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Abstract—We present a computationally efficient optimization
technique that combines the two-dimensional layered medium
Green’s functions with the adjoint method to optimize a multi-
layered dielectric substrate, achieving maximum field transmis-
sion across the visible spectrum.

Index Terms—optimization, multilayered substrate, layered
medium Green’s function, adjoint method.

I. INTRODUCTION

Figure 1 illustrates a microscope illuminated from below
and a simple setup to mimic the light propagation through the
substrate in these microscopes. By arranging the thickness and
material composition, we can design multi-layered substrates
that maximize or minimize transmission or reflection at certain
wavelengths for applications in imaging [1] and sensing [2].
We can carry out this substrate engineering using the adjoint
method (AM) [3]–[7], which has become quite popular among
the inverse photonic design community in the last decade. AM
is typically implemented with the finite-differences frequency-
domain (FDFD) method [3]–[5] or the transfer matrix method
[7]. In this work, we follow a different strategy and implement
the AM with layered medium Green’s functions (LMGFs).
The main advantage of this approach is its computational
efficiency compared to the FDFD implementation due to the
following important detail: We calculate all the LMGFs at
the observation points that are parallel to the interfaces in
a single numerical integration. As a case study, we design
a multilayered substrate that yields the highest amount of
transmission for wavelengths ranging from 400 nm to 700
nm. The FDFD and LMGF implementations produce almost
the same substrate. However, despite using the same meshing
criteria, the LMGF implementation takes half the time used
by the FDFD implementation.

II. METHODOLOGY

A. Layered Medium Green’s Function

We assume a multilayered medium with N+1 layers, where
layer-l is defined with thickness hl and relative electrical
permittivity (εr,l) for l = 0,1, · · · ,N. The interface between the
layers l and l + 1 is parallel to the xy-plane at z = zl+1. The
wavenumber in layer-l is k2

l = ω2εl µl , where ω = 2π f and f
is the frequency of the electromagnetic waves created by the
line source.

Fig. 1. (a) A microscope illuminated from the bottom and (b) the geometric
representation of our problem of interest.

We can obtain the electric field at any observation point
(x,z) when the source is located at (x′,z′) by evaluating the
Sommerfeld integral [8],

Ey(x,z|x′,z′) =
∫

∞

0
G̃(x,z|x′,z′)cos(kx|x− x′|)

4πkl,nkz
dkx, (1)

where G̃(x,z|x′,z′) is the spectral domain LMGF that can be
calculated using the expression

G̃(x,z|x′,z′) = Φleul(z−zl)+Ψle−ul(z−zl−1), (2)

where kx is the integration variable, k2
z,l + k2

x = k2
l , and ul =

jkz,l . Here, the quantities Φl and Ψl are unknown. By imposing
the boundary conditions for the electric and magnetic fields at
the interfaces, we represent Eq. (2) with a linear equation,
AX = S. After calculating the unknown coefficients, we can
numerically compute the definite integral in Eq. (1) using a
Gauss-Legendre quadrature. However, one should recognize
that (i) for the observation points, which are parallel to the
xy-plane, it is only necessary to calculate the spectral domain
LMGF once, and (ii) numerical integration of this spectral
domain LMGF for several observation points sharing the same
z can be achieved via a single matrix-vector multiplication.
These two facts lead to a reduction by a factor of almost nx in
the computation time compared to the FDFD implementation,
where nx is the number of the cells along the x-axis.

B. Adjoint Method

We will consider here an example in which the goal is to
maximize the electric field intensity at a target point located at
(xt ,zt) for n wavelength values. For wavelength-n, the gradient
of the cost function (ϑn) is

∂ϑn

∂εr,l
=−2k2

0 ∑
d

Re
{

Eforw
l,n ·Eadj

l,n

}
(3)



where Eforw
l,n is the electric field at the observation point (x,z)

when source is located at (x′,z′) and Eadj
l,n is the adjoint field

computed using the following expression

Eadj
l,n =

2 j
ωn

E∗
n (xt ,zt |x′,z′)Eback

l,n (xd ,zd |xt ,zt). (4)

where E∗
n (xt ,zt |x′,z′) is the complex conjugate of the electric

field intensity calculated at (xt ,zt) during the forward calcula-
tion, Eback

l,n (xd ,zd |xt ,zt) is the electric field at the observation
point when the source is located at the target point (xt ,zt ).
In every optimization step, we update the permittivity using
Eq. (3) and the following equation

ε
new
r,l = ε

current
r,l +∑

n
αn

∂ϑn

∂εr,l
(5)

where αn is the learning rate. Typically a constant learning rate
(α0) is used. However, in this work, we assume αn = wnα0,
where wn is the weight of n-point Gauss–Legendre quadrature,
to achieve a uniform broadband enhancement. If the number of
iterations reaches a user-defined number or if the permittivity
profile stops changing significantly, then the calculations are
completed.

III. NUMERICAL RESULTS

As a case study, our goal is to design a 1.2-µm substrate
that yields the strongest electric field at at an observation point
located 300 nm above the substrate with a point source located
300 nm below the substrate for wavelengths ranging from 400
nm to 700 nm. Additional design constraints are as follows:
the minimum layer thickness is 5 nm, and permittivity values
cannot be smaller than 2 or larger than 10.

To determine the permittivity profile of the substrate, we
assume that the substrate is made from 240 layers, each of
which is 5 nm thick. We then implement the AM using both
an FDFD solver and LMGFs. For both implementations, we
calculate the fields at 800 points along the center of each layer
for −2 µm ≤ x≤ 2 µm. At the end of 200 iterations, the FDFD
and LMGF implementations produce the permittivity profiles
shown in Fig. 2 (a). Although they exhibit strong similarities,
the LMGF design is smoother and hence easier to fabricate
than the FDFD design. On the same workstation, the LMGF
implementation takes 2.5 hours, approximately half the time
of the FDFD implementation.

In Fig. 2 (b), we plot the normalized field intensities as
a function of incidence wavelength at the observation point
for the optimized substrate and two other reference substrates,
both of which are 1.2 µm thick but with a constant permittivity
of 2 or 10. The normalization is done by dividing the field
intensities by the field intensities when no substrate is present.
We observe that the optimized design achieves stronger field
transmission at all wavelengths. The AM design yields an
average field enhancement of 27.3%, while the reference
substrates yields enhancements of 9% and 3.9%, respectively.

Fig. 2. (a) Permittivity profiles of the AM optimized designs implemented
with the FDFD and LMGF solvers. (b) Normalized electric field intensities
above two substrates with a permittivity of 2 and 10 and above the substrate
with a permittivity profile optimized by LMGF-AF.

IV. CONCLUSION

We have described a novel computational approach utiliz-
ing the layered medium Green’s functions (LMGFs) coupled
with the adjoint method to efficiently optimize multi-layered
dielectric substrates for maximum transmission across the
visible spectrum. By exploiting the advantages of LMGF, we
were able to reduce computation time by half compared to
conventional finite-difference frequency-domain methods. Our
method demonstrated its efficacy through a case study, design-
ing a multi-layered substrate yielding significant transmission
enhancement over the visible spectrum compared to substrates
with constant permittivity.
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