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ABSTRACT

This numerical study uses machine learning techniques to enhance the resolution of local near-field probing
measurements when the probe is larger than the examined device. The research shows that machine learning can
achieve a spatial resolution of λ/10 with a few wavelength-wide probes while keeping the relative error below 3%.
It also finds that fully connected neural networks outperform linear regression with limited training data, but
linear regression is both sufficient and efficient for larger data sets. These results suggest that similar machine
learning methods can improve the resolution of various experimental measurements.
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1. INTRODUCTION

Local near-field probing (LNFP) is a technique that allows for the measurement of electric field distributions
in microwave and photonic devices, and there are mainly two different variations of it: apertureless1–5 and
aperture-based.6 In the apertureless method, the probe tip is typically a small metallic tip. When the probe tip
is brought close to the device, the electric field induces a shift in the resonance frequency of the probe tip. The
electric field distribution can be mapped with high spatial resolution by measuring the frequency shift at various
points along the device. In the aperture-based method, the probe tip is a small aperture that allows microwaves
to pass through and interact with the device being measured. The electric field is determined by detecting the
transmitted or reflected microwave signals. When the probe used in LNFP is smaller than the device being
studied, one can successfully measure the electric field distribution along the device.1–6 However, if the probe is
wider than the device, resolution issues arise due to the limitation imposed by the probe size and the distance
between the probe and the sample surface.7

Various techniques are available to enhance the resolution of LNFP in such contexts. One such technique
involves using imaging algorithms to process the data collected by LNFP, thereby aiding in resolution improve-
ment. Deconvolution algorithms,8–10 for example, can be applied to counteract the effects of probe size and
distance from the device. In this research, we employ an alternative method, specifically a machine learning ap-
proach, to predict the electric field distribution along a device when the width of a passive electric-field sensing
probe surpasses the length of the device under study. Although the device we focus on is a photodetector, the
methodologies discussed are general and applicable to any measurement setup.

The structure of this paper is as follows. Initially, we outline a simple numerical model that replicates a
typical setup used in LNFP measurements. Subsequently, we apply two machine learning (ML) techniques,
namely linear regression and fully connected neural networks (FCNNs), to predict the true electric field profile
within the device from synthetic LNFP measurement data for two different scenarios. In the first scenario, all
devices examined have a uniform length of 1 µm, and we assess the accuracy and efficiency of the two ML
methods based on the size of the training data set. In the second scenario, we evaluate a data set of devices with
lengths ranging from 1 µm to 4 µm. Our results demonstrate that with a large data set, linear regression can
produce accurate predictions in mere seconds, if not milliseconds, eliminating the need to construct and train
a neural network. However, the accuracy of FCNNs remains relatively unaffected by the data set size, making
them more precise than linear regression for smaller training data sets.
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2. A SIMPLE MATHEMATICAL MODEL TO MIMIC LNFP MEASUREMENTS

Figure 1 depicts a simplified setup used in this study to simulate an LNFP measurement configuration. The
device being examined, with the goal of measuring the electric field distribution over it via near-field scanning,
is centered at the origin with its upper surface at z = 0. The width of the device, indicated by the dashed black
lines, is wd. The light gray rectangle signifies the probe, with a width of wp, where wp > wd, and xc denotes the
center of the probe. Since our goal is to mimic an LNFP measurement, we can simplify the problem by ignoring
the material properties of the probe and approximately calculate the measured field (Em) using layered medium
Green’s functions (LMGFs) as follows.

Figure 1. Illustration of the geometry that aims to mimic E-field measurement with a probe over a device.

LMGFs represent the impulse response of a planar multi-layered structure to electrical and magnetic sources.11

In our implementation, we assume that layer interfaces are parallel to the xy-plane, and layer-i is characterized
by its relative electrical permittivity (ϵr,i), conductivity (σi), magnetic relative permeability (µr,i), and layer
thickness (ti). GEJ

ηζ (x, z|x′, z′) type of LMGFs provide the η-component of the electric field at a target point

(x, z) due to a Hertzian dipole antenna located at (x′, z′) oriented along ζ, where η and ζ can be x, y, or z.11

Knowing the true electric field distribution (Er) along the device D, see Fig. 2 (a) as an example, we can assume
a finite number of imaginary transmitter antennas placed inside the device, using the local electric field intensity
as the current driving them. Similarly, we can assume that the fields generated by these imaginary transmitter
antennas can be measured by imaginary receiver antennas within the probe. If the photodetector is excited
with y-polarized light, then the electric fields inside the device and measured by the probe are predominantly y-
polarized. Hence, we can use GEJ

yy -type layered medium Green’s functions to approximate Em using the following
expression

Em(xc, zr) =

∫
xc − wp/2

xc+wp/2
∫ wd/2

−wd/2

Er(x
′, zt) ×GEJ

yy (x, zr|x′, zt)dx
′dx, (1)

where zt and zr are the z-coordinates of the imaginary transmitter and receiver antennas inside the device and
probe, respectively.

For our numerical analysis, we chose photodetectors12–14 as the subject of investigation. By solving the drift-
diffusion equations13 on non-uniform spatial and temporal meshes,12 using either monochromatic or broadband
excitations,14 we can accurately and efficiently determine both the field and current distributions within the
photodetector. Specifically, the non-uniform time-stepping feature allows us to analyze thousands of photode-
tectors within a few hours using standard personal computers.15 To create a variety of realistic electric field
profiles, we generated 2330 unique modified uni-traveling wave carrier photodetectors by randomly selecting layer
thicknesses and doping levels. The number of layers is 16, and the material and doping types are assumed to
be the same as those used in.14 The beam and photodetector diameters are 28 µm, with a continuous laser
wavelength of 1550 nm. The modulation frequency (fmod) and modulation depth are 1 GHz and 4%, respec-
tively, i.e., Pin = P0 × [1 + 0.04 cos(2πfmodt)], where P0 = 1 mW and t is time. As illustrated in Fig. 2(b), the
photodetector is reverse biased at 9 V, and the load resistance is 50 Ω.

To compute the LMGFs, we assume the background consists of two layers: the permittivity of the z < 0
region is 10, typical for most semiconductors. The upper layer z ≥ 0 is air, i.e., ϵr,2 = 1. We assume Nt imaginary



Figure 2. (a) Electric field distribution along the photodetector calculated with the aforementioned drift-diffusion equations
solver,12–15 where the strength is high along the intrinsic (i) region. In this study, we refer to these field profiles as
the “true” field profiles. Note the peaks occurring on the interfaces. (b) Schematic illustration of a reverse-biased
photodetector that is excited from its n-side. The yellow, purple, orange, light gray, dark gray, and dark orange layers
represent Au (contacts), InGaAs, InP, InGaAsP Q1.1, InGaAsP Q1.4 layers, and the InP substrate, respectively.

transmitter antennas at zt = −400 nm, uniformly spaced between x = −wd/2 and x = wd/2. Additionally, we
assume Nr imaginary receiver antennas at zr = 400 nm, uniformly spaced between x = xc−wp/2 and xc+wp/2,
where the probe width, wp, is 10 µm. Note that these imaginary antennas are infinitesimal (“ideal”) dipole
antennas, with lengths much smaller than the wavelength. We determine the parameters Nr and Nt so that the
inter-antenna spacings, both within the device and probe, are close to λ/20.

3. NUMERICAL RESULTS

To simplify our analysis, we begin by standardizing the thickness of each layer within the photodetector, ensuring
that the total length of each photodetector equals 1 µm, denoted as wd = 1 µm. Employing two machine learning
algorithms, namely linear regression (LR) and fully connected neural networks (FCNN), we aim to predict the
authentic electric field profiles along the photodetectors based on the electric field profiles obtained from probing
measurements. ∗

Our FCNN architecture is specified as follows: the input comprises blurred electric field measurements, Em

in Eq. (1), while the output corresponds to the true field profile, Er in Eq. (1). Four hidden layers, each
containing 800 neurons, reside between the input and output layers, employing ReLU activation functions. We
adopt a learning rate of 10−3 and Adamax as the optimizer, with mean squared error defining the loss function.
Training spans 200 epochs.

Figure 3 (a) illustrates two exemplary prediction outcomes of the LR model. In both instances, LR accurately
identifies the intrinsic layer, characterized by a high electric field strength (|E|), and estimates the maximum
value of |E|, providing a rough depiction of its variation within the intrinsic region. Despite occasional negative
predictions, which deviate from physical expectations, LR remains a useful tool for approximating |E|, given
its swift prediction capability, taking merely milliseconds to compute. Figure 3 (b) showcases two sample
prediction results from the FCNN model. Once again, accurate predictions of the intrinsic region’s location and
|E| maximum are observed, without any negative predictions. However, training the neural network necessitates
a longer duration, approximately a minute for 200 epochs, compared to LR. The average relative error for both
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Figure 3. Electric field profiles: truth (blue solid curves) vs. prediction (red dashed curves) obtained with (a) the linear
regression model and (b) FCNN for two randomly selected photodetectors.

approaches, defined as the absolute difference between the true (Etrue) and predicted (Epred) values divided by
Etrue + ξ, where ξ is a small positive number to prevent division by zero errors, remains close to 0.03 ± 0.01%,
with a maximum relative error of 2.5± 0.3

In the results depicted in Figure 3, 80% of the data was allocated for training, while the remaining 20%
was designated for testing. To explore the impact of training data set size (Ntraining) on accuracy, additional
predictions were conducted by varying Ntraining from 10 to 1600. Figure 4 (a) illustrates how the normalized mean
squared error changes with Ntraining. Notably, the FCNN’s accuracy remains nearly independent of Ntraining for
Ntraining ≥ 100, while the LR model exhibits significant errors for small Ntraining cases (Ntraining < 200). This
discrepancy arises from the equal influence each sample holds over LR predictions, making inaccurate predictions
more likely, especially when correlations between training and test data sets are low or when the training data
set comprises samples markedly different from those in the testing data set.

Figure 4. Normalized mean squared error as a function of training data set size for linear regression (blue solid curve) and
an FCNN (red dotted curve) for a data set with devices of (a) constant length and (b) varying length.

In the second scenario, we investigate photodetectors with original lengths ranging from 1 µm to 4 µm, i.e.,
1 µm ≤ wd ≤ 4 µm. Employing the same machine learning models, we find that with 80% of the data for
training, highly accurate predictions are achievable. However, as illustrated in Fig. 4 (b), the accuracy of LR is
significantly influenced by Ntraining. This dependency underscores that lacking similar samples in the training
data set relative to the testing data set can compromise the LR models’ accuracy. Conversely, akin to the analysis
with constant device length, the FCNN’s accuracy remains largely unaffected by Ntraining, owing to its multiple
layers and hundreds of neurons, facilitating effective learning of underlying patterns even from small training
data sets.



4. CONCLUSION

In this work, we have examined the application of machine learning methods to improve the resolution of local
near-field probing measurements, especially when the probe size exceeds that of the device under examination.
The outcomes reveal three primary discoveries: (i) leveraging machine learning enables achieving a spatial
resolution of λ/10 even with probes that are only a few λ wide, while maintaining a maximum relative error
below 3%; (ii) fully connected neural networks outperform linear regression models in accuracy when dealing with
limited training data sets; and (iii) for extensive training data sets, constructing and training a neural network
is unnecessary as linear regression proves to be both adequate and efficient. These findings suggest the potential
application of similar machine learning techniques to enhance resolution in diverse measurement setups.
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