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Abstract—Rather than reconstructing the properties or pa-
rameters of a medium as it is done in electromagnetic inversion,
this work aims to classify objects with neural networks that
are trained with scattered field data and labels (classes). The
study demonstrates the feasibility of achieving an 86% accuracy,
showcasing potential applications in robotics and environmental
perception.

I. INTRODUCTION

Electromagnetic inversion [1]–[3] refers to the process of
reconstructing the properties or parameters of a medium (such
as the distribution of electrical permittivity or conductivity)
from the measurements of electromagnetic fields scattered
or transmitted through the medium as depicted in Fig. 1(a).
The primary goal of electromagnetic inversion is to infer the
internal structure or composition of an object or a material
by analyzing how it interacts with incident electromagnetic
waves, see Fig. 1(b) as an example. This is particularly
important in fields like geophysics, medical imaging, and non-
destructive testing. Traditional methods face challenges such
as nonlinearity, ill-posedness, and high computational costs.
Recent advancements leverage machine learning to overcome
these issues [2], [3].

Electromagnetic classification [4] involves the categoriza-
tion or labeling of objects based on their interaction with
electromagnetic waves. It is a type of pattern recognition
where the goal is to assign predefined classes or categories
to objects based on the features extracted from the elec-
tromagnetic responses. Unlike inversion, which focuses on
recovering the properties of a medium, electromagnetic clas-
sification is concerned with identifying or classifying objects
themselves, as shown in Fig. 1(c). This can have applica-
tions in various fields, including target recognition in radar
systems, object identification using electromagnetic sensors,
or even classifying materials based on their electromagnetic
signatures. Unlike traditional approaches that often involve
signal processing [5], this work lies on machine learning-
based object classification solely using electromagnetic data.
While computer vision has achieved automated recognition,
our work explores the potential of classifying objects based on
scattered electromagnetic waves, with implications for robotics
and environmental perception.

II. DATA SET PREPARATION

The Modified National Institute of Standards and Tech-
nology (MNIST) dataset [6], widely employed in machine
learning and computer vision, comprises grayscale images
of handwritten digits with associated labels. In this work,
the 60,000 MNIST images are transformed into a scatterer
database, converting pixel intensity values which change be-
tween 0 and 255 in the original image files, to relative

Fig. 1. (a) Schematic illustration of a measurement setup that is typically
used in electromagnetic inversion. (b) In electromagnetic inversion, the relative
permittivity map is obtained with a CNN. (c) In electromagnetic classification,
the output is simply the label (class) of the object.

electrical permittivity values (changing between 1 and 4)
via simple linear interpolation. Then, the electromagnetic
scattering dataset is generated through a freely available 2D
electromagnetic finite difference frequency domain simulation
tool called Ceviche [7].

Fig. 2. (a) Permittivity distribution for one of the example geometries studied.
The purple regions have a relative permittivity of 1. The regions with higher
relative permittivity values are represented by lighter colors. The locations
of patch (transmitter) antennas are indicated by yellow dashed lines. (b) The
solver calculates electric and magnetic fields all over the computation domain
but we only use the data recorded at the 52 locations depicted with white
circles.

The computational domain, illustrated in Fig. 2(a) has
dimensions of 2λ×2λ, with uniform meshing along the x and
y directions (∆x = ∆y = λ/150), where λ is the wavelength
of electromagnetic waves from a transmitter antenna. Perfectly
matched layers with a thickness of λ/7.5 are incorporated.
Initially, the permittivity of each cell is assumed to be 1. The
permittivity is then updated in a 140-pixel by 140-pixel region
at the domain center using 2D cubic interpolation. Two groups
of 26 receiver antennas each are placed at specific locations,
and there are two transmitter antennas. The electromagnetic
fields (see Fig. 2(b) as an example for the z-component of the
electric field intensities) are calculated at 52 receiver antennas
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for each transmitter antenna, resulting in real and imaginary
components stored in a dataset. The dataset’s input section has
60,000 rows and 624 columns, representing receiver antennas,
transmitter antennas, electromagnetic fields, and components.
The output section is a 60, 000 × 1 vector containing labels
(digits). The setup allows for the generation of a comprehen-
sive dataset for training and testing machine learning models
in the context of electromagnetic classification.

III. NUMERICAL RESULTS

Fig. 3. Neural network architecture.

We utilize the functional application program interface
(API) of Keras [8], running on top of TensorFlow [9]. The
neural network architecture, illustrated in Fig. 3, is composed
of three hidden layers positioned between the input and output
layers. The first two layers, each containing 1024 nodes, are
succeeded by dropout layers with a 50% dropout rate. This in-
clusion is to prevent overfitting, enhance model generalization,
and bolster the neural network’s robustness. The activation
function for the initial two layers is the sigmoid function
[10], while the last layer encompasses 10 nodes. The SoftMax
activation function [11] is applied to this layer, generating
probabilities for each label. For classification predictions, the
class with the highest probability is selected. The learning rate
is set to 10−3, and the optimizer of choice is Adam [12].
Categorical cross-entropy [13] defines the loss function, and
the training process is executed over 200 epochs.

For the initial set of calculations, we allocate 50% of the
dataset for training and the other 50% for testing, and we
obtain an 86 % accuracy in classification. The confusion
matrix is provided in Fig. 4. The training takes approximately
21 minutes. To examine the impact of the training dataset
size (Ntrain) on accuracy and training time, we conduct an
additional set of calculations, varying Ntrain from 600 to
30,000. It is observed that the NN’s accuracy increases with
the the dataset size as expected. A training data set with 10000
samples guarantees a classification accuracy of 80%, while
decreasing the training time by %25.

IV. CONCLUSION

We have explored the application of neural network tech-
niques in the context of electromagnetic wave-based object

Fig. 4. The confusion matrix.

classification and determined that it is feasible to classify
objects with %86 accuracy based on the electromagnetic waves
scattered from them in a simple experimental setup.
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