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Abstract—Object classification using electromagnetic waves is
crucial in various applications, including remote sensing, security
screening, and biomedical imaging. However, accurately classify-
ing arbitrarily oriented objects from electromagnetic scattering
data remains a significant challenge. In this work, we propose
an attention-based machine-learning framework designed to
improve the robustness and accuracy of electromagnetic object
classification. Our model leverages an attention mechanism to
focus on the most informative scattering features dynamically,
enabling enhanced feature extraction and improved general-
ization across different object orientations. We demonstrate
the effectiveness of attention-based models in enhancing object
classification robustness using a numerical dataset, showing that
the proposed method outperforms conventional machine learning
models regarding classification accuracy.

Index Terms—Machine learning, electromagnetic waves, clas-
sification, neural networks.

I. INTRODUCTION

Electromagnetic inversion and electromagnetic classification
are two distinct yet closely related problems in the anal-
ysis of wave-matter interactions. Electromagnetic inversion
refers to the process of reconstructing the material properties
or structural characteristics of an object or medium from
measured electromagnetic field data [1]-[6]. This typically
involves solving an ill-posed inverse problem to determine
spatially resolved parameters such as permittivity, conduc-
tivity, or permeability distributions within a given domain.
Due to the complexity and nonlinearity of electromagnetic
wave propagation, traditional inversion methods often require
sophisticated regularization techniques and extensive compu-
tational resources to obtain accurate reconstructions.

In contrast, electromagnetic classification aims to identify
and categorize objects based on their electromagnetic response
without necessarily reconstructing their detailed physical prop-
erties [7]-[10]. Rather than solving for continuous material
distributions, classification seeks to assign discrete labels to
objects by analyzing their scattered field characteristics. This
task is particularly relevant in applications where the primary
interest is recognizing object types rather than reconstructing
their fine-grained internal structures. Given the high dimen-
sionality and intricate nature of electromagnetic scattering
data, machine learning (ML) techniques have emerged as
powerful tools both for inversion [6], [11]-[14] and classi-
fication [7]-[10], leveraging data-driven approaches to extract

meaningful patterns from measured signals. Previous studies
have demonstrated that ML models such as support vector
machines (SVM), gradient boosting (XGB), and neural net-
works (NN) can achieve high classification accuracy—up to
90% [7]—for objects with a fixed alignment. However, their
performance often deteriorates when objects exhibit arbitrary
orientations (e.g., in [7], the accuracy decreases to 57%
for arbitrarily aligned objects), limiting their effectiveness in
practical deployment. This challenge underscores the need for
more advanced classification frameworks capable of handling
variations in object positioning and orientation, thereby en-
hancing the reliability of electromagnetic-based object recog-
nition across diverse real-world scenarios.

To address this limitation, we propose an enhanced clas-
sification pipeline incorporating an attention mechanism. By
integrating attention-based models, our approach selectively
emphasizes the most relevant features of the input data,
mitigating the adverse effects of arbitrary orientations on
classification accuracy. To demonstrate the effectiveness of
attention-based models in enhancing object classification ro-
bustness, we first create a dataset based on the MNIST dataset,
where we transform the grayscale pixel values into relative
electrical permittivity values to form scatterers and calculate
the electromagnetic waves scattered from these objects using a
two-dimensional (2D) electromagnetic solver developed based
on the hybrid spectral integral - finite element (SI-FE) method
[15]. Then, we train various machine learning models with
this dataset to classify the objects. When we compare these
models’ classification accuracy and efficiency, we observe that
the neural networks with an attention mechanism outperform
others, achieving an 87% classification accuracy solely from
the data without projecting the input data into a latent space.

The remainder of this paper is organized as follows. Section
II provides a brief description of the hybrid SI-FE method.
Section III describes the creation of our dataset. Section
IV outlines the implementation of our attention-based neural
network model, explaining the architecture and key compo-
nents of the attention mechanism. Section V presents the
numerical results, comparing the performance of our proposed
model with various conventional machine learning techniques.
Finally, Section VI concludes the paper with a summary of our
findings and discusses potential future research directions.



II. SPECTRAL INTEGRAL-FINITE ELEMENT METHOD

Consider a general 2D inhomogeneous object or a collection
of objects in an unbounded medium, as illustrated in Figure
1. To calculate the electromagnetic waves scattered from these
objects with the finite-element method (FEM), a radiation
boundary condition (RBC) is necessary to truncate the com-
putational domain, allowing FEM to be applied within the
interior region (Region I). By imposing an appropriate RBC
on the boundary 0T, the electromagnetic field in the homoge-
neous exterior region (Region II) can be determined once the
solution for Region I, including its boundary, is obtained. In
Region I, the material properties vary spatially, characterized
by a relative permeability . (z,y) and a relative permittivity
er(x,y). In contrast, Region II consists of a homogeneous
medium with constant relative magnetic permeability fi,.; and
relative permittivity €, ;, encompassing Region 1.
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Fig. 1. Schematic of a 2D electromagnetic scattering problem. The artificial
boundary (OT"), shown with a red dashed curve, divides the computational
domain into Regions I and II. The two shapes with patterned fills represent
the scatterers. The blue circle on the lower left is a line current source creating
transverse magnetic waves.

For transverse magnetic (TM) waves, the total electric field
E(x,y) in Region I (bounded by JT) is determined by solving
the following scalar wave equation:

V- (N2, y)VE) + ke (2,9)E = Se(z,y), (1)

where ko is the wavenumber in free space, and S.(z,y)
represents the source inside the boundary. To discretize Eq.
(1), we multiply the equation by a testing function W, (z,y),
where m is the index of the testing function, and integrate over
Region I. Applying vector identities and Gauss’s theorem, we
derive the weak-form equation:
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where n is the outward unit normal vector on the boundary
JdT'. Note that in Eq. (2), &, i, Wiy, and S, are all functions
of z and y.

To solve Eq. (2) using the FEM scheme, Region I is
discretized into triangular elements, as later illustrated in
Fig. 2. A linear pyramid basis function P, (x,y) is used to
expand the electric field E(x,y) in the interior region, while
a triangular basis function T, (z, y) is employed to expand the
boundary value £,, on OI'. The nodal points of the boundary
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basis function are collocated with those of the pyramid basis
function on the boundary. We use pyramid functions for testing
as well and obtain the final set of linear equations [15]. Since
there are more unknowns than the number of equations, we
need additional conditions to obtain a unique solution of the
system. In this work, the spectral integral method (SIM) serves
as an RBC to provide these additional conditions by relating
the fields inside Region I to those on the outer boundary JI'.
To achieve this, we utilize Green’s theorem to derive a surface
integral equation that expresses the field outside OI" in terms
of the field values on the boundary.

We define the boundary integral equation using Green’s
function G(kp, R) and its normal derivative G (ky, R)/On’
[16]. We express the fields along OI' in terms of a smooth
boundary parameterized by 6. By leveraging Fourier series
expansions, we approximate the field F(#') and its normal
derivative OE(0")/0n’ using a finite number of Fourier coef-
ficients. This transforms the integral equation into a system of
algebraic equations in Fourier space. However, since Green’s
function is singular at @ = 6’, we apply a singularity subtrac-
tion technique to improve numerical convergence [16].

Once we compute the Fourier coefficients of the unknown
field and its normal derivative, we obtain the final equation
in matrix form, allowing us to enforce the RBC at discrete
boundary points. By utilizing fast Fourier transform (FFT)
and spectral interpolation, we efficiently compute these co-
efficients, which brings fast convergence and high spectral ac-
curacy. Note that the SIM RBC effectively suppresses spurious
solutions (such as fictitious resonant frequencies) commonly
encountered in integral equation solvers. This makes our solver
a robust and efficient approach for coupling FEM with an
accurate radiation boundary condition.

III. DATASET CREATION

The Modified National Institute of Standards and Tech-
nology (MNIST) dataset, a widely recognized resource in
machine learning and computer vision, provides a collection
of handwritten digits, as detailed in [17]. This dataset is
frequently employed for training and evaluating algorithms,
particularly those designed for image classification and char-
acter recognition. Each image within MNIST consists of a
28 x 28-pixel square grayscale representation of a handwritten
digit, ranging from 0 to 9, with each image accompanied by
a corresponding label indicating the digit’s identity.

In this study, we utilize 6,000 digital images from the
MNIST dataset to construct a scatterer database. Specifically,
the grayscale intensity of each pixel, denoted as d,, ,, where
u and v represent the row and column indices ranging from
1 to 28, is converted into relative electrical permittivity val-
ues. These pixel values, scaled between O and 255, where
0 signifies white and 255 signifies black, are transformed

into permittivity values ranging from ™" to 2% using the
following linear relationship:
. Ay
er(u,v) = e 4 (e — ‘;““)—255 3)

min

where v and v are the row and column numbers. We set ;"' =
1 and €' = 4.



The computational domain, illustrated in Fig. 2, features 12
transmitter and 12 receiver antennae, shown with green and red
circles, respectively. These antennae are uniformly positioned
at radial distances of p = 1.5\ and p = 2\, respectively.
The permittivity values within the triangular elements of the
scatterer are determined through a 2D interpolation of the
MNIST images, allowing for an approximate representation
of the digit’s shape within the simulation environment.
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Fig. 2. Illustration of the computational domain. Twelve receiver antennae,
shown with red circles, are placed uniformly on the circular boundary with
a radius of 2\. Twelve transmitter antennae are placed uniformly at p =
1.5, shown with green circles. The permittivity values of the triangles where
the scatterer resides are determined via a 2D interpolation from the MNIST
images using Eq. (3).

To compute the scattered electric fields at the receiver
antennae, our Spectral Integral/Finite Element (SI-FE) solver
is employed. We conduct twelve simulations, each activating
one transmitter antenna at a time. This process yields 144
electric field values, representing the fields measured by the 12
receivers for each of the 12 transmitter configurations. Hence,
the sizes of the input and output of our ML models will be
144 and 9, as explained in the next section.

IV. NEURAL NETWORK IMPLEMENTATION

Attention mechanisms have proven to be efficient tools for
constructing accurate deep models when the features are given
in sequential forms [18]. This is why we decided to use a series
of neural networks enhanced with an attention mechanism, as
illustrated in Fig. 3, to achieve object classification based on
scattered electromagnetic wave data as follows.

The process begins with the collection of data from twelve
distinct sources, R; through R;s, each providing comple-
mentary information about the target and its alignment. The
input data from these sources is fed into a neural network,
denoted as Fjy(-), which transforms the raw inputs into a
set of hidden feature representations {hy, ha,...,h,}. These
feature activations capture complex relationships and patterns
within the data, reflecting various aspects of the digit shapes,
strokes, and their alignment. However, not all features con-
tribute equally to the classification decision, prompting the

need for an adaptive weighting mechanism that can highlight
the most informative representations. A scoring function Fj(-)
evaluates the relevance of each hidden feature h;, assigning a
scalar score that indicates its importance. These scores are
subsequently normalized through a softmax function, convert-
ing them into probability weights. The attention mechanism
thus enables the model to focus on the most salient features
while diminishing the influence of less relevant ones. The
weighted features are then aggregated to form a context vector
that encapsulates the most discriminative information neces-
sary for accurate digit classification. The resulting context
vector is passed through a final classification layer, which
outputs a probability distribution over the possible digit classes
{0,1,2,3,4,5,6 or 9,7,8}. The digit corresponding to the
highest probability is selected as the predicted class. Note
that due to arbitrary alignment, we cannot differentiate 6s and
9s, so we group them together. By incorporating the attention
mechanism, the network dynamically adjusts its focus to the
most informative features for each input instance.
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Fig. 3. An illustration of the neural network implemented. In the beginning,
each member of the input is equally important. A neural network is applied
to each item independently, creating a new sequence representation h;. A
score function is applied to every input, giving each item a value indicating
its importance. The softmax function is applied to all the scores, creating a
probability distribution. The weighted features are then aggregated to form a
context vector that encapsulates the most discriminative information necessary
for accurate digit classification.

V. NUMERICAL RESULTS

In our study, the backbone network consists of 4 hidden
layers with 256, 256, 512, and 512 neurons. The input of each
layer passes a batch normalization before reaching the fully-
connected linear layer. The output of each hidden layer passes
a standard ReL U (rectified linear unit) activation function. The
model’s learning process is guided by the Adam optimizer
[19], with a learning rate set at 0.001. The categorical cross-
entropy loss [20] is chosen as the optimization objective,
and categorical accuracy is monitored as a metric to gauge
performance. All the code is executed on Google Colaboratory
using T4 GPU accelerators.

We allocate 50% of the dataset for training and the other
50% for testing. Figures 4 (a) and (b) show the training
and validation loss and accuracy over epochs. The slight
divergence between training and validation curves suggests
minimal overfitting, indicating the neural network’s architec-
ture is slightly larger than ideal. The convergence of these



metrics confirms that the training used an adequate number
of epochs. Furthermore, the training stopped at epoch 106,
despite being set to 200, due to the “early stopping” feature
implemented in the model. In Fig. 4 (b), we also observe that
the NN architecture with the attention mechanism achieves an
87% classification accuracy.

(a) 3
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50 100
Epochs Epochs
Fig. 4. (a) Loss and (b) accuracy and vs. epoch number of the NN
implementation.

In addition to neural network (NN) implementation, we
also employ other machine-learning models, namely k-nearest
neighbor (kNN), random forest (RF), Gaussian Naive Bayes
(GNB), support vector machine (SVM), and gradient boosting
(XGB), to assess whether they exhibit similar levels of learning
from the data or not. For the first four models (kKNN, RF,
GNB, and SVM), we utilize scikit-learn [21], which is a free
software machine learning library for the Python programming
language. For the XGB implementation, we use another freely
available library [22], which is developed based on XGBoost
[23]. Hyperparameter tuning is done using the Grid Search
Cross-Validation (GridSearchCV) module [24] that is available
in the scikit-learn [21] library.

Table I presents the training time, accuracy, precision, recall,
and Fl-score for six different classification methods applied
to a dataset split evenly between training and testing. Among
these methods, the neural network implementation achieved
the highest accuracy of 87%, outperforming other classifiers
in all evaluated metrics. This superior performance can be
attributed to the NN’s ability to capture complex, non-linear
patterns and interactions within the data through multiple
layers of representation learning. It is worth noting that the
classification accuracy obtained with the NN is higher than
the previously reported value [8] of 85.3%.

TABLE I
THE TIME SPENT DURING TRAINING, ACCURACY, PRECISION, RECALL,
AND F1-SCORE OF THE KNN, RF, GNB, SVM, XGB, AND NN WITH
ATTENTION MECHANISM IMPLEMENTATIONS.

Method | Time (s) | Accuracy | Precision | Recall | F1 score
kNN 0.1 0.26 0.27 0.26 0.26
RF 124 0.47 0.46 0.46 0.46
GNB 0.2 0.41 0.41 0.40 0.40
SVM 84 0.82 0.82 0.82 0.82
XGB 48 0.81 0.81 0.81 0.81
NN 112 0.87 0.87 0.87 0.87

In contrast, the kNN, RF, and GNB methods demonstrated
comparatively poor performance, with accuracies of (.26,
0.47, and 0.41, respectively. The low accuracy of kNN can be
explained by its reliance on local similarity measures, which

are susceptible to high-dimensional data and noisy features.
Without sufficient feature scaling or dimensionality reduction,
kNN struggles to differentiate between classes effectively.
Similarly, the GNB classifier assumes feature independence
and a Gaussian distribution of the data, assumptions that
are often violated in real-world datasets. These violations
lead to suboptimal decision boundaries and, consequently,
lower classification accuracy. The random forest method, while
generally robust, may have underperformed due to its low
effectiveness when feature interactions are complex and non-
linear patterns are prevalent, scenarios where neural networks
excel. The SVM and XGB methods achieved relatively high
accuracies of 0.82 and 0.81, respectively, indicating their effec-
tiveness in handling non-linear decision boundaries and feature
interactions. However, the NN outperformed both, likely due
to its deeper architecture and ability to learn hierarchical
representations, enabling better generalization across varied
samples. Regarding training time, KNN and GNB exhibited the
fastest training durations (0.1 and 0.2 seconds, respectively)
due to their simplistic modeling approaches. In contrast,
methods like RF, SVM, XGB, and NN required significantly
longer training times, reflecting the computational complexity
involved in optimizing their models. The neural network’s
training time of 112 seconds, while substantial, is justified
by the notable improvement in classification performance.
Overall, the results highlight a trade-off between training
time and predictive accuracy. While simpler models offer
quick training, they often fall short in capturing complex data
structures. Conversely, more sophisticated methods like neural
networks demand longer training times but yield superior
classification outcomes, mainly when the data exhibits intricate
patterns and non-linearities.

VI. CONCLUSION

In this work, we introduced an attention-based neural net-
work model to enhance the classification of objects using
electromagnetic wave scattering data. Our approach addresses
the limitations of traditional machine learning models, which
struggle with arbitrary object orientations. By incorporating
an attention mechanism, our model dynamically identifies and
emphasizes the most relevant features, leading to improved
classification accuracy. Our numerical results demonstrate
that the proposed model outperforms conventional methods,
achieving a significant increase in robustness and accuracy.
Our work highlights the potential of attention-based archi-
tectures for electromagnetic object classification, paving the
way for more reliable and adaptable recognition systems in
challenging real-world scenarios. Future work may explore
the extension of this approach to three-dimensional object
classification and the integration of additional domain-specific
priors to further enhance model performance.
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