Apache Pig

CMSC 491
Hadoop-Based Distributed Computing
Spring 2016
Adam Shook



Objectives

* Develop understanding of Pig’s data model
* Understand basics of PigLatin



What Is Pig?

Developed by Yahoo! and a top level Apache project

Immediately makes data on a cluster available to non-
Java programmers via Pig Latin — a dataflow language

Interprets Pig Latin and generates MapReduce jobs
that run on the cluster

Enables easy data summarization, ad-hoc reporting
and querying, and analysis of large volumes of data

Pig interpreter runs on a client machine — no
administrative overhead required



Pig Terms

e All data in Pig one of four types:

— An Atom is a simple data value - stored as a string but
can be used as either a string or a number

— A Tuple is a data record consisting of a sequence of
"fields"

e Each field is a piece of data of any type (atom, tuple or bag)

— A Bag is a set of tuples (also referred to as a ‘Relation’)
* The concept of a table

— A Map is a map from keys that are string literals to
values that can be any data type

* The concept of a hash map



Pig Capabilities

e Support for
— Grouping
— Joins
— Filtering
— Aggregation
* Extensibility
— Support for User Defined Functions (UDF’s)

* Leverages the same massive parallelism as
native MapReduce



Pig Basics

* Pigis a client application
— No cluster software is required

* Interprets Pig Latin scripts to MapReduce jobs
— Parses Pig Latin scripts

— Performs optimization
— Creates execution plan

* Submits MapReduce jobs to the cluster



Execution Modes

* Pig has two execution modes

— Local Mode - all files are installed and run using your local host
and file system

— MapReduce Mode - all files are installed and run on a Hadoop
cluster and HDFS installation

* Interactive
— By using the Grunt shell by invoking Pig on the command line
S pig
grunt>

e Batch

— Run Pig in batch mode using Pig Scripts and the "pig" command
S pig —-f id.pig -p <param>=<value> ...



Pig Latin

e Pig Latin scripts are generally organized as follows
— A LOAD statement reads data
— A series of “transformation” statements process the data
— A STORE statement writes the output to the filesystem
A DUMP statement displays output on the screen
* Logical vs. physical plans:
— All statements are stored and validated as a logical plan

— Once a STORE or DUMP statement is found the logical plan
is executed



Example Pig Script

-- Load the content of a file into a pig bag named ‘input lines’
input lines = LOAD 'CHANCES.txt' AS (line:chararray);

-—- Extract words from each line and put them into a pig bag named ‘words’
words = FOREACH input lines GENERATE FLATTEN (TOKENIZE (line)) AS word;

-- filter out any words that are just white spaces
filtered words = FILTER words BY word MATCHES '\\w+';

-—- create a group for each word
word groups = GROUP filtered words BY word;

-— count the entries in each group

word count = FOREACH word groups GENERATE COUNT (filtered words) AS count, group AS word;

—-— order the records by count

ordered word count = ORDER word count BY count DESC;

-— Store the results ( executes the pig script )
STORE ordered word count INTO 'output';



Basic “grunt” Shell Commands

* Help is available
> pig -h

* Pig supports HDFS commands
grunt> pwd

— put, get, cp, Is, mkdir, rm, mv, etc.



About Pig Scripts

Pig Latin statements grouped together in a file

Can be run from the command line or the
shell

Support parameter passing
Comments are supported

— Inline comments '--'
— Block comments /* */



Simple Data Types

int 4-byte integer

long 8-byte integer

float 4-byte (single precision) floating point
double 8-byte (double precision) floating point

bytearray  Array of bytes; blob
chararray  String (“hello world”)
boolean True/False (case insensitive)
datetime A date and time

biginteger Java Biglnteger

bigdecimal Java BigDecimal



Complex Data Types

Tuple Ordered set of fields (a “row / record”)
Bag  Collection of tuples (a “resultset / table”)

Map A set of key-value pairs
Keys must be of type chararray



Pig Data Formats

BinStorage

— Loads and stores data in machine-readable (binary) format
PigStorage

— Loads and stores data as structured, field delimited text

files

TextLoader

— Loads unstructured data in UTF-8 format

PigDump

— Stores data in UTF-8 format

YourOwnFormat!

— via UDFs



Loading Data Into Pig

Loads data from an HDFS file

var = LOAD 'employees.txt';

var = LOAD 'employees.txt' AS (id, name,
salary);

var = LOAD 'employees.txt’' using PigStorage()

AS (id, name, salary);

Each LOAD statement defines a new bag

— Each bag can have multiple elements (atoms)

— Each element can be referenced by name or position (Sn)

A bag is immutable
A bag can be aliased and referenced later



Input And Output

* STORE

— Writes output to an HDFS file in a specified directory
grunt> STORE processed INTO 'processed txt';

* Fails if directory exists
e Writes output files, part-[m|r]-xxxxx, to the directory

— PigStorage can be used to specify a field delimiter
 DUMP

— Write output to screen
grunt> DUMP processed;



Relational Operators

FOREACH

— Applies expressions to every record in a bag

FILTER
— Filters by expression

GROUP
— Collect records with the same key

ORDER BY
— Sorting
DISTINCT

— Removes duplicates



FOREACH .. .GENERATE

 Use the FOREACH ...GENERATE operator to work
with rows of data, call functions, etc.

* Basic syntax:
alias?2 = FOREACH aliasl GENERATE expression;

* Example:
DUMP aliasl;
(1L,2,3) (4,2,1) (8,3,4) (4,3,3) (7,2,5) (8,4,3)
alias?2 = FOREACH aliasl GENERATE coll, col2;
DUMP alias?;
(L,2) (4,2) (8,3) (4,3) (7,2) (8,4)



FILTER. . .BY

* Use the FILTER operator to restrict tuples or rows
of data

* Basic syntax:
alias?2 = FILTER aliasl BY expression;

 Example:
DUMP aliasl;
(1,2,3) (4,2,1) (8,3,4) (4,3,3) (7,2,5) (8,4,3)

alias?2 = FILTER aliasl BY (coll == 8) OR (NOT
(col2+col3 > coll));

DUMP alias?Z?;
(4,2,1) (8,3,4) (7,2,5) (8,4,3)



GROUP. . .ALL

 Use the GROUP...ALL operator to group data
— Use GROUP when only one relation is involved
— Use COGROUP with multiple relations are involved

* Basic syntax:

alias?2 = GROUP aliasl ALL;
e Example:

DUMP aliasl;

(John,18,4.0F) (Mary,19,3.8F) (Bil1l,20,3.9F) (Joe,
18, 3.8F)

alias?2 = GROUP aliasl BY col2;

DUMP alias?;

(18, { (John,18,4.0F), (Jdoe, 18,3.8F) })
(19, { (Mary,19,3.8F) })
(20, {(B111,20,3.9F) })



ORDER. . .BY

* Use the ORDER...BY operator to sort a relation
based on one or more fields

* Basic syntax:
alias = ORDER alias BY field alias [ASC|DESC];

 Example:
DUMP aliasl;
(1L,2,3) (4,2,1) (8,3,4) (4,3,3) (7,2,5) (8,4,3)
alias?2 = ORDER aliasl BY col3 DESC;
DUMP alias?;
(7,2,5) (8,3,4) (1,2,3) (4,3,3) (8,4,3) (4,2,1)



DISTINCT. . .

* Use the DISTINCT operator to remove
duplicate tuples in a relation.

* Basic syntax:
alias?2 = DISTINCT aliasl;

 Example:
DUMP aliasl;
(8,3,4) (1,2,3) (4,3,3) (4,3,3) (1,2,3)
alias?2= DISTINCT aliasl;

DUMP alias?Z?;
(8,3,4) (1,2,3) (4,3,3)



Relational Operators

FLATTEN
— Used to un-nest tuples as well as bags

INNER JOIN

— Used to perform an inner join of two or more relations based on
common field values

OUTER JOIN

— Used to perform left, right or full outer joins

SPLIT

— Used to partition the contents of a relation into two or more
relations

SAMPLE

— Used to select a random data sample with the stated sample
Size



INNER JOIN. ..

Use the JOIN operator to perform an inner, equi-
join join of two or more relations based on
common field values

The JOIN operator always performs an inner join
Inner joins ignore null keys
— Filter null keys before the join

JOIN and COGROUP operators perform similar
functions

— JOIN creates a flat set of output records

— COGROUP creates a nested set of output records



INNER JOIN Example

DUMP Aliasl; Join Aliasl by Coll to
(1,2,3) Alias?2 by Coll
(4,2,1) Alias3 = JOIN Aliasl BY
(8,3,4) Coll, Alias2 BY Coll;
(4,3,3) |
(7.2, 5) Dump Alias3;
(8,4,3) r2r 3.1,



OUTER JOIN. . .

Use the OUTER JOIN operator to perform left, right, or
full outer joins

— Pig Latin syntax closely adheres to the SQL standard

The keyword OUTER is optional

— keywords LEFT, RIGHT and FULL will imply left outer, right
outer and full outer joins respectively

Outer joins will only work provided the relations which

need to produce nulls (in the case of non-matching

keys) have schemas

Outer joins will only work for two-way joins

— To perform a multi-way outer join perform multiple two-
way outer join statements



OUTER JOIN Examples

* Left Outer Join
— A = LOAD 'a.txt' AS (n:chararray, a:int);
— B = LOAD 'b.txt' AS (n:chararray, m:chararray);
— C=JOIN A by SO LEFT OUTER, B BY SO;

* Full Outer Join
— A = LOAD 'a.txt' AS (n:chararray, a:int);
— B = LOAD 'b.txt' AS (n:chararray, m:chararray);
— C=JOIN A BY SO FULL OUTER, B BY $0;



User-Defined Functions

* Natively written in Java, packaged as a jar file

— Other languages include Jython, JavaScript, Ruby,
Groovy, and Python

* Register the jar with the REGISTER statement
* Optionally, alias it with the DEFINE statement

REGISTER /src/myfunc.jar;
A = LOAD 'students’;
B = FOREACH A GENERATE myfunc.MyEvalFunc(S0);



DEFINE

e DEFINE can be used to work with UDFs and also
streaming commands

— Useful when dealing with complex input/output
formats

/* read and write comma-delimited data */

DEFINE Y 'stream.pl' INPUT (stdin USING PigStreaming (', "))
OUTPUT (stdout USING PigStreaming (', ')):

A = STREAM X THROUGH Y;

/* Define UDFs to a more readable format */

DEFINE MAXNUM org.apache.pig.piggybank.evaluation.math.MAX;

A = LOAD ‘student data’ AS (name:chararray, gpal:float, gpaZ:double);
B = FOREACH A GENERATE name, MAXNUM (gpal, gpaZ2);

DUMP B;



References

e http://pig.apache.org




