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Abstract—We created a scatterer database based on the
modified MNIST data set. Using simple neural networks, we
achieve a 90% accuracy in classifying objects. We investigated
the accuracy as a function of antenna number and data set size.
For large data sets, neural networks exhibit a higher accuracy
compared to other traditional machine learning methods.

Index Terms—machine learning, classification,
electromagnetic.

I. INTRODUCTION

Electromagnetic inversion [1]–[3] pertains to the process of
deducing the properties or parameters of a medium (such as
the distribution of electrical permittivity or conductivity) by
analyzing measurements of electromagnetic fields scattered
or transmitted through the medium, as illustrated in Fig.
1(a). The primary objective of electromagnetic inversion is
to extrapolate the internal structure or composition of an
object or material, relying on the analysis of its interaction
with incident electromagnetic waves, as exemplified in
Fig. 1(c) for the targets depicted in (b). This holds
particular significance in fields such as geophysics, medical
imaging, and non-destructive testing. Traditional methods
encounter challenges such as nonlinearity, ill-posedness, and
high computational costs. Recent advancements leverage
machine learning to address these issues effectively. On
the other hand, electromagnetic classification, as discussed
in reference [4], involves the categorization or labeling
of objects based on their interaction with electromagnetic
waves. It represents a form of pattern recognition where
the objective is to assign predefined classes or categories
to objects by extracting features from their electromagnetic
responses. Unlike inversion, which concentrates on recovering
the properties of a medium, electromagnetic classification
focuses on identifying or classifying objects themselves, as
depicted in Fig. 1(d). This has diverse applications, including
target recognition in radar systems, object identification using
electromagnetic sensors, and material classification based
on electromagnetic signatures. In contrast to conventional
approaches often centered around signal processing, this
research exclusively explores machine learning-based object
classification utilizing electromagnetic data. While computer
vision has achieved automated recognition, our work delves
into the potential of classifying objects based on scattered

electromagnetic waves, with implications for robotics and
environmental perception.

Fig. 1. (a) Schematic illustration of a measurement setup that is typically used
in electromagnetic inversion. (b) Two objects are placed in the black box. (c)
In electromagnetic inversion, the relative permittivity map is obtained with
a CNN. (d) In electromagnetic classification, the output is simply the labels
(classes) of the objects.

II. DATA SET PREPARATION

The Modified National Institute of Standards and
Technology (MNIST) dataset, extensively utilized in the
fields of machine learning and computer vision, consists of
grayscale images featuring handwritten digits, each associated
with specific labels. The 60,000 images from the MNIST
dataset undergo a transformation, evolving into a scatterer
database. This conversion involves mapping pixel intensity
values (ranging from 0 to 255) to corresponding relative
electrical permittivity values (ranging from 1 to 4). The
electromagnetic scattering dataset is then systematically
generated using the freely accessible 2D electromagnetic
finite difference frequency domain simulation tool known as
Ceviche [5].

The computational domain, depicted in Fig. 2(a), is
characterized by dimensions of 2λ× 2λ, featuring a uniform
mesh along the x and y directions (∆x = ∆y = λ/150),
where λ denotes the wavelength of electromagnetic waves
emitted by a transmitter antenna. Perfectly matched layers with
a thickness of λ/7.5 are integrated into the setup. Initially,
each cell’s permittivity is assumed to be 1. Subsequently,
a region measuring 140 pixels by 140 pixels at the center
of the domain undergoes an update of permittivity using
2D cubic interpolation. The setup involves the placement of
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Fig. 2. (a) Permittivity distribution for one of the example geometries studied.
The purple regions have a relative permittivity of 1. The regions with higher
relative permittivity values are represented by lighter colors. The locations of
transmitter antennas are indicated by yellow dashed lines, while white circles
depict the positions of the 52 receiver antennas. (b) The solver calculates
electric and magnetic fields all over the computation domain but we only use
the data recorded at the receiver antennas.

two groups, each consisting of 26 receiver antennas, and
two transmitter antennas at specific locations. Electromagnetic
fields, exemplified in Fig. 2(b) for three field intensities, are
computed at 52 receiver antennas for each transmitter antenna.
This computation results in real and imaginary components
stored in a dataset. The dataset’s input section comprises
60,000 rows and 624 columns, representing receiver antennas,
transmitter antennas, electromagnetic fields, and components.
Meanwhile, the output section forms a 60, 000 × 1 vector
containing labels (digits).

III. NUMERICAL RESULTS

Fig. 3. Neural network architecture.

We utilize the functional application program interface
(API) of Keras [6], running on top of TensorFlow [7].
The neural network architecture, illustrated in Figure 3, is
composed of five hidden layers positioned between the input
and output layers. The first four layers, containing decreasing
number of neurons, are succeeded by dropout layers with a
20% dropout rate except the fourth one, which is followed
with a batch normalization layer. The activation function for
the initial four layers is the rectified linear unit (ReLU), while
the last layer encompasses 10 nodes. The softmax activation
function [9] is applied to this layer, generating probabilities
for each label. For classification predictions, the class with
the highest probability is selected. The learning rate is set to
10−3, and the optimizer of choice is Adam [10]. Categorical
cross-entropy [11] defines the loss function.

For the initial set of calculations, we allocate 50% of the
dataset for training and the other 50% for testing, and we

obtain an 90 % accuracy in classification as shown in Fig. 4
(a). The training takes approximately 21 minutes. To examine
the impact of the training dataset size (Ntrain) on accuracy
and training time, we conduct an additional set of calculations,
varying Ntrain from 600 to 30,000. It is observed that the NN’s
accuracy increases with the the dataset size as expected. A
training data set with 10000 samples guarantees a classification
accuracy of 80%, while decreasing %25 reduction in the
training time. At the conference, we provide more details on
how accuracy changes with number of antennae.

Fig. 4. (a) Accuracy and (b) loss vs. epochs.

IV. CONCLUSION

We have investigated the utilization of neural network
methodologies within the domain of object classification
using electromagnetic waves. Our findings indicate that it is
viable to achieve a classification accuracy of 90% by training
neural networks with the electromagnetic waves scattered from
objects and corresponding labels.
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