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This work provides the coupled wave equations in cylindrical coordinates to study electromagnetic wave propagation in dielectric
rings. Inspired by the shooting method, a two-step algorithm is proposed to solve these coupled nonlinear equations using finite
differences. The accuracy of the formulation is validated through comparisons with numerical results obtained from commercial
full-wave solvers for various geometries.
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I. INTRODUCTION

D IELECTRIC RINGS are key components in integrated
photonics, enabling various applications such as optical

filters and sensors [1]–[3]. Their compact size and resonant
modes make them ideal for high-performance photonic circuits.
Accurately determining their effective refractive index and
resonant modes is crucial for optimizing light confinement,
minimizing losses, and enhancing efficiency.

Current methods, like finite element and finite-difference
time-domain simulations, implemented in solvers such as
COMSOL and Tidy3D, offer accurate results. However, these
general-purpose solvers do not fully exploit the resonance
condition of dielectric rings, where the accumulated phase must
equal an integer multiple of 2π for constructive interference.

Due to the lack of explicit expressions for electromagnetic
waves confined in dielectric rings, we recently derived the cou-
pled wave equations in cylindrical coordinates for such rings
[4]. The resulting nonlinear equations are solved numerically
using finite differences and a two-step algorithm inspired by
the shooting method [5], [6]. We first use an approximate
azimuthal mode number determined with the wavelength, ring
radius, and refractive index to solve the eigenvalue problem.
Then, we refine this estimate and resolve the problem to meet
the phase continuity condition. The method yields electric and
magnetic field profiles, validated through several examples. Our
results agree closely with commercial solvers, confirming the
method’s accuracy.

II. NUMERICAL FORMULATION

Figure 1 (a) illustrates a dielectric ring with a central radius
of Rc placed in a background with a cylindrical symmetry
with respect to the z-axis. When they are in resonance, the
electromagnetic waves confined in the ring should have an
e−jmϕ dependence, where m = βRc is an integer representing
the azimuthal mode order and β is the propagation constant.
Due to the cylindrical symmetry, the problem can be treated

Fig. 1. A dielectric ring with a central radius of Rc is placed on a substrate.
The ring’s inner radius, width, and height are Ri, wr and hr , where Rc =
Ri + wr/2. (a) and (b) are three- and two-dimensional views.

in two dimensions as shown in Fig. 1 (b). We use following
expressions to describe the electric (E) and magnetic (H) fields

E(ρ, ϕ, z) =
{
ρ̂Eρ(ρ, z) + ϕ̂Eϕ(ρ, z) + ẑEz(ρ, z)

}
e−jmϕ,

(1)

H(ρ, ϕ, z) =
{
ρ̂Hρ(ρ, z) + ϕ̂Hϕ(ρ, z) + ẑHz(ρ, z)

}
e−jmϕ.

(2)
We start with Maxwell’s equations for the electric and

magnetic fields in a source-free, lossless, and non-magnetic
medium and obtain the following wave equations

∇2E+∇
(

1

εr
∇εr ·E

)
+ k20εrE = 0, (3)

−εr∇
(

1

εr

)
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where εr is the relative electrical permittivity and µ0 is the
magnetic permeability of vacuum.

We first expand the electric field wave vector equation by
inserting the electric field expression, Eq. (1), and using vector
identities for the cylindrical coordinate system. We obtain three
coupled equations for the fields along the ρ̂, ϕ̂, and ẑ directions.
Then, we do the same for the magnetic field wave vector
equation. In the final step, we obtain the mixed formulation,
which allows for direct enforcement of boundary conditions
on both electric and magnetic fields at interfaces between
materials [7], by expressing Hϕ in terms of Ez and Eρ and



by expressing Eϕ in terms of Hz and Hρ. The final set of
equations is as follows(
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In the above, we move all the terms with m2 to the right sides,
replace those m2s with β2R2

c’s, and multiply both sides of all
equations with ρ2/R2

c . Eqs. (5)–(8) can be cast into a matrix
equation such as
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and solved numerically with finite differences for a given m
value.

The problem in this formulation is that since m = βRc,
we have the unknown, “β”, on both sides of Eq. (10). In
a similar fashion to the ”shooting methods” [5], we use
an approximate βapprox = ξk0nr, where ξ is an arbitrary
positive number closer to 1.0 and nr is the refractive index
of the ring, to calculate the resonant wave number β. Then,
we build the Hamiltonian matrix with this new approximate
propagation constant, determine the eigenvalues, and repeat
this process until the difference between the previous and
current propagation constants is negligibly small (< 10−8).

The computational domain is discretized on a rectangular
grid by taking Nρ evenly spaced points along the ρ-direction
and Nz evenly spaced points along the z-direction. First-
and second-order derivatives are calculated using central finite
differences, applying Neumann boundary conditions to enable
a smaller computational domain, as Dirichlet conditions would
require a larger domain by forcing the fields to be zero at the
boundaries.

III. NUMERICAL RESULTS

Assume we have a dielectric ring with nr = 2, Rc =
200 µm, wr = 1 µm, and hr = 0.5 µm, placed on top
of a substrate with a refractive index of 1.5. The wavelength
of the excitation is 1550 nm. For the numerical solution, we
use a 200 × 100 grid on the ρ − z plane, where the mesh
sampling density along both directions is 25 nm. The effective

indices of the first two resonant modes are calculated with
our formulation to be 1.6265 and 1.5478. A commercial full
wave solver, COMSOL Multiphysics, determines the values of
1.6302 and 1.5495. The difference between them is less than
0.3 % for both modes. Figure 2 shows the field profiles for the
first resonant mode. At the conference, we will provide several

Fig. 2. The field profiles for the first resonant mode: ρ, ϕ, and z components
of the (a)–(c) electric field and (d)–(f) magnetic field intensity.

other examples to demonstrate the accuracy and flexibility of
the formulation.

IV. CONCLUSION

A complete set of coupled wave equations for the electro-
magnetic waves confined in dielectric rings is provided. These
equations are then discretized using finite differences and
solved as an eigenvalue problem. Our approach offers a com-
putationally efficient alternative to full-wave electromagnetic
solvers, particularly for large-scale simulations. The results
obtained from our method exhibit good agreement with those
from commercial full-wave electromagnetic solvers, validating
the accuracy of the formulation.
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