CHAPTER 2
MapReduce

MapReduce is a programming model for data processing. The model is simple, yet not
too simple to express useful programs in. Hadoop can run MapReduce programs writ-
ten in various languages; in this chapter, we look at the same program expressed in
Java, Ruby, Python, and C++. Most important, MapReduce programs are inherently
parallel, thus putting very large-scale data analysis into the hands of anyone with
enough machines at her disposal. MapReduce comes into its own for large datasets, so
let’s start by looking at one.

A Weather Dataset

For our example, we will write a program that mines weather data. Weather sensors
collect data every hour at many locations across the globe and gather a large volume of
log data, which is a good candidate for analysis with MapReduce because it is semi-
structured and record-oriented.

Data Format

The data we will use is from the National Climatic Data Center (NCDC, http://www
.ncde.noaa.gov/). The data is stored using a line-oriented ASCII format, in which each
line is a record. The format supports a rich set of meteorological elements, many of
which are optional or with variable data lengths. For simplicity, we focus on the basic
elements, such as temperature, which are always present and are of fixed width.

Example 2-1 shows a sample line with some of the salient fields highlighted. The line
has been split into multiple lines to show each field; in the real file, fields are packed
into one line with no delimiters.
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Example 2-1. Format of a National Climate Data Center record

0057

332130  # USAF weather station identifier
99999 # WBAN weather station identifier
19500101 # observation date

0300 # observation time

4

+51317  # latitude (degrees x 1000)
+028783 # longitude (degrees x 1000)
FM-12

+0171 # elevation (meters)

99999

V020

320 # wind direction (degrees)

1 # quality code

N

0072

1

00450  # sky ceiling height (meters)
1 # quality code

C

N

010000 # visibility distance (meters)

1 # quality code

N

9

-0128  # air temperature (degrees Celsius x 10)

1 # quality code

-0139  # dew point temperature (degrees Celsius x 10)
1 # quality code

10268  # atmospheric pressure (hectopascals x 10)

1 # quality code

Datatfiles are organized by date and weather station. There is a directory for each year
from 1901 to 2001, each containing a gzipped file for each weather station with its
readings for that year. For example, here are the first entries for 1990:

Since there are tens of thousands of weather stations, the whole dataset is made up of
alarge number of relatively small files. It’s generally easier and more efficient to process
a smaller number of relatively large files, so the data was preprocessed so that each

% 1s raw/1990 | head
010010-99999-1990.gz
010014-99999-1990. 82
010015-99999-1990. gz
010016-99999-1990. gz
010017-99999-1990. gz
010030-99999-1990. g2
010040-99999-1990. g2
010080-99999-1990. g2
010100-99999-1990. gz
010150-99999-1990. g2
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year’s readings were concatenated into a single file. (The means by which this was
carried out is described in Appendix C.)

Analyzing the Data with Unix Tools

What’s the highest recorded global temperature for each year in the dataset? We will
answer this first without using Hadoop, as this information will provide a performance
baseline and a useful means to check our results.

The classic tool for processing line-oriented data is awk. Example 2-2 is a small script
to calculate the maximum temperature for each year.

Example 2-2. A program for finding the maximum recorded temperature by year from NCDC weather
records

#1/usr/bin/env bash
for year in all/*
do
echo -ne “basename $year .gz "\t"
gunzip -c $year | \
awk '{ temp = substr($o, 88, 5) + 0;
g = substr($o, 93, 1);
if (temp 1=9999 8& q ~ /[01459]/ &3 temp > max) max = temp }
END { print max }'
done

The script loops through the compressed year files, first printing the year, and then
processing each file using awk. The awk script extracts two fields from the data: the air
temperature and the quality code. The air temperature value is turned into an integer
by adding 0. Next, a test is applied to see whether the temperature is valid (the value
9999 signifies a missing value in the NCDC dataset) and whether the quality code
indicates that the reading is not suspect or erroneous. If the reading is OK, the value is
compared with the maximum value seen so far, which is updated if a new maximum
is found. The END block is executed after all the lines in the file have been processed,
and it prints the maximum value.

Here is the beginning of a run:

% ./max_temperature.sh

1901 317
1902 244
1903 289
1904 256

1905 283

The temperature values in the source file are scaled by a factor of 10, so this works out
as a maximum temperature of 31.7°C for 1901 (there were very few readings at the
beginning of the century, so this is plausible). The complete run for the century took
42 minutes in one run on a single EC2 High-CPU Extra Large Instance.
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To speed up the processing, we need to run parts of the program in parallel. In theory,
this is straightforward: we could process different years in different processes, using all
the available hardware threads on a machine. There are a few problems with this,
however.

First, dividing the work into equal-size pieces isn’t always easy or obvious. In this case,
the file size for different years varies widely, so some processes will finish much earlier
than others. Even if they pick up further work, the whole run is dominated by the
longest file. A better approach, although one that requires more work, is to split the
input into fixed-size chunks and assign each chunk to a process.

Second, combining the results from independent processes may need further process-
ing. In this case, the result for each year is independent of other years and may be
combined by concatenating all the results and sorting by year. If using the fixed-size
chunk approach, the combination is more delicate. For this example, data for a par-
ticular year will typically be split into several chunks, each processed independently.
We'll end up with the maximum temperature for each chunk, so the final step is to
look for the highest of these maximums for each year.

Third, you are still limited by the processing capacity of a single machine. If the best
time you can achieve is 20 minutes with the number of processors you have, then that’s
it. You can’t make it go faster. Also, some datasets grow beyond the capacity of a single
machine. When we start using multiple machines, a whole host of other factors come
into play, mainly falling into the category of coordination and reliability. Who runs the
overall job? How do we deal with failed processes?

So, although it’s feasible to parallelize the processing, in practice it’s messy. Using a
framework like Hadoop to take care of these issues is a great help.

Analyzing the Data with Hadoop

To take advantage of the parallel processing that Hadoop provides, we need to express
our query as a MapReduce job. After some local, small-scale testing, we will be able to
run it on a cluster of machines.

Map and Reduce

MapReduce works by breaking the processing into two phases: the map phase and the
reduce phase. Each phase has key-value pairs as input and output, the types of which
may be chosen by the programmer. The programmer also specifies two functions: the
map function and the reduce function.

The input to our map phase is the raw NCDC data. We choose a text input format that
gives us each line in the dataset as a text value. The key is the offset of the beginning
of the line from the beginning of the file, but as we have no need for this, we ignore it.
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Our map function is simple. We pull out the year and the air temperature because these
are the only fields we are interested in. In this case, the map function is just a data
preparation phase, setting up the data in such a way that the reducer function can do
its work on it: finding the maximum temperature for each year. The map function is
also a good place to drop bad records: here we filter out temperatures that are missing,
suspect, Or erroneous.

To visualize the way the map works, consider the following sample lines of input data
(some unused columns have been dropped to fit the page, indicated by ellipses):

0067011990999991950051507004. . . 9999999N9+00001+99999999999. . .
0043011990999991950051512004. . . 9999999N9+00221+99999999999. ..
0043011990999991950051518004. . . 9999999N9-00111+99999999999. . .
0043012650999991949032412004. . . 0500001N9+01111+99999999999. ..
0043012650999991949032418004. . . 0500001N9+00781+99999999999. ..

These lines are presented to the map function as the key-value pairs:

(0, 0067011990999991950051507004. . .9999999N9+00001+99999999999. .. )
(106, 0043011990999991950051512004. . .9999999N9+00221+99999999999. ..
(212, 0043011990999991950051518004. . .9999999N9-00111+99999999999. . .
(318, 0043012650999991949032412004. . .0500001N9+01111+99999999999. ..
(424, 0043012650999991949032418004. . .0500001N9+00781+99999999999. . .

~—

The keys are the line offsets within the file, which we ignore in our map function. The
map function merely extracts the year and the air temperature (indicated in bold text),
and emits them as its output (the temperature values have been interpreted as
integers):

(1950, 0)

(1950, 22)

(1950, -11)

(1949, 111)

(1949, 78)

The output from the map function is processed by the MapReduce framework before
being sent to the reduce function. This processing sorts and groups the key-value pairs
by key. So, continuing the example, our reduce function sees the following input:
(1949, [111, 78])
(1950, [0, 22, -11])
Each year appears with a list of all its air temperature readings. All the reduce function
has to do now is iterate through the list and pick up the maximum reading:

(1949, 111)
(1950, 22)

This is the final output: the maximum global temperature recorded in each year.

The whole data flow is illustrated in Figure 2-1. At the bottom of the diagram is a Unix
pipeline, which mimics the whole MapReduce flow and which we will see again later
in this chapter when we look at Hadoop Streaming.
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input | map | shuffle | reduce > output

0067011990, { 0,0067011990...) (1950, 0)
0043011990., (106, 0043011990...) (1950, 22) (1949, [171.78D (1949, 117) 1949111
00430119904+ > (212, 0043011990...) feopf (1950,-11) ool | ocr 5 00 b oo 2 BPEE
0043012650, (318, 0043012650...) (1949,111) [0,22,-11) 4 ;
0043012650, (424, 0043012650...) (1949, 78)

cat* | map.rb | sort | reduce.rb - output

Figure 2-1. MapReduce logical data flow
Java MapReduce

Having run through how the MapReduce program works, the next step is to express it
in code. We need three things: a map function, a reduce function, and some code to
run the job. The map function is represented by the Mapper class, which declares an
abstract map() method. Example 2-3 shows the implementation of our map method.

Example 2-3. Mapper for the maximum temperature example

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Longhritable;
import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class MaxTemperatureMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {

private static final int MISSING = 9999;

@0verride
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

String line = value.toString();

String year = line.substring(15, 19);

int airTemperature;

if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs
airTemperature = Integer.parseInt(line.substring(88, 92));

} else {
airTemperature = Integer.parseInt(line.substring(87, 92));

}

String quality = line.substring(92, 93);

if (airTemperature != MISSING & quality.matches("[01459]")) {
context.write(new Text(year), new IntWritable(airTemperature));

}

}
}

The Mapper class is a generic type, with four formal type parameters that specify the
input key, input value, output key, and output value types of the map function. For the
present example, the input key is a long integer offset, the input value is a line of text,
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the output key is a year, and the output value is an air temperature (an integer). Rather
than use built-in Java types, Hadoop provides its own set of basic types that are opti-
mized for network serialization. These are found in the org.apache.hadoop.io package.
Here we use LongWritable, which corresponds to a Java Long, Text (like Java String),
and IntWritable (like Java Integer).

The map() method is passed a key and a value. We convert the Text value containing
the line of input into a Java String, then use its substring() method to extract the
columns we are interested in.

The map() method also provides an instance of Context to write the output to. In this
case, we write the year as a Text object (since we are just using it as a key), and the
temperature is wrapped in an IntWritable. We write an output record only if the tem-
perature is present and the quality code indicates the temperature reading is OK.

The reduce function is similarly defined using a Reducer, as illustrated in Example 2-4.

Example 2-4. Reducer for the maximum temperature example

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MaxTemperatureReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {

@verride

public void reduce(Text key, Iterable<IntWritable> values,
Context context)
throws IOException, InterruptedException {

int maxValue = Integer.MIN_VALUE;
for (IntWritable value : values) {
maxValue = Math.max(maxValue, value.get());

context.write(key, new IntWritable(maxValue));

}
}

Again, four formal type parameters are used to specify the input and output types, this
time for the reduce function. The input types of the reduce function must match the
output types of the map function: Text and IntWritable. And in this case, the output
types of the reduce function are Text and IntWritable, for a year and its maximum
temperature, which we find by iterating through the temperatures and comparing each
with a record of the highest found so far.

The third piece of code runs the MapReduce job (see Example 2-5).
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Example 2-5. Application to find the maximum temperature in the weather dataset

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MaxTemperature {

public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: MaxTemperature <input path> <output path>");
System.exit(-1);

Job job = new Job();
job.setJarByClass(MaxTemperature.class);
job.setJobName("Max temperature");

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job. setMapperClass(MaxTemperatureMapper.class);
job. setReducerClass(MaxTemperatureReducer.class);

job. setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);

}
}

A Job object forms the specification of the job and gives you control over how the job
is run. When we run this job on a Hadoop cluster, we will package the code into a JAR
file (which Hadoop will distribute around the cluster). Rather than explicitly specify
the name of the JAR file, we can pass a class in the Job’s setJarByClass () method, which
Hadoop will use to locate the relevant JAR file by looking for the JAR file containing
this class.

Having constructed a Job object, we specify the input and output paths. An input path
is specified by calling the static addInputPath() method on FileInputFormat, and it can
be a single file, a directory (in which case the input forms all the files in that directory),
or a file pattern. As the name suggests, addInputPath() can be called more than once
to use input from multiple paths.

The output path (of which there is only one) is specified by the static setOutput
Path() method on FileOutputFormat. It specifies a directory where the output files from
the reducer functions are written. The directory shouldn’t exist before running the job
because Hadoop will complain and not run the job. This precaution is to prevent data
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loss (it can be very annoying to accidentally overwrite the output of a long job with
another).

Next, we specify the map and reduce types to use via the setMapperClass() and
setReducerClass() methods.

The setOutputKeyClass() and setOutputValueClass() methods control the output types
for the map and the reduce functions, which are often the same, as they are in our case.
If they are different, the map output types can be set using the methods
setMapOutputKeyClass() and setMapOutputValueClass().

The input types are controlled via the input format, which we have not explicitly set
because we are using the default TextInputFormat.

After setting the classes that define the map and reduce functions, we are ready to run
the job. The waitForCompletion() method on Job submits the job and waits for it to
finish. The method’s Boolean argument is a verbose flag, so in this case the job writes
information about its progress to the console.

The return value of the waitForCompletion() method is a Boolean indicating success
(true) or failure (false), which we translate into the program’s exit code of 0 or 1.

Atest run

After writing a MapReduce job, it’s normal to try it out on a small dataset to flush out
any immediate problems with the code. First, install Hadoop in standalone mode—
there are instructions for how to do this in Appendix A. This is the mode in which
Hadoop runs using the local filesystem with a local job runner. Then, install and com-
pile the examples using the instructions on the book’s website.

Let’s test it on the five-line sample discussed earlier (the output has been slightly re-
formatted to fit the page):

% export HADOOP_CLASSPATH=hadoop-examples.jar

% hadoop MaxTemperature input/ncdc/sample.txt output

12/02/04 11:50:41 WARN util.NativeCodeloader: Unable to load native-hadoop library
for your platform... using builtin-java classes where applicable

12/02/04 11:50:41 WARN mapred.JobClient: Use GenericOptionsParser for parsing the
arguments. Applications should implement Tool for the same.

12/02/04 11:50:41 INFO input.FileInputFormat: Total input paths to process : 1
12/02/04 11:50:41 INFO mapred.JobClient: Running job: job_local_0001

12/02/04 11:50:41 INFO mapred.Task: Using ResourceCalculatorPlugin : null
12/02/04 11:50:41 INFO mapred.MapTask: io.sort.mb = 100

12/02/04 11:50:42 INFO mapred.MapTask: data buffer = 79691776/99614720

12/02/04 11:50:42 INFO mapred.MapTask: record buffer = 262144/327680

12/02/04 11:50:42 INFO mapred.MapTask: Starting flush of map output

12/02/04 11:50:42 INFO mapred.MapTask: Finished spill 0

12/02/04 11:50:42 INFO mapred.Task: Task:attempt_local 0001_m_000000 O is done. And i
s in the process of commiting

12/02/04 11:50:42 INFO mapred.JobClient: map 0% reduce 0%

12/02/04 11:50:44 INFO mapred.LocallobRunner:

12/02/04 11:50:44 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done.
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12/02/04 11:50:44 INFO
12/02/04 11:50:44 INFO
12/02/04 11:50:44 INFO
12/02/04 11:50:44 INFO
left of total size: 57
12/02/04 11:50:44
12/02/04 11:50:45
is in the process
12/02/04 11:50:45
12/02/04 11:50:45
commit now
12/02/04 11:50:45
0001_r_000000_0'

12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
8016

12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04
12/02/04

11

11

11

11

11

11

11

11

150
11:
11:

50
50

:50
11:
11:

50
50

150
11:
11:

50
50

150
11:
11:

50
50

50
50

150
11:
11:

50
50

:50
11:

50

150
11:
11:
11:
11:
11:
11:

50
50
50

145
147
147
148
148
148
148
148
148
148
148
148
:50:
11:
11:

48

148
148
148
148
148
148
148

148
148
148
148
50:
50:
50:

48
48
48

INFO

mapred.
mapred.
mapred.
mapred.

bytes

mapred.

Task: Using ResourceCalculatorPlugin : null
LocalJobRunner:

Merger: Merging 1 sorted segments

Merger: Down to the last merge-pass, with 1 segments

LocalJobRunner:

INFO mapred.Task: Task:attempt_local_0001_r 000000 0 is done. And
of commiting

INFO
INFO

INFO

mapred.
mapred.

output.

to output

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

INFO
INFO
INFO
INFO
INFO
INFO
INFO

mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.

mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.

When the hadoop command is
launches a Java Virtual Machine (JVM) to run the class. It is more convenient to use
hadoop than straight java because the former adds the Hadoop libraries (and their de-
pendencies) to the classpath and picks up the Hadoop configuration, too. To add the
application classes to the classpath, we’ve defined an environment variable called
HADOOP_CLASSPATH, which the hadoop script picks up.

LocalJobRunner:
Task: Task attempt_local_0001_r 000000 0 is allowed to

FileOutputCommitter: Saved output of task 'attempt_local

JobClient: map 100% reduce 0%

LocalJobRunner: reduce > reduce

Task: Task 'attempt_local_0001_r_ 000000 _0' done.
JobClient: map 100% reduce 100%

JobClient: Job complete: job_local 0001
JobClient: Counters: 17

JobClient: File Output Format Counters
JobClient: Bytes Written=29
JobClient:  FileSystemCounters
JobClient: FILE_BYTES_READ=357503
JobClient: FILE_BYTES WRITTEN=425817
JobClient: File Input Format Counters
JobClient: Bytes Read=529

JobClient:  Map-Reduce Framework
JobClient: Map output materialized bytes=61
JobClient: Map input records=5
JobClient: Reduce shuffle bytes=0
JobClient: Spilled Records=10
JobClient: Map output bytes=45
JobClient: Total committed heap usage (bytes)=36923
JobClient: SPLIT_RAW_BYTES=129
JobClient: Combine input records=0
JobClient: Reduce input records=5
JobClient: Reduce input groups=2
JobClient: Combine output records=0
JobClient: Reduce output records=2
JobClient: Map output records=5

invoked with a classname as the first argument, it

When running in local (standalone) mode, the programs in this book
all assume that you have set the HADOOP_CLASSPATH in this way. The com-

installed in.

%3 mands should be run from the directory that the example code is
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The output from running the job provides some useful information. For example,
we can see that the job was given an ID of job_local 0001, and it ran one map task
and one reduce task (with the IDs attempt local 0001_m_000000 0 and
attempt_local 0001 r 000000 0). Knowing thejoband task IDs can be very useful when
debugging MapReduce jobs.

The last section of the output, titled “Counters,” shows the statistics that Hadoop
generates for each job it runs. These are very useful for checking whether the amount
of data processed is what you expected. For example, we can follow the number of
records that went through the system: five map inputs produced five map outputs, then
five reduce inputs in two groups produced two reduce outputs.

The output was written to the output directory, which contains one output file per
reducer. The job had a single reducer, so we find a single file, named part-r-00000:
% cat output/part-r-00000

1949 111
1950 22

This result is the same as when we went through it by hand earlier. We interpret this
as saying that the maximum temperature recorded in 1949 was 11.1°C, and in 1950 it
was 2.2°C.

The old and the new Java MapReduce APIs

The Java MapReduce API used in the previous section was first released in Hadoop
0.20.0. This new API, sometimes referred to as “Context Objects,” was designed to
make the API easier to evolve in the future. It is type-incompatible with the old, how-
ever, so applications need to be rewritten to take advantage of it.

The new API is largely complete in the latest 1.x release series (which is a continuation
of the 0.20 series), except for a few MapReduce libraries that are missing (check in the
latest release to see whether the library you want to use is available in a subpackage of
org.apache.hadoop.mapreduce.lib).

Previous editions of this book were based on 0.20 releases and used the old API
throughout. In this edition, the new API is used as the primary API, except in a few
places. However, should you wish to use the old API, you can, since the code for all
the examples in this book is available for the old API on the book’s website. (A few of
the early 0.20 releases deprecated the old API, but the deprecation was removed in later
releases, so thatall 1.x and 2.x releases now support both the old and new APIs without
causing deprecation warnings.)

There are several notable differences between the two APIs:

¢ The new API favors abstract classes over interfaces, since these are easier to evolve.
This means that you can add a method (with a default implementation) to an
abstract class without breaking old implementations of the class.! For example,
the Mapper and Reducer interfaces in the old API are abstract classes in the new AP
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The new API is in the org.apache.hadoop.mapreduce package (and subpackages).
The old API can still be found in org.apache.hadoop.mapred.

The new API makes extensive use of context objects that allow the user code to
communicate with the MapReduce system. The new Context, for example, essen-
tially unifies the role of the JobConf, the OutputCollector, and the Reporter from
the old API.

In both APIs, key-value record pairs are pushed to the mapper and reducer, but in
addition, the new APT allows both mappers and reducers to control the execution
flow by overriding the run() method. For example, records can be processed in
batches, or the execution can be terminated before all the records have been pro-
cessed. In the old API this is possible for mappers by writing a MapRunnable, but no
equivalent exists for reducers.

Job control is performed through the Job class in the new API, rather than the old
JobClient, which no longer exists in the new APIL.

Configuration has been unified. The old API has a special JobConf object for job
configuration, which is an extension of Hadoop’s vanilla Configuration object
(used for configuring daemons; see “The Configuration API” on page 144). In the
new API, job configuration is done through a Configuration, possibly via some of
the helper methods on Job.

Output files are named slightly differently: in the old API both map and reduce
outputs are named part-nnnnn, whereas in the new APl map outputs are named
part-m-nnnnn, and reduce outputs are named part-r-nnnnn (where nnnnn is an integer
designating the part number, starting from zero).

User-overridable methods in the new API are declared to throw java.lang.Inter
ruptedException. This means that you can write your code to be responsive to
interrupts so that the framework can gracefully cancel long-running operations if
it needs to.2

In the new API, the reduce() method passes values as a java.lang.Iterable, rather
than a java.lang.Iterator (as the old API does). This change makes it easier to
iterate over the values using Java’s for-each loop construct:

for (VALUEIN value : values) { ... }

Example 2-6 shows the MaxTemperature application rewritten to use the old API. The
differences are highlighted in bold.

2.

. Technically, such a change would almost certainly break implementations that already define a method

with the same signature as the new one, but as the article at http://wiki.eclipse.org/Evolving_Java-based
_APIs#Example_4_-_Adding_an_API_method explains, for all practical purposes this is treated as a
compatible change.

“Dealing with InterruptedException” by Brian Goetz explains this technique in detail.
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When converting your Mapper and Reducer classes to the new API, don’t
A forget to change the signature of the map() and reduce() methods to the
new form. Just changing your class to extend the new Mapper or
Reducer classes will not produce a compilation error or warning, because
these classes provide an identity form of the map() or reduce() method
(respectively). Your mapper or reducer code, however, will not be in-
voked, which can lead to some hard-to-diagnose errors.

Annotating your map() and reduce() methods with the @verride an-
notation will allow the Java compiler to catch these errors.

Example 2-6. Application to find the maximum temperature, using the old MapReduce API
public class OldMaxTemperature {

static class OldMaxTemperatureMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

private static final int MISSING = 9999;

@0verride

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String line = value.toString();

String year = line.substring(15, 19);

int airTemperature;

if (line.charAt(87) == '+') { // parselnt doesn't like leading plus signs
airTemperature = Integer.parseInt(line.substring(88, 92));

} else {
airTemperature = Integer.parseInt(line.substring(87, 92));

}

String quality = line.substring(92, 93);

if (airTemperature != MISSING && quality.matches("[01459]")) {
output.collect(new Text(year), new IntWritable(airTemperature));

}

}
}

static class OldMaxTemperatureReducer extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {

@0verride

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

int maxValue = Integer.MIN_VALUE;
while (values.hasNext()) {
maxValue = Math.max(maxValue, values.next().get());

}
output.collect(key, new IntWritable(maxValue));

Analyzing the Data with Hadoop | 29



}

public static void main(String[] args) throws IOException {
if (args.length != 2) {
System.err.println("Usage: OldMaxTemperature <input path> <output path>");
System.exit(-1);
}

JobConf conf = new JobConf(0ldMaxTemperature.class);
conf.setJobName("Max temperature");

FileInputFormat.addInputPath(conf, new Path(args[0]));
FileQutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(0ldMaxTemperatureMapper.class);
conf.setReducerClass(0ldMaxTemperatureReducer.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);

Scaling Qut

You’ve seen how MapReduce works for small inputs; now it’s time to take a bird’s-eye
view of the system and look at the data flow for large inputs. For simplicity, the
examples so far have used files on the local filesystem. However, to scale out, we need
to store the data in a distributed filesystem, typically HDFS (which you’ll learn about
in the next chapter), to allow Hadoop to move the MapReduce computation to each
machine hosting a part of the data. Let’s see how this works.

Data Flow

First, some terminology. A MapReduce job is a unit of work that the client wants to be
performed: it consists of the input data, the MapReduce program, and configuration
information. Hadoop runs the job by dividing it into tasks, of which there are two types:
map tasks and reduce tasks.

There are two types of nodes that control the job execution process: a jobtracker and
anumber of tasktrackers. The jobtracker coordinates all the jobs run on the system by
scheduling tasks to run on tasktrackers. Tasktrackers run tasks and send progress
reports to the jobtracker, which keeps a record of the overall progress of each job. If a
task fails, the jobtracker can reschedule it on a different tasktracker.

Hadoop divides the input to a MapReduce job into fixed-size pieces called input
splits, or just splits. Hadoop creates one map task for each split, which runs the user-
defined map function for each record in the split.
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Having many splits means the time taken to process each split is small compared to the
time to process the whole input. So if we are processing the splits in parallel, the pro-
cessing is better load-balanced when the splits are small, since a faster machine will be
able to process proportionally more splits over the course of the job than a slower
machine. Even if the machines are identical, failed processes or other jobs running
concurrently make load balancing desirable, and the quality of the load balancing in-
creases as the splits become more fine-grained.

On the other hand, if splits are too small, the overhead of managing the splits and of
map task creation begins to dominate the total job execution time. For most jobs, a
good split size tends to be the size of an HDFS block, 64 MB by default, although this
can be changed for the cluster (for all newly created files) or specified when each file is
created.

Hadoop does its best to run the map task on a node where the input data resides in
HDFS. This is called the data locality optimization because it doesn’t use valuable clus-
ter bandwidth. Sometimes, however, all three nodes hosting the HDFS block replicas
for a map task’s input split are running other map tasks, so the job scheduler will look
for a free map slot on a node in the same rack as one of the blocks. Very occasionally
even this is not possible, so an off-rack node is used, which results in an inter-rack
network transfer. The three possibilities are illustrated in Figure 2-2.

node

|

rack

[——1Map task

[ HDFS block L

Figure 2-2. Data-local (a), rack-local (b), and off-rack (c) map tasks

It should now be clear why the optimal split size is the same as the block size: it is the
largest size of input that can be guaranteed to be stored on a single node. If the split
spanned two blocks, it would be unlikely that any HDFS node stored both blocks, so
some of the split would have to be transferred across the network to the node running

Scaling Out | 31



the map task, which is clearly less efficient than running the whole map task using local
data.

Map tasks write their output to the local disk, not to HDFS. Why is this? Map output
is intermediate output: it’s processed by reduce tasks to produce the final output, and
once the job is complete, the map output can be thrown away. So storing it in HDFS
with replication would be overkill. If the node running the map task fails before the
map output has been consumed by the reduce task, then Hadoop will automatically
rerun the map task on another node to re-create the map output.

Reduce tasks don’t have the advantage of data locality; the input to a single reduce task
is normally the output from all mappers. In the present example, we have a single reduce
task that is fed by all of the map tasks. Therefore, the sorted map outputs have to be
transferred across the network to the node where the reduce task is running, where
they are merged and then passed to the user-defined reduce function. The output of
the reduce is normally stored in HDFS for reliability. As explained in Chapter 3, for
each HDFS block of the reduce output, the first replica is stored on the local node, with
other replicas being stored on off-rack nodes. Thus, writing the reduce output does
consume network bandwidth, but only as much as a normal HDFS write pipeline
consumes.

The whole data flow with a single reduce task is illustrated in Figure 2-3. The dotted
boxes indicate nodes, the light arrows show data transfers on a node, and the heavy
arrows show data transfers between nodes.

P HDFS
replication

Figure 2-3. MapReduce data flow with a single reduce task
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The number of reduce tasks is not governed by the size of the input, but instead is
specified independently. In “The Default MapReduce Job” on page 227, you will see
how to choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating
one partition for each reduce task. There can be many keys (and their associated values)
in each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys using a hash function—works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4.
This diagram makes it clear why the data flow between map and reduce tasks is collo-
quially known as “the shuffle,” as each reduce task is fed by many map tasks. The
shuffle is more complicated than this diagram suggests, and tuning it can have a big
impact on job execution time, as you will see in “Shuffle and Sort” on page 208.

» HDFS
replication

P HDFS
replication

Figure 2-4. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you
don’t need the shuffle because the processing can be carried out entirely in parallel (a
few examples are discussed in “NLinelnputFormat” on page 247). In this case, the
only off-node data transfer is when the map tasks write to HDFS (see Figure 2-5).

Combiner Functions

Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays
to minimize the data transferred between map and reduce tasks. Hadoop allows the
user to specify a combiner function to be run on the map output, and the combiner

Scaling Out | 33



function’s output forms the input to the reduce function. Because the combiner func-
tion is an optimization, Hadoop does not provide a guarantee of how many times it
will call it for a particular map output record, if at all. In other words, calling the
combiner function zero, one, or many times should produce the same output from the
reducer.

{splitd e " S )lwm » HDFS
e ' replication

{osplit] i ........ > ,lwn p HDFS
it ' replication

T
i split2 E ------- N »| part2 P HDFS
5 replication

Figure 2-5. MapReduce data flow with no reduce tasks

The contract for the combiner function constrains the type of function that may be
used. This is best illustrated with an example. Suppose that for the maximum temper-
ature example, readings for the year 1950 were processed by two maps (because they
were in different splits). Imagine the first map produced the output:

(1950, 0)
(1950, 20)
(1950, 10)

and the second produced:

(1950, 25)
(1950, 15)

The reduce function would be called with a list of all the values:
(1950, [0, 20, 10, 25, 15])

with output:
(1950, 25)

since 25 is the maximum value in the list. We could use a combiner function that, just
like the reduce function, finds the maximum temperature for each map output. The
reduce would then be called with:
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(1950, [20, 25])

and the reduce would produce the same output as before. More succinctly, we may
express the function calls on the temperature values in this case as follows:

max(0, 20, 10, 25, 15) = max(max(0, 20, 10), max(25, 15)) = max(20, 25) = 25

Not all functions possess this property.3 For example, if we were calculating mean
temperatures, we couldn’t use the mean as our combiner function, because:

mean(0, 20, 10, 25, 15) = 14
but:

mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15

The combiner function doesn’t replace the reduce function. (How could it? The reduce
function is still needed to process records with the same key from different maps.) But
it can help cut down the amount of data shuffled between the mappers and the reducers,
and for this reason alone it is always worth considering whether you can use a combiner
function in your MapReduce job.

Specifying a combiner function

Going back to the Java MapReduce program, the combiner function is defined using
the Reducer class, and for this application, it is the same implementation as the reducer
function in MaxTemperatureReducer. The only change we need to make is to set the
combiner class on the Job (see Example 2-7).

Example 2-7. Application to find the maximum temperature, using a combiner function for efficiency

public class MaxTemperatureWithCombiner {

public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: MaxTemperatureWithCombiner <input path> " +
"<output path>");
System.exit(-1);

Job job = new Job();
job.setJarByClass(MaxTemperatureWithCombiner.class);
job.setJobName("Max temperature");

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job. setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job. setReducerClass(MaxTemperatureReducer.class);

3. Functions with this property are called commutative and associative. They are also sometimes referred to
as distributive, such as in the paper “Data Cube: A Relational Aggregation Operator Generalizing Group-
By, Cross-Tab, and Sub-Totals,” Gray et al. (1995).
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job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);

Running a Distributed MapReduce Job

The same program will run, without alteration, on a full dataset. This is the point of
MapReduce: it scales to the size of your data and the size of your hardware. Here’s one
data point: on a 10-node EC2 cluster running High-CPU Extra Large Instances, the
program took six minutes to run.*

We'll go through the mechanics of running programs on a cluster in Chapter 5.

Hadoop Streaming

Hadoop provides an API to MapReduce that allows you to write your map and reduce
functions in languages other than Java. Hadoop Streaming uses Unix standard streams
as the interface between Hadoop and your program, so you can use any language that
can read standard input and write to standard output to write your MapReduce
program.

Streaming is naturally suited for text processing. Map input data is passed over standard
input to your map function, which processes it line by line and writes lines to standard
output. A map output key-value pair is written as a single tab-delimited line. Input to
the reduce function is in the same format—a tab-separated key-value pair—passed over
standard input. The reduce function reads lines from standard input, which the frame-
work guarantees are sorted by key, and writes its results to standard output.

Let’s illustrate this by rewriting our MapReduce program for finding maximum tem-
peratures by year in Streaming.

Ruby

The map function can be expressed in Ruby as shown in Example 2-8.

Example 2-8. Map function for maximum temperature in Ruby

#!/usr/bin/env ruby

4. This is a factor of seven faster than the serial run on one machine using awk. The main reason it wasn’t
proportionately faster is because the input data wasn’t evenly partitioned. For convenience, the input
files were gzipped by year, resulting in large files for later years in the dataset, when the number of weather
records was much higher.
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CHAPTER 3
The Hadoop Distributed Filesystem

When a dataset outgrows the storage capacity of a single physical machine, it becomes
necessary to partition it across a number of separate machines. Filesystems that manage
the storage across a network of machines are called distributed filesystems. Since they
are network-based, all the complications of network programming kick in, thus making
distributed filesystems more complex than regular disk filesystems. For example, one
of the biggest challenges is making the filesystem tolerate node failure without suffering
data loss.

Hadoop comes with a distributed filesystem called HDFS, which stands for Hadoop
Distributed Filesystem. (You may sometimes see references to “DFS”—informally or in
older documentation or configurations—which is the same thing.) HDFS is Hadoop’s
flagship filesystem and is the focus of this chapter, but Hadoop actually has a general-
purpose filesystem abstraction, so we’ll see along the way how Hadoop integrates with
other storage systems (such as the local filesystem and Amazon S3).

The Design of HDFS

HDFS is a filesystem designed for storing very large files with streaming data access
patterns, running on clusters of commodity hardware.! Let’s examine this statement
in more detail:

Very large files
“Very large” in this context means files that are hundreds of megabytes, gigabytes,

or terabytes in size. There are Hadoop clusters running today that store petabytes
of data.?

1. The architecture of HDFS is described in “The Hadoop Distributed File System” by Konstantin Shvachko,
Hairong Kuang, Sanjay Radia, and Robert Chansler (Proceedings of MSST2010, May 2010, hitp://
storageconference.org/2010/Papers/MSST/Shvachko.pdy).

2. “Scaling Hadoop to 4000 nodes at Yahoo!,” http://developer.yahoo.net/blogs/hadoop/2008/09/scaling
_hadoop_to_4000_nodes_a.html.
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Streaming data access
HDFS is built around the idea that the most efficient data processing pattern is a
write-once, read-many-times pattern. A dataset is typically generated or copied
from source, and then various analyses are performed on that dataset over time.
Each analysis will involve a large proportion, if not all, of the dataset, so the time
to read the whole dataset is more important than the latency in reading the first
record.

Commodity hardware
Hadoop doesn’t require expensive, highly reliable hardware. It’s designed to run
on clusters of commodity hardware (commonly available hardware that can be
obtained from multiple vendors)3 for which the chance of node failure across the
cluster is high, at least for large clusters. HDFS is designed to carry on working
without a noticeable interruption to the user in the face of such failure.

It is also worth examining the applications for which using HDFS does not work so
well. Although this may change in the future, these are areas where HDFS is not a good
fit today:

Low-latency data access
Applications that require low-latency access to data, in the tens of milliseconds
range, will not work well with HDFS. Remember, HDFS is optimized for delivering
a high throughput of data, and this may be at the expense of latency. HBase
(Chapter 13) is currently a better choice for low-latency access.

Lots of small files
Because the namenode holds filesystem metadata in memory, the limit to the
number of files in a filesystem is governed by the amount of memory on the name-
node. As a rule of thumb, each file, directory, and block takes about 150 bytes. So,
for example, if you had one million files, each taking one block, you would need
at least 300 MB of memory. Although storing millions of files is feasible, billions
is beyond the capability of current hardware.*

Multiple writers, arbitrary file modifications
Files in HDFS may be written to by a single writer. Writes are always made at the
end of the file. There is no support for multiple writers or for modifications at
arbitrary offsets in the file. (These might be supported in the future, but they are
likely to be relatively inefficient.)

3. See Chapter 9 for a typical machine specification.

4. For an in-depth exposition of the scalability limits of HDFS, see Konstantin V. Shvachko’s “Scalability
of the Hadoop Distributed File System” (http://developer.yahoo.net/blogs/hadoop/2010/05/scalability_of
_the_hadoop_dist.html) and the companion paper, “HDFS Scalability: The limits to growth” (April 2010,
pp- 6-16), hitp://www.usenix.org/publications/login/2010-04/openpdfs/shvachko.pdf), by the same author.
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HDFS Concepts

Blocks

A disk has a block size, which is the minimum amount of data that it can read or write.
Filesystems for a single disk build on this by dealing with data in blocks, which are an
integral multiple of the disk block size. Filesystem blocks are typically a few kilobytes
in size, whereas disk blocks are normally 512 bytes. This is generally transparent to the
filesystem user who is simply reading or writing a file of whatever length. However,
there are tools to perform filesystem maintenance, such as df and fsck, that operate on
the filesystem block level.

HDFS, too, has the concept of a block, but it is a much larger unit—64 MB by default.
Like in a filesystem for a single disk, files in HDFS are broken into block-sized chunks,
which are stored as independent units. Unlike a filesystem for a single disk, a file in
HDFS that is smaller than a single block does not occupy a full block’s worth of un-
derlying storage. When unqualified, the term “block” in this book refers to a block in
HDFS.

Why Is a Block in HDFS So Large?

HDFS blocks are large compared to disk blocks, and the reason is to minimize the cost
of seeks. By making a block large enough, the time to transfer the data from the disk
can be significantly longer than the time to seek to the start of the block. Thus the time
to transfer a large file made of multiple blocks operates at the disk transfer rate.

A quick calculation shows that if the seek time is around 10 ms and the transfer rate is
100 MB/s, to make the seek time 1% of the transfer time, we need to make the block
size around 100 MB. The default is actually 64 MB, although many HDFS installations
use 128 MB blocks. This figure will continue to be revised upward as transfer speeds
grow with new generations of disk drives.

This argument shouldn’t be taken too far, however. Map tasks in MapReduce normally
operate on one block at a time, so if you have too few tasks (fewer than nodes in the
cluster), your jobs will run slower than they could otherwise.

Having a block abstraction for a distributed filesystem brings several benefits. The first
benefit is the most obvious: a file can be larger than any single disk in the network.
There’s nothing that requires the blocks from a file to be stored on the same disk, so
they can take advantage of any of the disks in the cluster. In fact, it would be possible,
if unusual, to store a single file on an HDFS cluster whose blocks filled all the disks in
the cluster.
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Second, making the unit of abstraction a block rather than a file simplifies the storage
subsystem. Simplicity is something to strive for in all systems, but is especially
important for a distributed system in which the failure modes are so varied. The storage
subsystem deals with blocks, simplifying storage management (because blocks are a
fixed size, it is easy to calculate how many can be stored on a given disk) and eliminating
metadata concerns (because blocks are just a chunk of data to be stored, file metadata
such as permissions information does not need to be stored with the blocks, so another
system can handle metadata separately).

Furthermore, blocks fit well with replication for providing fault tolerance and availa-
bility. To insure against corrupted blocks and disk and machine failure, each block is
replicated to a small number of physically separate machines (typically three). If a block
becomes unavailable, a copy can be read from another location in a way that is trans-
parent to the client. A block that is no longer available due to corruption or machine
failure can be replicated from its alternative locations to other live machines to bring
the replication factor back to the normal level. (See “Data Integrity” on page 81 for
more on guarding against corrupt data.) Similarly, some applications may choose to
set a high replication factor for the blocks in a popular file to spread the read load on
the cluster.

Like its disk filesystem cousin, HDFS’s fsck command understands blocks. For exam-
ple, running:
% hadoop fsck / -files -blocks

will list the blocks that make up each file in the filesystem. (See also “Filesystem check
(fsck)” on page 347.)

Namenodes and Datanodes

An HDFS cluster has two types of nodes operating in a master-worker pattern: a name-
node (the master) and a number of datanodes (workers). The namenode manages the
filesystem namespace. It maintains the filesystem tree and the metadata for all the files
and directories in the tree. This information is stored persistently on the local disk in
the form of two files: the namespace image and the edit log. The namenode also knows
the datanodes on which all the blocks for a given file are located; however, it does
not store block locations persistently, because this information is reconstructed from
datanodes when the system starts.

A client accesses the filesystem on behalf of the user by communicating with the name-
node and datanodes. The client presents a filesystem interface similar to a Portable
Operating System Interface (POSIX), so the user code does not need to know about the
namenode and datanode to function.

Datanodes are the workhorses of the filesystem. They store and retrieve blocks when
they are told to (by clients or the namenode), and they report back to the namenode
periodically with lists of blocks that they are storing.
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Without the namenode, the filesystem cannot be used. In fact, if the machine running
the namenode were obliterated, all the files on the filesystem would be lost since there
would be no way of knowing how to reconstruct the files from the blocks on the
datanodes. For this reason, it is important to make the namenode resilient to failure,
and Hadoop provides two mechanisms for this.

The first way is to back up the files that make up the persistent state of the filesystem
metadata. Hadoop can be configured so that the namenode writes its persistent state
to multiple filesystems. These writes are synchronous and atomic. The usual configu-
ration choice is to write to local disk as well as a remote NFS mount.

It is also possible to run a secondary namenode, which despite its name does not act as
a namenode. Its main role is to periodically merge the namespace image with the edit
log to prevent the edit log from becoming too large. The secondary namenode usually
runs on a separate physical machine because it requires plenty of CPU and as much
memory as the namenode to perform the merge. It keeps a copy of the merged name-
space image, which can be used in the event of the namenode failing. However, the
state of the secondary namenode lags that of the primary, so in the event of total failure
of the primary, data loss is almost certain. The usual course of action in this case is to
copy the namenode’s metadata files that are on NFS to the secondary and run it as the
new primary.

See “The filesystem image and edit log” on page 340 for more details.

HDFS Federation

The namenode keeps a reference to every file and block in the filesystem in memory,
which means that on very large clusters with many files, memory becomes the limiting
factor for scaling (see “How Much Memory Does a Namenode Need?” on page 308).
HDEFS Federation, introduced in the 2.x release series, allows a cluster to scale by adding
namenodes, each of which manages a portion of the filesystem namespace. For exam-
ple, one namenode might manage all the files rooted under /user, say, and a second
namenode might handle files under /share.

Under federation, each namenode manages a namespace volume, which is made up of
the metadata for the namespace, and a block pool containing all the blocks for the files
in the namespace. Namespace volumes are independent of each other, which means
namenodes do not communicate with one another, and furthermore the failure of one
namenode does not affect the availability of the namespaces managed by other namen-
odes. Block pool storage is not partitioned, however, so datanodes register with each
namenode in the cluster and store blocks from multiple block pools.

To access a federated HDFS cluster, clients use client-side mount tables to map file
paths to namenodes. This is managed in configuration using ViewFileSystem and the
viewfs:// URIs.
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HDFS High-Availability

The combination of replicating namenode metadata on multiple filesystems and using
the secondary namenode to create checkpoints protects against data loss, but it does
not provide high-availability of the filesystem. The namenode is still a single point of
failure (SPOF). If it did fail, all clients—including MapReduce jobs—would be unable
to read, write, or list files, because the namenode is the sole repository of the metadata
and the file-to-block mapping. In such an event the whole Hadoop system would ef-
fectively be out of service until a new namenode could be brought online.

To recover from a failed namenode in this situation, an administrator starts a new
primary namenode with one of the filesystem metadata replicas and configures
datanodes and clients to use this new namenode. The new namenode is not able to
serve requests until it has i) loaded its namespace image into memory, ii) replayed its
edit log, and iii) received enough block reports from the datanodes to leave safe mode.
On large clusters with many files and blocks, the time it takes for a namenode to start
from cold can be 30 minutes or more.

The long recovery time is a problem for routine maintenance too. In fact, because
unexpected failure of the namenode is so rare, the case for planned downtime is actually
more important in practice.

The 2.x release series of Hadoop remedies this situation by adding support for HDFS
high-availability (HA). In this implementation there is a pair of namenodes in an active-
standby configuration. In the event of the failure of the active namenode, the standby
takes over its duties to continue servicing client requests without a significant inter-
ruption. A few architectural changes are needed to allow this to happen:

* The namenodes must use highly available shared storage to share the edit log. (In
the initial implementation of HA this will require an NFS filer, but in future releases
more options will be provided, such as a BookKeeper-based system built on Zoo-
Keeper.) When a standby namenode comes up, it reads up to the end of the shared
edit log to synchronize its state with the active namenode, and then continues to
read new entries as they are written by the active namenode.

* Datanodes must send block reports to both namenodes because the block map-
pings are stored in a namenode’s memory, and not on disk.

* Clients must be configured to handle namenode failover, using a mechanism that
is transparent to users.

If the active namenode fails, the standby can take over very quickly (in a few tens of
seconds) because it has the latest state available in memory: both the latest edit log
entries and an up-to-date block mapping. The actual observed failover time will be
longer in practice (around a minute or so), because the system needs to be conservative
in deciding that the active namenode has failed.
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In the unlikely event of the standby being down when the active fails, the administrator
can still start the standby from cold. This is no worse than the non-HA case, and from
an operational point of view it’s an improvement, because the process is a standard
operational procedure built into Hadoop.

Failover and fencing

The transition from the active namenode to the standby is managed by a new entity in
the system called the failover controller. Failover controllers are pluggable, but the first
implementation uses ZooKeeper to ensure that only one namenode is active. Each
namenode runs a lightweight failover controller process whose job it is to monitor its
namenode for failures (using a simple heartbeating mechanism) and trigger a failover
should a namenode fail.

Failover may also be initiated manually by an administrator, for example, in the case
of routine maintenance. This is known as a graceful failover, since the failover controller
arranges an orderly transition for both namenodes to switch roles.

In the case of an ungraceful failover, however, it is impossible to be sure that the failed
namenode has stopped running. For example, a slow network or a network partition
can trigger a failover transition, even though the previously active namenode is still
running and thinks it is still the active namenode. The HA implementation goes to great
lengths to ensure that the previously active namenode is prevented from doing any
damage and causing corruption—a method known as fencing. The system employs a
range of fencing mechanisms, including killing the namenode’s process, revoking its
access to the shared storage directory (typically by using a vendor-specific NFS com-
mand), and disabling its network port via a remote management command. As a last
resort, the previously active namenode can be fenced with a technique rather graphi-
cally known as STONITH, or “shoot the other node in the head,” which uses a speci-
alized power distribution unit to forcibly power down the host machine.

Client failover is handled transparently by the client library. The simplest implemen-
tation uses client-side configuration to control failover. The HDFS URI uses a logical
hostname that is mapped to a pair of namenode addresses (in the configuration file),
and the client library tries each namenode address until the operation succeeds.

The Command-Line Interface

We're going to have a look at HDFS by interacting with it from the command line.
There are many other interfaces to HDFS, but the command line is one of the simplest
and, to many developers, the most familiar.

We are going to run HDFS on one machine, so first follow the instructions for setting
up Hadoop in pseudodistributed mode in Appendix A. Later we’ll see how to run HDFS
on a cluster of machines to give us scalability and fault tolerance.
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There are two properties that we set in the pseudodistributed configuration that deserve
further explanation. The first is fs.default.name, set to hdfs://localhost/, which is used
to set a default filesystem for Hadoop. Filesystems are specified by a URI, and here we
have used an hdfs URI to configure Hadoop to use HDFS by default. The HDFS dae-
mons will use this property to determine the host and port for the HDFS namenode.
We'll be running it on localhost, on the default HDFS port, 8020. And HDFS clients
will use this property to work out where the namenode is running so they can connect
to it.

We set the second property, dfs.replication, to 1 so that HDFS doesn’t replicate
filesystem blocks by the default factor of three. When running with a single datanode,
HDES can’t replicate blocks to three datanodes, so it would perpetually warn about
blocks being under-replicated. This setting solves that problem.

Basic Filesystem Operations

The filesystem is ready to be used, and we can do all of the usual filesystem operations,
such as reading files, creating directories, moving files, deleting data, and listing direc-
tories. You can type hadoop fs -help to get detailed help on every command.

Start by copying a file from the local filesystem to HDFS:

% hadoop fs -copyFromLocal input/docs/quangle.txt hdfs://localhost/user/tom/
quangle.txt

This command invokes Hadoop’s filesystem shell command fs, which supports a
number of subcommands—in this case, we are running -copyFromLocal. The local file
quangle.txt is copied to the file /user/tom/quangle.txt on the HDFS instance running on
localhost. In fact, we could have omitted the scheme and host of the URI and picked
up the default, hdfs://localhost, as specified in core-site.xml:

% hadoop fs -copyFromLocal input/docs/quangle.txt /user/tom/quangle.txt
We also could have used a relative path and copied the file to our home directory in
HDES, which in this case is /user/tom:

% hadoop fs -copyFromLocal input/docs/quangle.txt quangle.txt

Let’s copy the file back to the local filesystem and check whether it’s the same:

% hadoop fs -copyTolLocal quangle.txt quangle.copy.txt

% md5 input/docs/quangle.txt quangle.copy.txt

MD5 (input/docs/quangle.txt) = a16f231dabb05e2ba7a339320e7dacd9
MD5 (quangle.copy.txt) = a16f231da6bo5e2ba7a339320e7dacd9

The MD?5 digests are the same, showing that the file survived its trip to HDFS and is
back intact.

Finally, let’s look at an HDFS file listing. We create a directory first just to see how it
is displayed in the listing:
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% hadoop fs -mkdir books

% hadoop fs -1s .

Found 2 items

drwxr-xr-x - tom supergroup 0 2009-04-02 22:41 /user/tom/books
-rw-r--r-- 1 tom supergroup 118 2009-04-02 22:29 /user/tom/quangle.txt

The information returned is very similar to the Unix command 1s -1, with a few minor
differences. The first column shows the file mode. The second column is the replication
factor of the file (something a traditional Unix filesystem does not have). Remember
we set the default replication factor in the site-wide configuration to be 1, which is why
we see the same value here. The entry in this column is empty for directories because
the concept of replication does not apply to them—directories are treated as metadata
and stored by the namenode, not the datanodes. The third and fourth columns show
the file owner and group. The fifth column is the size of the file in bytes, or zero for
directories. The sixth and seventh columns are the last modified date and time. Finally,
the eighth column is the absolute name of the file or directory.

File Permissions in HDFS
HDFS has a permissions model for files and directories that is much like POSIX.

There are three types of permission: the read permission (r), the write permission (w),
and the execute permission (x). The read permission is required to read files or list the
contents of a directory. The write permission is required to write a file, or for a directory,
to create or delete files or directories in it. The execute permission is ignored for a file
because you can’t execute a file on HDFS (unlike POSIX), and for a directory this
permission is required to access its children.

Each file and directory has an owner, a group, and a mode. The mode is made up of the
permissions for the user who is the owner, the permissions for the users who are
members of the group, and the permissions for users who are neither the owners nor
members of the group.

By default, a client’s identity is determined by the username and groups of the process
itis running in. Because clients are remote, this makes it possible to become an arbitrary
user simply by creating an account of that name on the remote system. Thus, permis-
sions should be used only in a cooperative community of users, as a mechanism for
sharing filesystem resources and for avoiding accidental data loss, and not for securing
resources in a hostile environment. (Note, however, that the latest versions of Hadoop
support Kerberos authentication, which removes these restrictions; see “Secu-
rity” on page 325.) Despite these limitations, it is worthwhile having permissions en-
abled (as it is by default; see the dfs.permissions property), to avoid accidental modi-
fication or deletion of substantial parts of the filesystem, either by users or by automated
tools or programs.
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When permissions checking is enabled, the owner permissions are checked if the cli-
ent’s username matches the owner, and the group permissions are checked if the client
is a member of the group; otherwise, the other permissions are checked.

There is a concept of a super user, which is the identity of the namenode process.
Permissions checks are not performed for the super user.

Hadoop Filesystems

Hadoop has an abstract notion of filesystem, of which HDFS is just one implementa-
tion. The Java abstract class org.apache.hadoop.fs.FileSystem represents a filesystem
in Hadoop, and there are several concrete implementations, which are described in

Table 3-1.

Table 3-1. Hadoop filesystems

Filesystem

Local

HDFS

HFTP

HSFTP

WebHDFS

HAR

KFS (Cloud-
Store)

FTP
S3 (native)

URI scheme

file

hdfs

hftp

hsftp

webhdfs

har

kfs

fip

s3n

Java implementation
(all under org.apache.hadoop)

fs.LocalFileSystem

hdfs.
DistributedFileSystem

hdfs.HftpFileSystem

hdfs.HsftpFileSystem

hdfs.web.WebHdfsFile
System

fs.HarFileSystem

fs.kfs.
KosmosFileSystem

fs.ftp.FTPFileSystem

fs.s3native.
NativeS3FileSystem

Description

Afilesystem for a locally connected disk with client-
side checksums. Use RawLocalFileSystemfora
local filesystem with no checksums. See “LocalFileSys-
tem” on page 82.

Hadoop'sdistributedfilesystem. HDFSisdesignedtowork
efficiently in conjunction with MapReduce.

Afilesystem providing read-only access to HDFS over
HTTP. (Despite its name, HFTP has no connection with
FTP.) Often used with distcp (see “Parallel Copying with
distcp” on page 75) to copy data between HDFS
clusters running different versions.

Afilesystem providing read-only access to HDFS over
HTTPS. (Again, this has no connection with FTP.)

A filesystem providing secure read-write access to HDFS
over HTTP. WebHDFS is intended as a replacement for
HFTP and HSFTP.

Afilesystem layered on another filesystem for archiving
files. Hadoop Archivesare typically used forarchiving iles
in HDFS to reduce the namenode’s memory usage. See
“Hadoop Archives” on page 77.

CloudStore (formerly Kosmos filesystem) is a dis-
tributed filesystem like HDFS or Google’s GFS, written in
(++. Find more information about it at
http://code.google.com/p/kosmosfs/.

Afilesystem backed by an FTP server.

Afilesystem backed by Amazon S3. See http://wiki
.apache.org/hadoop/Amazons3.
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Filesystem  URIscheme Javaimplementation Description
(all under org.apache.hadoop)

S3 (block- 3 fs.s3.53FileSystem Afilesystem backed by Amazon S3, which stores files in

based) blocks (much like HDFS) to overcome $3's 5 GB file size
limit.

Distributed ~ hdfs hdfs.DistributedRaidFi  A“RAID" version of HDFS designed for archival storage.

RAID leSystem For each file in HDFS, a (smaller) parity file is created,

which allows the HDFS replication to be reduced from
three to two, which reduces disk usage by 25% to 30%
while keeping the probability of data loss the same. Dis-
tributed RAID requiresthatyourunaRaidNode daemon
on the dluster.

View viewfs viewfs.ViewFileSystem A dient-side mount table for other Hadoop filesystems.
Commonly used to create mount points for federated
namenodes (see “HDFS Federation” on page 47).

Hadoop provides many interfaces to its filesystems, and it generally uses the URI
scheme to pick the correct filesystem instance to communicate with. For example, the
filesystem shell that we met in the previous section operates with all Hadoop filesys-
tems. To list the files in the root directory of the local filesystem, type:

% hadoop fs -1s file:///

Although it is possible (and sometimes very convenient) to run MapReduce programs
that access any of these filesystems, when you are processing large volumes of data,
you should choose a distributed filesystem that has the data locality optimization, no-
tably HDFS (see “Scaling Out” on page 30).

Interfaces

Hadoop is written in Java, and all Hadoop filesystem interactions are mediated through
the Java API. The filesystem shell, for example, is a Java application that uses the Java
FileSystem class to provide filesystem operations. The other filesystem interfaces are
discussed briefly in this section. These interfaces are most commonly used with HDFS,
since the other filesystems in Hadoop typically have existing tools to access the under-
lying filesystem (FTP clients for FTP, S3 tools for S3, etc.), but many of them will work
with any Hadoop filesystem.

HTTP

There are two ways of accessing HDFS over HTTP: directly, where the HDFS daemons
serve HTTP requests to clients; and via a proxy (or proxies), which accesses HDFS on
the client’s behalf using the usual DistributedFileSystem API. The two ways are illus-
trated in Figure 3-1.
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i) Direct access

(ient Namenode
(ient Datanode
(ient #{ Datanode
ii) HDFS proxies
(lient _-v| Namenode
HOFS Proxy k-
A gt
Client » | Datanode
HDFSProxy F
(lient " Datanode
—» HTTP request ------ # RPCrequest — — — ¥ block request

Figure 3-1. Accessing HDFS over HTTP directly and via a bank of HDFS proxies

In the first case, directory listings are served by the namenode’s embedded web server
(which runs on port 50070) formatted in XML or JSON, whereas file data is streamed
from datanodes by their web servers (running on port 50075).

The original direct HTTP interface (HFTP and HSFTP) was read-only, but the new
WebHDFS implementation supports all filesystem operations, including Kerberos au-
thentication. WebHDFS must be enabled by setting dfs .webhdfs. enabled to true, which
allows you to use webhdfs URIs.

The second way of accessing HDFS over HT TP relies on one or more standalone proxy
servers. (The proxies are stateless so they can run behind a standard load balancer.) All
traffic to the cluster passes through the proxy. This allows for stricter firewall and
bandwidth-limiting policies to be put in place. It’s common to use a proxy for transfers
between Hadoop clusters located in different data centers.

The original HDFS proxy (in src/contrib/hdfsproxy) was read-only and could be ac-
cessed by clients using the HSFTP FileSystem implementation (hsftp URIs). From re-
lease 1.0.0, there is a new proxy called HttpFS that has read and write capabilities and
exposes the same HTTP interface as WebHDFS, so clients can access both using
webhdfs URIs.

The HTTP REST API that WebHDFS exposes is formally defined in a specification, so
itis expected that over time clients in languages other than Java will be written that use
it directly.
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C

Hadoop provides a C library called libhdfs that mirrors the Java FileSystem interface
(it was written as a C library for accessing HDFS, but despite its name it can be used
to access any Hadoop filesystem). It works using the Java Native Interface (JNI) to call
a Java filesystem client.

The C API is very similar to the Java one, but it typically lags the Java one, so newer
features may not be supported. You can find the generated documentation for the C
APl in the libhdfs/docs/api directory of the Hadoop distribution.

Hadoop comes with prebuilt libhdfs binaries for 32-bit Linux, but for other platforms,
you will need to build them yourself using the instructions at hitp://wiki.apache.org/
hadoop/LibHDES.

FUSE

Filesystem in Userspace (FUSE) allows filesystems that are implemented in user space
to be integrated as a Unix filesystem. Hadoop’s Fuse-DFS contrib module allows any
Hadoop filesystem (but typically HDFS) to be mounted as a standard filesystem. You
can then use Unix utilities (such as 1s and cat) to interact with the filesystem, as well
as POSIX libraries to access the filesystem from any programming language.

Fuse-DFS is implemented in C using libhdfs as the interface to HDFS. Documentation
for compiling and running Fuse-DFS is located in the src/contrib/fuse-dfs directory of
the Hadoop distribution.

The Java Interface

In this section, we dig into the Hadoop’s FileSystem class: the API for interacting with
one of Hadoop’s filesystems.> Although we focus mainly on the HDFS implementation,
DistributedFileSystem, in general you should strive to write your code against the
FileSystem abstract class, to retain portability across filesystems. This is very useful
when testing your program, for example, because you can rapidly run tests using data
stored on the local filesystem.

Reading Data from a Hadoop URL

One of the simplest ways to read a file from a Hadoop filesystem is by using a
java.net.URL object to open a stream to read the data from. The general idiom is:

InputStream in = null;
try {

5. Inreleases after 1.x, there is a new filesystem interface called FileContext with better handling of multiple
filesystems (so a single FileContext can resolve multiple filesystem schemes, for example) and a cleaner,
more consistent interface.
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in = new URL("hdfs://host/path").openStream();
// process in

} finally {
I0Utils.closeStream(in);

}

There’s a little bit more work required to make Java recognize Hadoop’s hdfs URL
scheme. This is achieved by calling the setURLStreamHandlerFactory method on URL
with an instance of FsUrlStreamHandlerFactory. This method can be called only once
per JVM, so it is typically executed in a static block. This limitation means that if some
other part of your program—perhaps a third-party component outside your control—
sets a URLStreamHandlerFactory, you won'’t be able to use this approach for reading data
from Hadoop. The next section discusses an alternative.

Example 3-1 shows a program for displaying files from Hadoop filesystems on standard
output, like the Unix cat command.

Example 3-1. Displaying files from a Hadoop filesystem on standard output using a
URLStreamHandler

public class URLCat {

static {
URL.setURLStreamHandlerFactory(new FsUrlStreamHandlerFactory());

}

public static void main(String[] args) throws Exception {
InputStream in = null;

try {
in = new URL(args[0]).openStream();
I0Utils.copyBytes(in, System.out, 4096, false);
} finally {
I0Utils.closeStream(in);

}
}
}

We make use of the handy I0Utils class that comes with Hadoop for closing the stream
in the finally clause, and also for copying bytes between the input stream and the
output stream (System.out in this case). The last two arguments to the copyBytes
method are the buffer size used for copying and whether to close the streams when the
copy is complete. We close the input stream ourselves, and System.out doesn’t need to
be closed.
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Here’s a sample run:®

% hadoop URLCat hdfs://localhost/user/tom/quangle.txt
On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

Reading Data Using the FileSystem API

As the previous section explained, sometimes it is impossible to set a URLStreamHand
lerFactory for your application. In this case, you will need to use the FileSystem API
to open an input stream for a file.

A file in a Hadoop filesystem is represented by a Hadoop Path object (and not
a java.io.File object, since its semantics are too closely tied to the local filesystem).
You can think of a Path as a Hadoop filesystem URI, such as hdfs://localhost/user/tom/
quangle.txt.

FileSystemis a general filesystem API, so the first step is to retrieve an instance for the
filesystem we want to use—HDFS in this case. There are several static factory methods
for getting a FileSystem instance:

public static FileSystem get(Configuration conf) throws IOException

public static FileSystem get(URI uri, Configuration conf) throws IOException

public static FileSystem get(URI uri, Configuration conf, String user)
throws IOException

A Configuration object encapsulatesa client or server’s configuration, which is set using
configuration files read from the classpath, such as conf/core-site.xml. The first method
returns the default filesystem (as specified in the file conf/core-site.xml, or the default
local filesystem if not specified there). The second uses the given URI’s scheme and
authority to determine the filesystem to use, falling back to the default filesystem if no
scheme is specified in the given URI. The third retrieves the filesystem as the given user,
which is important in the context of security (see “Security” on page 325).

In some cases, you may want to retrieve a local filesystem instance, in which case you
can use the convenience method, getLocal():

public static LocalFileSystem getLocal(Configuration conf) throws IOException

With a FileSysteminstance in hand, we invoke an open() method to get the input stream
for a file:

public FSDataInputStream open(Path f) throws IOException
public abstract FSDataInputStream open(Path f, int bufferSize) throws IOException

The first method uses a default buffer size of 4 KB.

Putting this together, we can rewrite Example 3-1 as shown in Example 3-2.

6. The text is from The Quangle Wangle’s Hat by Edward Lear.
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Example 3-2. Displaying files from a Hadoop filesystem on standard output by using the FileSystem
directly

public class FileSystemCat {

public static void main(String[] args) throws Exception {
String uri = args[o0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);
InputStream in = null;
try {
in = fs.open(new Path(uri));
I0Utils.copyBytes(in, System.out, 4096, false);
} finally {
I0Utils.closeStream(in);
}
}
}

The program runs as follows:

% hadoop FileSystemCat hdfs://localhost/user/tom/quangle.txt
On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

FSDatalnputStream

The open() method on FileSystem actually returns a FSDataInputStream rather than a
standard java.io class. This class is a specialization of java.io.DataInputStream with
support for random access, so you can read from any part of the stream:

package org.apache.hadoop.fs;

public class FSDataInputStream extends DataInputStream
implements Seekable, PositionedReadable {
// implementation elided

The Seekable interface permits seeking to a position in the file and a query method for
the current offset from the start of the file (getPos()):
public interface Seekable {

void seek(long pos) throws IOException;
long getPos() throws IOException;

Calling seek() with a position that is greater than the length of the file will result in an
I0Exception. Unlike the skip() method of java.io.InputStream, which positions the
stream at a point later than the current position, seek() can move to an arbitrary, ab-
solute position in the file.
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Example 3-3 is a simple extension of Example 3-2 that writes a file to standard out
twice: after writing it once, it seeks to the start of the file and streams through it once
again.

Example 3-3. Displaying files from a Hadoop filesystem on standard output twice, by using seeck
public class FileSystemDoubleCat {

public static void main(String[] args) throws Exception {
String uri = args[o0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);
FSDataInputStream in = null;
try {
in = fs.open(new Path(uri));
I0Utils.copyBytes(in, System.out, 4096, false);
in.seek(0); // go back to the start of the file
I0Utils.copyBytes(in, System.out, 4096, false);
} finally {
I0Utils.closeStream(in);
}
}
}

Here’s the result of running it on a small file:

% hadoop FileSystemDoubleCat hdfs://localhost/user/tom/quangle.txt
On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

FSDataInputStream also implements the PositionedReadable interface for reading parts
of a file at a given offset:

public interface PositionedReadable {

public int read(long position, byte[] buffer, int offset, int length)
throws IOException;

public void readFully(long position, byte[] buffer, int offset, int length)
throws IOException;

public void readFully(long position, byte[] buffer) throws IOException;
}

The read() method reads up to length bytes from the given position in the file into the
buffer at the given offset in the buffer. The return value is the number of bytes actually
read; callers should check this value, as it may be less than length. The readFully()
methods will read length bytes into the buffer (or buffer.length bytes for the version
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that just takes a byte array buffer), unless the end of the file is reached, in which case
an EOFException is thrown.

All of these methods preserve the current offset in the file and are thread-safe (although
FSDataInputStream is not designed for concurrent access, therefore, it’s better to create
multiple instances), so they provide a convenient way to access another part of the file
—metadata perhaps—while reading the main body of the file.

Finally, bear in mind that calling seek() is a relatively expensive operation and should
be used sparingly. You should structure your application access patterns to rely on
streaming data (by using MapReduce, for example) rather than performing a large
number of seeks.

Writing Data

The FileSystem class has a number of methods for creating a file. The simplest is the
method that takes a Path object for the file to be created and returns an output stream
to write to:

public FSDataOutputStream create(Path f) throws IOException

There are overloaded versions of this method that allow you to specify whether to
forcibly overwrite existing files, the replication factor of the file, the buffer size to use
when writing the file, the block size for the file, and file permissions.

The create() methods create any parent directories of the file to be
; written that don’t already exist. Though convenient, this behavior may
be unexpected. If you want the write to fail when the parent directory

doesn’t exist, you should check for the existence of the parent directory
first by calling the exists() method.

There’s also an overloaded method for passing a callback interface, Progressable, so
your application can be notified of the progress of the data being written to the
datanodes:

package org.apache.hadoop.util;

public interface Progressable {
public void progress();

As an alternative to creating a new file, you can append to an existing file using the
append() method (there are also some other overloaded versions):

public FSDataOutputStream append(Path f) throws IOException
The append operation allows a single writer to modify an already written file by opening

it and writing data from the final offset in the file. With this API, applications that
produce unbounded files, such as logfiles, can write to an existing file after having
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closed it. The append operation is optional and not implemented by all Hadoop file-
systems. For example, HDFS supports append,” but S3 filesystems don’t.

Example 3-4 shows how to copy a local file to a Hadoop filesystem. We illustrate pro-
gress by printing a period every time the progress() method is called by Hadoop, which
is after each 64 KB packet of data is written to the datanode pipeline. (Note that this
particular behavior is not specified by the API, so it is subject to change in later versions
of Hadoop. The API merely allows you to infer that “something is happening.”

Example 3-4. Copying a local file to a Hadoop filesystem

public class FileCopyWithProgress {
public static void main(String[] args) throws Exception {
String localSrc = args[o0];
String dst = args[1];

InputStream in = new BufferedInputStream(new FileInputStream(localSrc));

Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(dst), conf);
OutputStream out = fs.create(new Path(dst), new Progressable() {
public void progress() {
System.out.print(".");
}
b;

I0Utils.copyBytes(in, out, 4096, true);
}
}
Typical usage:

% hadoop FileCopyWithProgress input/docs/1400-8.txt hdfs://localhost/user/tom/
1400-8.txt

Currently, none of the other Hadoop filesystems call progress() during writes. Progress
is important in MapReduce applications, as you will see in later chapters.

FSDataOutputStream

The create() method on FileSystem returns an FSDataOutputStream, which, like
FSDataInputStream, has a method for querying the current position in the file:

package org.apache.hadoop.fs;
public class FSDataOutputStream extends DataOutputStream implements Syncable {

public long getPos() throws IOException {

7. There have been reliability problems with the append implementation in Hadoop 1.x, so it is generally
recommended to use append only in the releases after 1.x, which contain a new, rewritten
implementation.

The Javalnterface | 61



// implementation elided

// implementation elided

}

However, unlike FSDataInputStream, FSDataOutputStream does not permit seeking. This
is because HDFS allows only sequential writes to an open file or appends to an already
written file. In other words, there is no support for writing to anywhere other than the
end of the file, so there is no value in being able to seek while writing.

Directories

FileSystem provides a method to create a directory:

public boolean mkdirs(Path f) throws IOException

This method creates all of the necessary parent directories if they don’t already exist,
just like the java.io.File’s mkdirs() method. It returns true if the directory (and all
parent directories) was (were) successfully created.

Often, you don’t need to explicitly create a directory, because writing a file by calling
create() will automatically create any parent directories.

Querying the Filesystem

File metadata: FileStatus

An important feature of any filesystem is the ability to navigate its directory structure
and retrieve information about the files and directories that it stores. The FileStatus
class encapsulates filesystem metadata for files and directories, including file length,
block size, replication, modification time, ownership, and permission information.

The method getFileStatus() on FileSystem provides a way of getting a FileStatus
object for a single file or directory. Example 3-5 shows an example of its use.

Example 3-5. Demonstrating file status information

public class ShowFileStatusTest {

private MiniDFSCluster cluster; // use an in-process HDFS cluster for testing
private FileSystem fs;

@Before

public void setUp() throws IOException {
Configuration conf = new Configuration();
if (System.getProperty("test.build.data") == null) {

System.setProperty("test.build.data", "/tmp");

}
cluster = new MiniDFSCluster(conf, 1, true, null);
fs = cluster.getFileSystem();
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OutputStream out = fs.create(new Path("/dir/file"));
out.write("content".getBytes("UTF-8"));
out.close();

}

@After
public void tearDown() throws IOException {

if (fs !'= null) { fs.close(); }

if (cluster != null) { cluster.shutdown(); }
}

@Test(expected = FileNotFoundException.class)

public void throwsFileNotFoundForNonExistentFile() throws IOException {
fs.getFileStatus(new Path("no-such-file"));

}

@Test

public void fileStatusForFile() throws IOException {
Path file = new Path("/dir/file");
FileStatus stat = fs.getFileStatus(file);
assertThat(stat.getPath().toUri().getPath(), is("/dir/file"));
assertThat(stat.isDir(), is(false));
assertThat(stat.getLen(), is(7L));
assertThat(stat.getModificationTime(),

is(lessThanOrEqualTo(System.currentTimeMillis())));

assertThat(stat.getReplication(), is((short) 1));
assertThat(stat.getBlockSize(), is(64 * 1024 * 1024L));
assertThat(stat.getOwner(), is("tom"));
assertThat(stat.getGroup(), is("supergroup"));
assertThat(stat.getPermission().toString(), is("rw-r--r--"));

}

@Test

public void fileStatusForDirectory() throws IOException {
Path dir = new Path("/dir");
FileStatus stat = fs.getFileStatus(dir);
assertThat(stat.getPath().toUri().getPath(), is("/dir"));
assertThat(stat.isDir(), is(true));
assertThat(stat.getlLen(), is(oL));
assertThat(stat.getModificationTime(),

is(lessThanOrEqualTo(System.currentTimeMillis())));

assertThat(stat.getReplication(), is((short) 0));

assertThat(stat.getBlockSize(), is(oL));
assertThat(stat.getOwner(), is("tom"));
assertThat(stat.getGroup(), is("supergroup"));
assertThat(stat.getPermission().toString(), is("rwxr-xr-x"));

}

If no file or directory exists, a FileNotFoundException is thrown. However, if you are
interested only in the existence of a file or directory, the exists() method on FileSys
tem is more convenient:

public boolean exists(Path f) throws IOException
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Listing files

Finding information on a single file or directory is useful, but you also often need to be
able to list the contents of a directory. That’s what FileSystem’s listStatus() methods
are for:

public FileStatus[] listStatus(Path f) throws IOException

public FileStatus[] listStatus(Path f, PathFilter filter) throws IOException

public FileStatus[] listStatus(Path[] files) throws IOException
public FileStatus[] listStatus(Path[] files, PathFilter filter) throws IOException

When the argument is a file, the simplest variant returns an array of FileStatus objects
of length 1. When the argument is a directory, it returns zero or more FileStatus objects
representing the files and directories contained in the directory.

Overloaded variants allow a PathFilter to be supplied to restrict the files and directories
to match. You will see an example of this in the section “PathFilter” on page 66.
Finally, if you specify an array of paths, the result is a shortcut for calling the equivalent
single-path listStatus method for each path in turn and accumulating the FileSta
tus object arrays in a single array. This can be useful for building up lists of input files
to process from distinct parts of the filesystem tree. Example 3-6 is a simple demon-
stration of this idea. Note the use of stat2Paths() in FileUtil for turning an array of
FileStatus objects to an array of Path objects.

Example 3-6. Showing the file statuses for a collection of paths in a Hadoop filesystem
public class ListStatus {

public static void main(String[] args) throws Exception {
String uri = args[o0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);

Path[] paths = new Path[args.length];
for (int i = 0; i < paths.length; i++) {
paths[i] = new Path(args[i]);

FileStatus[] status = fs.listStatus(paths);
Path[] listedPaths = FileUtil.stat2Paths(status);
for (Path p : listedPaths) {
System.out.println(p);
}
}
}

We can use this program to find the union of directory listings for a collection of paths:

% hadoop ListStatus hdfs://localhost/ hdfs://localhost/user/tom
hdfs://localhost/user

hdfs://localhost/user/tom/books
hdfs://localhost/user/tom/quangle.txt
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File patterns

It is a common requirement to process sets of files in a single operation. For example,
a MapReduce job for log processing might analyze a month’s worth of files contained
in a number of directories. Rather than having to enumerate each file and directory to
specify the input, it is convenient to use wildcard characters to match multiple files
with a single expression, an operation that is known as globbing. Hadoop provides two
FileSystem method for processing globs:

public FileStatus[] globStatus(Path pathPattern) throws IOException

public FileStatus[] globStatus(Path pathPattern, PathFilter filter) throws
IOException

The globStatus() method returns an array of FileStatus objects whose paths match
the supplied pattern, sorted by path. An optional PathFilter can be specified to restrict
the matches further.

Hadoop supports the same set of glob characters as Unix bash (see Table 3-2).

Table 3-2. Glob characters and their meanings

Glob Name Matches

* asterisk Matches zero or more characters

? question mark Matches a single character

[ab] character class Matches a single character in the set {a, b}

[~ab] negated character class ~ Matches a single character thatis not in the set {a, b}

[a-b] character range Matches a single character in the (closed) range [a, b], where a is lexicographically
less than orequal to b

[*a-b]  negated characterrange  Matches a single character thatis not in the (closed) range [a, b], whereais
lexicographically less than or equal to b

{a,b} alternation Matches either expression a or b

\c escaped character Matches character c when it is a metacharacter

Imagine that logfiles are stored in a directory structure organized hierarchically by
date. So, for example, logfiles for the last day of 2007 would go in a directory
named /2007/12/31. Suppose that the full file listing is:

/
— 2007/

| L 12/
| — 30/
| L— 31/
L— 2008/

L— o1/

— o1/

L— 02/
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Here are some file globs and their expansions:

Glob Expansion

/* /2007 /2008

/*/* /2007/12 /2008/01
[*/12/* /2007/12/30 /2007/12/31
/200? /2007 /2008

/200[78] /2007 /2008

/200[7-8] /2007 /2008
/200["01234569] /2007 /2008
/*/*/{31,01} /2007/12/31/2008/01/01
/*/*/3{0,1} /2007/12/30/2007/12/31

/*/{12/31,01/01}  /2007/12/31 /2008/01/01

PathFilter

Glob patterns are not always powerful enough to describe a set of files you want to
access. For example, it is not generally possible to exclude a particular file using a glob
pattern. The listStatus() and globStatus() methods of FileSystem take an optional
PathFilter, which allows programmatic control over matching:

package org.apache.hadoop.fs;

public interface PathFilter {
boolean accept(Path path);
}

PathFilter is the equivalent of java.io.FileFilter for Path objects rather than File
objects.

Example 3-7 shows a PathFilter for excluding paths that match a regular expression.
Example 3-7. A PathFilter for excluding paths that match a regular expression

public class RegexExcludePathFilter implements PathFilter {
private final String regex;

public RegexExcludePathFilter(String regex) {
this.regex = regex;

}

public boolean accept(Path path) {
return !path.toString().matches(regex);
}
}
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The filter passes only those files that don’t match the regular expression. After the glob
picks out an initial set of files to include, the filter is used to refine the results. For
example:

fs.globStatus(new Path("/2007/*/*"), new RegexExcludeFilter("~.*/2007/12/31$"))
will expand to /2007/12/30.

Filters can act only on a file’s name, as represented by a Path. They can’t use a file’s
properties, such as creation time, as the basis of the filter. Nevertheless, they can per-
form matching that neither glob patterns nor regular expressions can achieve. For ex-
ample, if you store files in a directory structure that is laid out by date (like in the
previous section), you can write a PathFilter to pick out files that fall in a given date
range.

Deleting Data

Use the delete() method on FileSystem to permanently remove files or directories:

public boolean delete(Path f, boolean recursive) throws IOException

If f is a file or an empty directory, the value of recursive is ignored. A nonempty di-
rectory is deleted, along with its contents, only if recursive is true (otherwise, an
I0Exception is thrown).

Data Flow

Anatomy of a File Read

To get an idea of how data flows between the client interacting with HDFS, the name-
node, and the datanodes, consider Figure 3-2, which shows the main sequence of events
when reading a file.

The client opens the file it wishes to read by calling open() on the FileSystem object,
which for HDFS is an instance of DistributedFileSystem (step 1 in Figure 3-2).
DistributedFileSystem calls the namenode, using RPC, to determine the locations of
the blocks for the first few blocks in the file (step 2). For each block, the namenode
returns the addresses of the datanodes that have a copy of that block. Furthermore, the
datanodes are sorted according to their proximity to the client (according to the top-
ology of the cluster’s network; see “Network Topology and Hadoop” on page 69). If
the client is itself a datanode (in the case of a MapReduce task, for instance), the client
will read from the local datanode if that datanode hosts a copy of the block (see also
Figure 2-2).

DataFlow | 67



= ; . [:_]ilsgbuted . Zoethodboations. S NameNode
dlient d

o, FSData namenode

InputStream

client JYM

'I

client node

4:read |
v

DataNode DataNode

datanode datanode . datanode

Figure 3-2. A client reading data from HDFS

The DistributedFileSystem returns an FSDataInputStream (an input stream that sup-
ports file seeks) to the client for it to read data from. FSDataInputStream in turn wraps
a DFSInputStream, which manages the datanode and namenode 1/0.

The client then calls read() on the stream (step 3). DFSInputStream, which has stored
the datanode addresses for the first few blocks in the file, then connects to the first
(closest) datanode for the first block in the file. Data is streamed from the datanode
back to the client, which calls read() repeatedly on the stream (step 4). When the end
of the block is reached, DFSInputStream will close the connection to the datanode, then
find the best datanode for the next block (step 5). This happens transparently to the
client, which from its point of view is just reading a continuous stream.

Blocks are read in order, with the DFSInputStream opening new connections to datan-
odes as the client reads through the stream. It will also call the namenode to retrieve
the datanode locations for the next batch of blocks as needed. When the client has
finished reading, it calls close() on the FSDataInputStream (step 6).

During reading, if the DFSInputStream encounters an error while communicating with
a datanode, it will try the next closest one for that block. It will also remember datan-
odes that have failed so that it doesn’t needlessly retry them for later blocks. The
DFSInputStream also verifies checksums for the data transferred to it from the datanode.
If a corrupted block is found, it is reported to the namenode before the DFSInput
Stream attempts to read a replica of the block from another datanode.

One important aspect of this design is that the client contacts datanodes directly to
retrieve data and is guided by the namenode to the best datanode for each block. This
design allows HDFS to scale to a large number of concurrent clients because the data
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traffic is spread across all the datanodes in the cluster. Meanwhile, the namenode
merely has to service block location requests (which it stores in memory, making them
very efficient) and does not, for example, serve data, which would quickly become a
bottleneck as the number of clients grew.

Network Topology and Hadoop

What does it mean for two nodes in a local network to be “close” to each other? In the
context of high-volume data processing, the limiting factor is the rate at which we can
transfer data between nodes—bandwidth is a scarce commodity. The idea is to use the
bandwidth between two nodes as a measure of distance.

Rather than measuring bandwidth between nodes, which can be difficult to do in prac-
tice (it requires a quiet cluster, and the number of pairs of nodes in a cluster grows as
the square of the number of nodes), Hadoop takes a simple approach in which the
network is represented as a tree and the distance between two nodes is the sum of their
distances to their closest common ancestor. Levels in the tree are not predefined, but
it is common to have levels that correspond to the data center, the rack, and the node
that a process is running on. The idea is that the bandwidth available for each of the
following scenarios becomes progressively less:

¢ Processes on the same node
 Different nodes on the same rack
¢ Nodes on different racks in the same data center
¢ Nodes in different data centers8
For example, imagine a node n1 on rack r1 in data center d1. This can be represented
as /d1/r1/nl. Using this notation, here are the distances for the four scenarios:
 distance(/d1/r1/nl, /d1/r1/nl) = O (processes on the same node)
e distance(/d1/r1/nl, /d1/r1/n2) = 2 (different nodes on the same rack)
o distance(/d1/r1/nl, /d1/r2/n3) = 4 (nodes on different racks in the same data center)
e distance(/d1/r1/nl, /d2/r3/n4) = 6 (nodes in different data centers)

This is illustrated schematically in Figure 3-3. (Mathematically inclined readers will
notice that this is an example of a distance metric.)

Finally, it is important to realize that Hadoop cannot divine your network topology for
you. It needs some help, we’ll cover how to configure topology in “Network Topol-
ogy” on page 299. By default, though, it assumes that the network is flat—a single-
level hierarchy—or in other words, that all nodes are on a single rack in a single data
center. For small clusters, this may actually be the case, and no further configuration
is required.

8. At the time of this writing, Hadoop is not suited for running across data centers.
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Figure 3-3. Network distance in Hadoop

Anatomy of a File Write

Next we’ll look at how files are written to HDFS. Although quite detailed, it is instruc-
tive to understand the data flow because it clarifies HDFS’s coherency model.

We’re going to consider the case of creating a new file, writing data to it, then closing
the file. See Figure 3-4.

The client creates the file by calling create() on DistributedFileSystem (step 1 in
Figure 3-4). DistributedFileSystem makes an RPC call to the namenode to create a new
file in the filesystem’s namespace, with no blocks associated with it (step 2). The name-
node performs various checks to make sure the file doesn’t already exist and that the
client has the right permissions to create the file. If these checks pass, the namenode
makes a record of the new file; otherwise, file creation fails and the client is thrown an
I0Exception. The DistributedFileSystem returns an FSDataOutputStream for the client
to start writing data to. Just as in the read case, FSDataOutputStream wraps a DFSQutput
Stream, which handles communication with the datanodes and namenode.

As the client writes data (step 3), DFSOutputStream splits it into packets, which it writes
to an internal queue, called the data queue. The data queue is consumed by the Data
Streamer, which is responsible for asking the namenode to allocate new blocks by
picking a list of suitable datanodes to store the replicas. The list of datanodes forms a
pipeline, and here we’ll assume the replication level is three, so there are three nodes
in the pipeline. The DataStreamer streams the packets to the first datanode in the pipe-
line, which stores the packet and forwards it to the second datanode in the pipeline.
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Similarly, the second datanode stores the packet and forwards it to the third (and last)
datanode in the pipeline (step 4).

: Distrbuted B 8 :
HDFs e FileSystem I : NameNode
dient  f.3:vite § %
: ; FSData namenode
: OutputStream |
client JVM ry

client node

4: write packet 5:ack packet

v

4 4
Pipeline of DataNode L DataNode [ 8 DataNode
datancdes RN -
5 5
datanode datanode datanode

Figure 3-4. A client writing data to HDFS

DFSOutputStream also maintains an internal queue of packets that are waiting to be
acknowledged by datanodes, called the ack queue. A packet is removed from the ack
queue only when it has been acknowledged by all the datanodes in the pipeline (step 5).

If a datanode fails while data is being written to it, then the following actions are taken,
which are transparent to the client writing the data. First, the pipeline is closed, and
any packets in the ack queue are added to the front of the data queue so that datanodes
that are downstream from the failed node will not miss any packets. The current block
on the good datanodes is given a new identity, which is communicated to the name-
node, so that the partial block on the failed datanode will be deleted if the failed
datanode recovers later on. The failed datanode is removed from the pipeline, and the
remainder of the block’s data is written to the two good datanodes in the pipeline. The
namenode notices that the block is under-replicated, and it arranges for a further replica
to be created on another node. Subsequent blocks are then treated as normal.

It’s possible, but unlikely, that multiple datanodes fail while a block is being written.
As long as dfs.replication.min replicas (which default to one) are written, the write
will succeed, and the block will be asynchronously replicated across the cluster until
its target replication factor is reached (dfs.replication, which defaults to three).

When the client has finished writing data, it calls close() on the stream (step 6). This
action flushes all the remaining packets to the datanode pipeline and waits for ac-
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knowledgments before contacting the namenode to signal that the file is complete (step
7). The namenode already knows which blocks the file is made up of (via Data
Streamer asking for block allocations), so it only has to wait for blocks to be minimally
replicated before returning successfully.

Replica Placement

How does the namenode choose which datanodes to store replicas on? There’s a trade-
off between reliability and write bandwidth and read bandwidth here. For example,
placing all replicas on a single node incurs the lowest write bandwidth penalty since
the replication pipeline runs on a single node, but this offers no real redundancy (if the
node fails, the data for that block is lost). Also, the read bandwidth is high for off-rack
reads. At the other extreme, placing replicas in different data centers may maximize
redundancy, but at the cost of bandwidth. Even in the same data center (which is what
all Hadoop clusters to date have run in), there are a variety of placement strategies.
Indeed, Hadoop changed its placement strategy in release 0.17.0 to one that helps keep
a fairly even distribution of blocks across the cluster. (See “Balancer” on page 350 for
details on keeping a cluster balanced.) And in releases after 1.x, block placement pol-
icies are pluggable.

Hadoop’s default strategy is to place the first replica on the same node as the client (for
clients running outside the cluster, a node is chosen at random, although the system
tries not to pick nodes that are too full or too busy). The second replica is placed on a
different rack from the first (off-rack), chosen at random. The third replica is placed on
the same rack as the second, but on a different node chosen at random. Further replicas
are placed on random nodes on the cluster, although the system tries to avoid placing
too many replicas on the same rack.

Once the replica locations have been chosen, a pipeline is built, taking network topol-
ogy into account. For a replication factor of 3, the pipeline might look like Figure 3-5.

Overall, this strategy gives a good balance among reliability (blocks are stored on two
racks), write bandwidth (writes only have to traverse a single network switch), read
performance (there’s a choice of two racks to read from), and block distribution across
the cluster (clients only write a single block on the local rack).

Coherency Model

A coherency model for a filesystem describes the data visibility of reads and writes for
a file. HDFS trades off some POSIX requirements for performance, so some operations
may behave differently than you expect them to.

After creating a file, it is visible in the filesystem namespace, as expected:

Path p = new Path("p");
fs.create(p);
assertThat(fs.exists(p), is(true));
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Figure 3-5. A typical replica pipeline

However, any content written to the file is not guaranteed to be visible, even if the
stream is flushed. So the file appears to have a length of zero:

Path p = new Path("p");

OutputStream out = fs.create(p);

out.write("content".getBytes("UTF-8"));

out.flush();
assertThat(fs.getFileStatus(p).getLen(), is(oL));

Once more than a block’s worth of data has been written, the first block will be visible
to new readers. This is true of subsequent blocks, too: it is always the current block
being written that is not visible to other readers.

HDFS provides a method for forcing all buffers to be synchronized to the datanodes
via the sync() method on FSDataOutputStream. After a successful return from sync(),
HDFS guarantees that the data written up to that point in the file has reached all the
datanodes in the write pipeline and is visible to all new readers:®

Path p = new Path("p");

FSDataOutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));

out.flush();

out.sync();

assertThat(fs.getFileStatus(p).getLen(), is(((long) "content".length())));

9. Post Hadoop 1.x, sync() is deprecated in favor of the equivalent hflush() method. Another method,
hsync(), has also been added that makes a stronger guarantee that the operating system has flushed the
data to the datanodes’ disks (like POSIX fsync). However, at the time of this writing, this has not been
implemented and merely calls hflush().
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This behavior is similar to the fsync system call in POSIX that commits buffered data
for a file descriptor. For example, using the standard Java API to write a local file, we
are guaranteed to see the content after flushing the stream and synchronizing:
FileOutputStream out = new FileQutputStream(localFile);
out.write("content".getBytes("UTF-8"));
out.flush(); // flush to operating system

out.getFD().sync(); // sync to disk
assertThat(localFile.length(), is(((long) "content".length())));

Closing a file in HDFS performs an implicit sync(), too:

Path p = new Path("p");

OutputStream out = fs.create(p);

out.write("content".getBytes("UTF-8"));

out.close();

assertThat(fs.getFileStatus(p).getLen(), is(((long) "content".length())));

Consequences for application design

This coherency model has implications for the way you design applications. With no
calls to sync(), you should be prepared to lose up to a block of data in the event of
client or system failure. For many applications, this is unacceptable, so you should call
sync() at suitable points, such as after writing a certain number of records or number
of bytes. Though the sync() operation is designed to not unduly tax HDFS, it does have
some overhead, so there is a trade-off between data robustness and throughput. What
constitutes an acceptable trade-off is application-dependent, and suitable values can
be selected after measuring your application’s performance with different sync() fre-
quencies.

Data Ingest with Flume and Sqoop

Rather than writing an application to move data into HDFS, it’s worth considering
some of the existing tools for ingesting data because they cover many of the common
requirements.

Apache Flume (http://incubator.apache.org/flume/) is a system for moving large quan-
tities of streaming data into HDFS. A very common use case is collecting log data from
one system—a bank of web servers, for example—and aggregating it in HDFS for later
analysis. Flume supports a large variety of sources; some of the more commonly used
ones include tail (which pipes data from a local file being written to into Flume, just
like Unix tail), syslog, and Apache log4;j (allowing Java applications to write events to
files in HDFS via Flume).

Flume nodes can be arranged in arbitrary topologies. Typically there is a node running
on each source machine (each web server, for example), with tiers of aggregating nodes
that the data flows through on its way to HDFS.
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