
download
introduction
uses
documentation
quickstart
performance
clients
ecosystem
faq
project

twitter
wiki
bugs
mailing lists
committers
powered by
papers & talks

developers
code
projects
contributing
coding guide
unit tests

Apache Kafka 
A high-throughput distributed messaging system.

Kafka 0.9.0 Documentation
1. Getting Started

1.1 Introduction

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging

system, but with a unique design.

What does all that mean?

First let's review some basic messaging terminology:

Kafka maintains feeds of messages in categories called topics.

We'll call processes that publish messages to a Kafka topic producers.

We'll call processes that subscribe to topics and process the feed of published messages consumers..

Kafka is run as a cluster comprised of one or more servers each of which is called a broker.

So, at a high level, producers send messages over the network to the Kafka cluster which in turn serves them

up to consumers like this:

Communication between the clients and the servers is done with a simple, high-performance, language

agnostic TCP protocol. We provide a Java client for Kafka, but clients are available in many languages.

Topics and Logs

Let's first dive into the high-level abstraction Kafka provides—the topic.

A topic is a category or feed name to which messages are published. For each topic, the Kafka cluster

maintains a partitioned log that looks like this:

http://127.0.0.1:62566/downloads.html
http://127.0.0.1:62566/documentation.html#introduction
http://127.0.0.1:62566/documentation.html#uses
http://127.0.0.1:62566/documentation.html
http://127.0.0.1:62566/documentation.html#quickstart
http://127.0.0.1:62566/performance.html
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Ecosystem
https://cwiki.apache.org/confluence/display/KAFKA/FAQ
https://twitter.com/apachekafka
https://cwiki.apache.org/confluence/display/KAFKA
https://issues.apache.org/jira/browse/KAFKA
http://127.0.0.1:62566/contact.html
http://127.0.0.1:62566/committers.html
https://cwiki.apache.org/confluence/display/KAFKA/Powered+By
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+papers+and+presentations
http://127.0.0.1:62566/code.html
http://cwiki.apache.org/confluence/display/KAFKA/Projects
http://127.0.0.1:62566/contributing.html
http://127.0.0.1:62566/coding-guide.html
https://builds.apache.org/
http://127.0.0.1:62566/
http://127.0.0.1:62566/
http://127.0.0.1:62566/
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol
https://cwiki.apache.org/confluence/display/KAFKA/Clients


Each partition is an ordered, immutable sequence of messages that is continually appended to—a commit log.

The messages in the partitions are each assigned a sequential id number called the offset that uniquely

identifies each message within the partition.

The Kafka cluster retains all published messages—whether or not they have been consumed—for a

configurable period of time. For example if the log retention is set to two days, then for the two days after a

message is published it is available for consumption, after which it will be discarded to free up space. Kafka's

performance is effectively constant with respect to data size so retaining lots of data is not a problem.

In fact the only metadata retained on a per-consumer basis is the position of the consumer in the log, called

the "offset". This offset is controlled by the consumer: normally a consumer will advance its offset linearly as it

reads messages, but in fact the position is controlled by the consumer and it can consume messages in any

order it likes. For example a consumer can reset to an older offset to reprocess.

This combination of features means that Kafka consumers are very cheap—they can come and go without

much impact on the cluster or on other consumers. For example, you can use our command line tools to "tail"

the contents of any topic without changing what is consumed by any existing consumers.

The partitions in the log serve several purposes. First, they allow the log to scale beyond a size that will fit on a

single server. Each individual partition must fit on the servers that host it, but a topic may have many

partitions so it can handle an arbitrary amount of data. Second they act as the unit of parallelism—more on

that in a bit.

Distribution

The partitions of the log are distributed over the servers in the Kafka cluster with each server handling data

and requests for a share of the partitions. Each partition is replicated across a configurable number of servers

for fault tolerance.

Each partition has one server which acts as the "leader" and zero or more servers which act as "followers". The

leader handles all read and write requests for the partition while the followers passively replicate the leader. If

the leader fails, one of the followers will automatically become the new leader. Each server acts as a leader for

some of its partitions and a follower for others so load is well balanced within the cluster.

Producers

Producers publish data to the topics of their choice. The producer is responsible for choosing which message

to assign to which partition within the topic. This can be done in a round-robin fashion simply to balance load

or it can be done according to some semantic partition function (say based on some key in the message). More



 

A two server Kafka cluster hosting four partitions (P0-P3) with two consumer

groups. Consumer group A has two consumer instances and group B has four.

on the use of partitioning in a second.

Consumers

Messaging traditionally has two models: queuing and publish-subscribe. In a queue, a pool of consumers may

read from a server and each message goes to one of them; in publish-subscribe the message is broadcast to all

consumers. Kafka offers a single consumer abstraction that generalizes both of these—the consumer group.

Consumers label themselves with a consumer group name, and each message published to a topic is delivered

to one consumer instance within each subscribing consumer group. Consumer instances can be in separate

processes or on separate machines.

If all the consumer instances have the same consumer group, then this works just like a traditional queue

balancing load over the consumers.

If all the consumer instances have different consumer groups, then this works like publish-subscribe and all

messages are broadcast to all consumers.

More commonly, however, we have found that topics have a small number of consumer groups, one for each

"logical subscriber". Each group is composed of many consumer instances for scalability and fault tolerance.

This is nothing more than publish-subscribe semantics where the subscriber is cluster of consumers instead of

a single process.

Kafka has stronger ordering

guarantees than a traditional

messaging system, too.

A traditional queue retains

messages in-order on the server,

and if multiple consumers consume

from the queue then the server

hands out messages in the order

they are stored. However, although

the server hands out messages in

order, the messages are delivered

asynchronously to consumers, so

they may arrive out of order on different consumers. This effectively means the ordering of the messages is lost

in the presence of parallel consumption. Messaging systems often work around this by having a notion of

"exclusive consumer" that allows only one process to consume from a queue, but of course this means that

there is no parallelism in processing.

Kafka does it better. By having a notion of parallelism—the partition—within the topics, Kafka is able to

provide both ordering guarantees and load balancing over a pool of consumer processes. This is achieved by

assigning the partitions in the topic to the consumers in the consumer group so that each partition is

consumed by exactly one consumer in the group. By doing this we ensure that the consumer is the only reader

of that partition and consumes the data in order. Since there are many partitions this still balances the load

over many consumer instances. Note however that there cannot be more consumer instances in a consumer

group than partitions.

Kafka only provides a total order over messages within a partition, not between different partitions in a topic.

http://en.wikipedia.org/wiki/Message_queue
http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern


Per-partition ordering combined with the ability to partition data by key is sufficient for most applications.

However, if you require a total order over messages this can be achieved with a topic that has only one

partition, though this will mean only one consumer process per consumer group.

Guarantees

At a high-level Kafka gives the following guarantees:

Messages sent by a producer to a particular topic partition will be appended in the order they are sent.

That is, if a message M1 is sent by the same producer as a message M2, and M1 is sent first, then M1 will

have a lower offset than M2 and appear earlier in the log.

A consumer instance sees messages in the order they are stored in the log.

For a topic with replication factor N, we will tolerate up to N-1 server failures without losing any

messages committed to the log.

More details on these guarantees are given in the design section of the documentation.

1.2 Use Cases

Here is a description of a few of the popular use cases for Apache Kafka. For an overview of a number of these

areas in action, see this blog post.

Messaging

Kafka works well as a replacement for a more traditional message broker. Message brokers are used for a

variety of reasons (to decouple processing from data producers, to buffer unprocessed messages, etc). In

comparison to most messaging systems Kafka has better throughput, built-in partitioning, replication, and

fault-tolerance which makes it a good solution for large scale message processing applications.

In our experience messaging uses are often comparatively low-throughput, but may require low end-to-end

latency and often depend on the strong durability guarantees Kafka provides.

In this domain Kafka is comparable to traditional messaging systems such as ActiveMQ or RabbitMQ.

Website Activity Tracking

The original use case for Kafka was to be able to rebuild a user activity tracking pipeline as a set of real-time

publish-subscribe feeds. This means site activity (page views, searches, or other actions users may take) is

published to central topics with one topic per activity type. These feeds are available for subscription for a

range of use cases including real-time processing, real-time monitoring, and loading into Hadoop or offline

data warehousing systems for offline processing and reporting.

Activity tracking is often very high volume as many activity messages are generated for each user page view.

Metrics

Kafka is often used for operational monitoring data. This involves aggregating statistics from distributed

applications to produce centralized feeds of operational data.

Log Aggregation

http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
http://activemq.apache.org/
https://www.rabbitmq.com/


Many people use Kafka as a replacement for a log aggregation solution. Log aggregation typically collects

physical log files off servers and puts them in a central place (a file server or HDFS perhaps) for processing.

Kafka abstracts away the details of files and gives a cleaner abstraction of log or event data as a stream of

messages. This allows for lower-latency processing and easier support for multiple data sources and

distributed data consumption. In comparison to log-centric systems like Scribe or Flume, Kafka offers equally

good performance, stronger durability guarantees due to replication, and much lower end-to-end latency.

Stream Processing

Many users end up doing stage-wise processing of data where data is consumed from topics of raw data and

then aggregated, enriched, or otherwise transformed into new Kafka topics for further consumption. For

example a processing flow for article recommendation might crawl article content from RSS feeds and publish

it to an "articles" topic; further processing might help normalize or deduplicate this content to a topic of

cleaned article content; a final stage might attempt to match this content to users. This creates a graph of real-

time data flow out of the individual topics. Storm and Samza are popular frameworks for implementing these

kinds of transformations.

Event Sourcing

Event sourcing is a style of application design where state changes are logged as a time-ordered sequence of

records. Kafka's support for very large stored log data makes it an excellent backend for an application built in

this style.

Commit Log

Kafka can serve as a kind of external commit-log for a distributed system. The log helps replicate data between

nodes and acts as a re-syncing mechanism for failed nodes to restore their data. The log compaction feature in

Kafka helps support this usage. In this usage Kafka is similar to Apache BookKeeper project.

https://storm.apache.org/
http://samza.apache.org/
http://martinfowler.com/eaaDev/EventSourcing.html
http://127.0.0.1:62566/documentation.html#compaction
http://zookeeper.apache.org/bookkeeper/

