonator
power and expand the soliton access window. Optical isolators
are placed after each laser to suppress back reflections. The
pump light is amplified by an erbium-doped fiber amplifier
(EDFA) to enhance the signal strength before being directed
into the microresonator via a circulator. A second circulator
routes the output signal towards multiple diagnostic instru-
ments and enables the injection of the auxiliary laser into
the resonator in the opposite direction of the primary pump.
Two photodetectors convert the optical signals into electrical
signals, allowing for time-domain pulse train analysis on an
oscilloscope. An optical spectrum analyzer is used to capture
and analyze the spectral characteristics of the generated comb.

V. NUMERICAL AND EXPERIMENTAL RESULTS

We investigate frequency comb generation both experi-
mentally and numerically, utilizing a high-Q microresonator
based on a silicon nitride (SizNy) ring waveguide. The central
radius of the ring resonator is R. = 225pum, with a ring
width of w, = 1.55um and a height of h, = 0.8 um.
The bus waveguide, which couples light into the resonator,
has identical cross-sectional dimensions (1.55 yum x 0.8 um).
The gap between the waveguide and ring is g = 0.5 um.
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Fig. 3. Schematic of the experimental setup for frequency comb generation
and analysis. The red solid lines indicate the primary laser path for soliton
frequency comb generation, while the red dashed lines represent the auxiliary
laser used to compensate for the resonator’s thermal shift. The output is
analyzed using photodetectors, an oscilloscope, and an optical spectrum
analyzer.

The waveguide and ring resonator are fabricated from SigNy.
The surrounding cladding material is SiO,. For numerical
calculations, the propagation loss is assumed to be o = 0.06
dB/cm.
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Fig. 4. Electric field intensity of the orthogonal components of the first
resonant modes inside the dielectric waveguide (left) and ring (right). White
dashed lines indicate the positions of the dielectric waveguide and ring.

For the numerical solution, we use a 200 by 80 grid
with a 25 nm mesh length along the horizontal and vertical
axes. Figures 4 (a)—(c) show the z, y, and z components of
the electric field inside the dielectric waveguide for the first
resonant mode determined with the numerical solution of Eq.
(3) assuming an excitation wavelength of A = 1550 nm. The
effective index is computed to be 1.8436. Figures 4 (d)-(f)
show the first resonant mode’s orthogonal components along
the p, ¢, and z directions, determined by solving Eq. (14).



Since the ring’s radius is very large compared to the )\, the
effective index of the first resonant mode is 1.8448, very close
to the effective index of the waveguide.

With Eq. (38), the group index is determined to be 2.1292,
corresponding to an expected FSR of 99.6 GHz based on Eq.
(39). Figure 5 shows the transmission spectrum obtained with
the numerical solution of Eq. (36). The spectral difference
between the two dips, in other words, the FSR, is calculated
to be 99.6 GHz, which agrees with the approximate number
determined with Eq. (39).
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Fig. 5. Normalized transmission vs. excitation frequency obtained with the
numerical solution of Eq. (36).

Figure 6 presents a detailed view of the resonance ob-
served in both our numerical simulations and experimental
measurements. To validate these simulations experimentally,
we employed a setup with a primary pump laser operating
with low power at 1550.183 nm to characterize the resonator’s
linewidth. Both results exhibit a Lorentzian shape with a
linewidth (full width at half maximum) of 120 MHz. This
narrow linewidth corresponds to a high quality factor (Q-
factor = pump frequency/Apwin) of 1.6 million, indicating a
highly confined resonance. It is important to note that this Q-
factor represents the total or loaded quality factor, defined as
1/Q = 1/Q:+1/Q;, and is distinct from the coupling quality
factor (Q.) and the intrinsic resonance quality (Q;) of the ring.
The average coupling quality factor, which characterizes the
energy transfer efficiency between the waveguide and the ring,
was numerically determined to be 2.2 million.
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Fig. 6. Comparison of experimental (blue) and calculated (red) transmission
spectra near the resonance.

The close correspondence between the numerical and exper-
imental results validates the accuracy of our numerical model

and confirms the high performance of the device fabricated by
Ligentec. The slight discrepancies between the simulated and
measured spectra may be attributed to factors such as fabri-
cation imperfections, thermal fluctuations, or minor deviations
in the experimental setup, which are not fully accounted for
in the model. Nonetheless, the overall agreement underscores
the accuracy of our numerical model.

Figure 7 presents a comparative analysis of the calcu-
lated (top panel) and experimentally-measured (bottom panel)
power spectra, showcasing the generation of an optical fre-
quency comb using a bus waveguide coupled to a ring
resonator. To validate these simulations experimentally, we
employed a setup with a primary pump laser operating at
1550.183 nm and 230 mW, and an auxiliary laser at 1543.84
nm and 225 mW. For the LLE solution, we assume &y = 4.4,
F =26, Dy = —0.05, and v = 0.9. Both the simulation and
experimental data confirm the formation of a frequency comb
with an FSR of 99.6 GHz, demonstrating excellent agreement
in this fundamental characteristic.
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Fig. 7. Spectral power density comparison between calculated (top) and

experimental (bottom) results.

The calculated spectrum (top panel) displays a highly
regular and idealized comb structure characterized by sharp
spectral lines with a hyperbolic-secant shape spanning a wide
bandwidth. This spectrum represents the intrinsic behavior
of the system as predicted by the Lugiato-Lefever equation,
assuming ideal conditions. In contrast, the experimentally
obtained spectrum (bottom panel) exhibits deviations from
this ideal scenario. Notably, the noise floor is significantly
higher in the experimental data, indicating the presence of
noise sources not accounted for in the simulations. While
the higher noise floor might suggest detector limitations, it
is primarily attributed to the low power levels reaching the
detectors due to losses from couplers and insertion losses in the
experimental setup. This contrasts with the simulation, where
the entire signal output is plotted.

Furthermore, the experimental spectrum displays additional
spectral features, such as dips and broadened peaks, which are
absent in the calculated results. These deviations may arise
from various factors, including fabrication imperfections [3],
thermal fluctuations [1], photodetector noise [21], [22], and
non-ideal coupling conditions [23]. For instance, variations in
the waveguide dimensions or surface roughness can lead to
scattering losses and resonance shifts, affecting the comb’s



spectral profile [3]. Similarly, temperature fluctuations can
induce changes in the refractive index, altering the cavity’s
resonance frequencies [1]. It is important to note that both
the primary pump and auxiliary laser peaks are filtered out
in the experimental spectrum using fiber Bragg grating filters
(FBG). The observed spectral features, along with the power-
related noise floor, provide valuable insights into the non-ideal
behavior of the fabricated device and highlight the challenges
associated with achieving perfect agreement between simula-
tions and experiments.

Despite these discrepancies, the overall agreement between
the calculated and experimental spectra, particularly the con-
sistent FSR, validates the accuracy of our numerical model
and confirms the successful generation of an optical frequency
comb with the designed device. The deviations observed in the
experimental data underscore the importance of considering
real-world factors, such as detector noise and fabrication
imperfections when designing and characterizing integrated
photonic devices.

VI. CONCLUSION

In this study, we presented a comprehensive numerical
and experimental investigation of optical frequency comb
generation in a silicon nitride microresonator coupled to a
dielectric waveguide. We developed a robust numerical frame-
work, combining compact mode solvers, coupled-mode theory,
and the Lugiato-Lefever equation to accurately model the
linear and nonlinear dynamics of the system. Our numeri-
cal simulations indicate the formation of a frequency comb
with a free spectral range of 99.6 GHz, a result that was
corroborated by our experimental measurements. The high
quality factor of 1.6 million, determined from both simula-
tion and experiment, demonstrates the low-loss characteristics
of the fabricated device. The close agreement between our
numerical predictions and experimental data validates the
accuracy of our modeling approach. Discrepancies observed
in the experimental spectrum, such as an elevated noise floor
and additional spectral features, were attributed to limitations
inherent in the experimental setup, including photodetector
noise and fabrication imperfections. Future work will focus on
mitigating the experimental limitations and further optimizing
the device performance to achieve even closer agreement
between simulations and experiments, contributing to the
realization of integrated, chip-scale frequency comb sources
with unprecedented stability and efficiency.
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