
Project Description : Exploring Fundamental Computation vs. Memory trade-
offs: Does a 512-bit wide Floating point Datapath obviate the need for integer-
only methods in most applications ?

1 Introduction

The Fast Fourier Transform (FFT) [8, 9] has revolutionized multiple fields including signal process-
ing (thereby impacting the entie field of Electrical Engineering, control theory and practise ...), optics and
theoretical mathematics. FFT makes it possible to realize a convolution in one domain as a point-wise
product in the other domain thereby making it possible to realize a convolution of vectors of size N with
O(N lgN) computations. Since polynomial multiplication is a convolution, multiplication of long integers
is done via FFTs. All long word-length cryptographic algorithms therefore heavily rely on FFTs. Beyond
long integer operations, Increasingly larger number of problems from diverse areas like information retrieval
(ex: approximate string/text matching, scoring/ranking the closeness of vectors of anything in general, multi
dimensional matching...), bioinformatics (ex: genome sequencing) are being shown to benefit from FFT
based processing methods.

Fundamentally FFT based processing involves a memory versus computation tradeoff (for instance the
sine and cosine values are assumed to be precomputed or generated by a hardware functional unit). Ac-
cess patterns required by FFT methods result in less efficient processor-cache utilization. As is very often
the case, memory becomes the limitation much before computation does. Indeed if memory is the bottle-
neck, then computationally the algorithm is adequately efficient. In other words, further enhancements in
computation speed will not be useful because memory is the bottleneck.

Today, available precision is a bottlenck not the memory. That suggests that more effort should be put
into creating hardware with higher precision.

We illustrate this with a concrete problem : FFT based multiplication of long integers of length n bits.
Here, the integers are treated as polynomials of some radix β so that each operand is represented as a vector

of length N =
⌈

n
lgβ

⌉

where each element is a radix β digit. For efficiency reasons, N should be a power of

2 and this is achieved by zero padding the vectors appropriately. Likewise, radix β is also selected to be a
power of 2 for obvious reasons. The FFT based multiply then involves the following steps
(i) Zero-pad the vectors in higher significant places.
(ii) evaluate the FFT of the zero-padded vectors (each FFT takes Θ(N lgN) work).
(iii) point-wise multiply the two FFTs (this takes only Θ(N) work)
(iv) Inverse transform the result (this requires another N lgN work).
(v) Carry-release (this is also Θ(N)).
In comparison, the integer-only methods (for instance the Schoenhage-Strassen multiplication method) re-
quire O(N lgN lg lgN) integer operations which is higher than the N lgN oprations required by complex
floating point FFT methods. So whenever possible it is advantageous to use complex-floating point meth-
ods.

However, Today’s double precisioin floating point datapath (64 bit-wide) can handle multiplication of
operands of length only upto (about) 220 bits (this is simply a round-figure conservative estimate for the
purpuose of illustration. For the exact word length that can be handled please refer to [35]).
For word-lengths larger than 220 bits, one has to use the ineger-only methods that have a higher operation
count.

The total operand bit length n that can be handled by FFT based methods depends on the available
precision: it varies as Θ(lgn).

1

So increasing the width of the datapath from 64 to 8× 64 = 512 bits should make it possible to
handle wordlengths of (220)8 = 2160 bits.

Now 2160 is larger than the number of molecules on earth. In other words, 512 bit floating point datapath
will be able to support complex floating point FFT based mulitplicaction of such long numbers that they
cannot be physically stored anywhere.
In essence the ultrawide datapath removes precision as a constraining factor and makes memory the
limiting factor.

Even though we illustrated the problem from the perspective of multiplying long integers, convolutions
of other forms (Boolean convolution and alike) are also implemented via FFT. Consequently a very wide
floating point datapath should benefit all types of approximate “matchings” in general which has implica-
tions for genome sequencing and other problems in bioinformatics. Clustering and information retrieval in
a more general sense involves multi-dimensional matching/correlations/convolutions. All these operations
should benefit from a wide floating point datapath. In our view, this alone is a sufficient justification for
creating such a datapath.

Furthermore It is known that “interior methods” that explore the interior of constraint space can be more
efficient than methods that explore only the corners/hypersurfaces. For instance, the original simplex method
for optimizing linear objective function under linear constraints essentially progresses on the surfaces/edges
while more recent enhancements such as Karmarkar’s algorithm [23] approach the optimum through the
interior of the volume defined by the constraints).
Increasingly larger number of methods are leveraging complex roots of unity for approximate solutions to
NP and hard problems (for instance [40, 17]) An ultrawide datapath is a valuable tool in all such computation
paradigms.

1.1 Current state-of-the-art of Modular Reduction

Since we encountered the problem during our work on fast modular reduction techniques, we first sum-
marize the current state of the art in modular reduction techniques and allied areas such as modular exponen-
tiation. We then briefly describe the state of the art in substring matching and performing “other products”
via FFT.
J

A The modular-reduction problem : deals with generating the remainder R when a given dividend X is
divided by a modulus P:

X = Q ·P+S where 0 < X < P2, 0 ≤ R < P (1)

Modulus P is assumed to be n bits long: 2n−1 < P < 2n i.e., in the unsigned (magnitude only) form, the nth
bit of P (which has a weight of 2n−1) is 1 and at least one more of the remaining bits of P is 1.

Modular reduction is a fundamental operation in cryptographic systems. Most well known modular re-
duction methods including Barrett’s [5] and Montgomery’s [29] algorithms leverage some-pre computations
to avoid divisions so that the main complexity of these methods lies in a sequence of two long multiplica-
tions. For large wordlengths a multiplication which is tantamount to a linear convolution is performed via
the Fast Fourier Transform (FFT) or other transform-based techniques as in the Schonhage-Strassen multi-
plication algorithm [42].

〈1〉 We have recently developed a fast remaindering algorithm for reduction w.r.t. a fixed modulus P that
has the following characteristics:
(a) it produces the true remainder (X mod P) in Θ(2.5N lgN) effort (in contrast, Montgomery’s reduction
step produces X ·R−1 mod P).
(b) it works for any modulus P, irrespective of whether it is relatively co-prime with anything else.

This method covers all cases where Montgomery’s algorithm is not applicable (either because the modu-
lus P is not relatively co-prime w.r.t the radicii of interest, or because the number of repeated-related modular
reductions required is small: for example performing a single modular multiplication A×B mod P. Here,

2

the forward-and reverse transformations required by Montgomery’s method make it too slow)

〈2〉 For Montgomery-reduction: we show a new variation wherein, the order of cyclic and negacyclic con-
volutions can be changed (so that the total effort remains Θ(2N lgN)). This seemingly trivial change of
order has fundamental implications because it allows the choice of R = R+ = 2n + 1 thereby substantially
increasing the number of cases where Montgomery’s method is applicable because of 3 reasons:
(i) 2n +1 has lot fewer factors than 2n −1 so that it is more likely to be coprime w.r.t. moduli P.
(ii) R+ = 2n + 1 and R− = 2n − 1 are always relatively coprime which allows for the dynamic selection of
one of the two as the R.
(iii) For most efficient FFT computations the word-length n is a power of 2. So R+ = 22n

+1 which are the
well known Fermat numbers. This has its own advantages further explained in the manuscript.

〈3〉 We extend Montgomery’s method to include moduli P that are not relatively co-prime w.r.t. R but are
relatively co-prime w.r.t. Rgi (subscript “gi” denotes the generalized inverse of R. The modular inverse of R
does not exist whengcd(R,P) > 1). This further enhances the applicability of the proposed implementations
of Montgomery’s methods.

〈4〉 We are currently verifying ultrafast modular exponention algorithms that evolved during the writing of
this document (outlined in Section ??).
J

B String matching and scoring the closeness of a match (approximate matching) algorithms also employ
FFT. An excellent treatment of the problem can be found in [41]. Given a Text/Data block of length n and a
pattern P of length m, string matching involves calculating the hamming distance between P and T at every
relative position of P with respect to T as P is “slid-past” the text block. This process is a convolution of
a slightly different type. The deterministic method in [16] computes a mask and non-masked version for
each alphabet that results in replacing T and P with vectors binary vectors. A convolution then measures
hamming distance at all positions (of P w.r.t. T). The complexity of this method is O(σn lgm) where σ is
the size of the alphabet.

More recent methods [4, 41, 3] randomly map the letters of the alphabet onto integers in the range 0
to σ and then onto σth complex roots of unity. The same letters in P are mapped onto the multiplicative
inverses (complex conjugates) of the corresponding values in T . Padding and some intermediate steps are
preformed, followed by a fast convolution and a small amount of post processing.

It appears that a wider floating point datapath would allow a direct matching of very long strings. This
has implications for genome sequencing and other bioinformatics problems. A systematic plan to explore
this issue is presented in the proposed research section (Section ??).

1.2 Overview of Proposed Research

1 Buliding upon our recent past and on-going work on fast modular reduction algorithms we intend to
(i) Implement all the algorithms developed in GMP and perform a thorough timing analysis

(ii) Continue the investigation of open-ended problems including the exploration of whether a “carry-
release” in the original domain can be approximated in the Transform Domain. We believe that the
carry release is the main factors that thwarts FFT based integer division fails even when the remainder
is known to be 0 ahead of time.

(iii) Investigate allied issues such as efficient/fast multiplicative and modular inverse computations.

2 Explore the capabilities and limitations afforded by an ultrawide floating point datapath.
(i) Refine the precision analysis in [35]. We believe it is possible to derive tighter bounds on errors (as

outlined in Section ??). This should bolster the precsion analysis.
(ii) Explore in depth the total complexity of achieving the computation via an ultrawide floating point

data path versus using integer-only operations.
(iii) Identify/characterize the more general class of problems (beyond convolutions) that can be imple-

3

mented more efficiently with floating point operations than by resorting to integer-only methods.

3 (i) Investigate the application of an ultrawide floating point datapath to substring matching, approxi-
mate/partial matching/scoring. It is expected that the investigation will reveal connections to other problems
in bioinformatics, information retrieval/querying as well as clustering.

(ii) Bloom filtering is used to signal potential membership in a set. It can be effectively used as a fast
pre-processing technique. For instance a list of “good customers” or “bad customers” could be summarized
in the form of bloom filter banks and an incoming request can be quickly and most of the time correctly
classified as belonging to one of groups. The classification is not guaranteed to be always corrrct, but the
false positives and false negatives can be adjusted by trading off more memory and computation. In essence
Bloom filters leverage the fundemantal memory-computation vs classification accuracy tradeffs in hashing.

We believe that there is a connection between Bloom filtering and substring matching. Bloom filter-
ing can be considered to capture gradually coarser/less-specific information about “matches/overlaps”. We
propose to formally investigate this issue.

5 Investigate the transformations of integer programming and other discrete problems into ultrawide float-
ing point operations. We conjeture that ultrawide floating point processing capability could usher in fun-
damentally new ways of handling problems previosuly thought to be non-floating point in nature (string
matching is a good example).
We intend to explore how an ultrawide datapath helps methods that employ roots of unity for approxiate
solutions to NP problems [40, 17] or take Interior point approaches to NP complete problems [23, 24, 22]).

5 Guided by the results of the analysis of fundamental tradeoffs between computation and memory we
propose to design and implement an ultrawide datapath. The PI has substantial experience designing and
implementing Arithmetic Algorithms in VLSI. The Co-PI has substantial VLSI design and testing experi-
ence and was braught on board specifically for handling the VLSI implementation aspects of the project.

2 Background and Related Work

2.0.1 Notation

Word length of operands in bits = n.
Rn = 2n, R+ = 2n +1 and R− = 2n −1
n-bit numbers are represented as N digit numbers where each digit is a radix-β digit, so that length of the
transforms is N = 2n/ lg β. For transform length N to be a power of 2, β is typically selected from the set
{24,28,216}. 64-bit architectures imply that for efficient hardware support, β is limited to 216 and transform
length N to about 217 [11, 35, 12]
Cyclic convolution of A and B is denoted as 〈A ⊗C B〉
Negacyclic convolution is denoted as 〈A ⊗N B〉
A wrap-around convolution (which can be cyclic or negacyclic) is denoted as 〈A ⊗W B〉.
Linear convolution is the full product A×B and needs no other notation.

2.1 Problem Definition

Modular Reduction was defined in the Introduction above.

2.1.1 Modular Exponentiation

Here the problem is to evaluate XY mod P. Repeated squaring and reducing yields the result. The
pseudo-code to find the result is:
Let Y = (yk−1yn−2 · · ·y0) in binary where yk−1 = 1 initialize: Me = X2 mod P
for (i = k-2; i >= 1; i--){

4

if (yi == 1) Me = Me ·X mod P
Me = (Me)

2 mod P
}
if (y0 == 1) Me = Me ·X mod P /* Me is the result */

Note that this loop corresponds to evaluating the exponent by the Horner’s polynomial evaluation
method. We call one iteration the above loop as the assimilate-square-reduce operation. If y i is zero
then the multiplication by X is skipped and the loop operation simplies to a square-and-reduce operation.

2.2 Linear versus Wrap-around convolutions

Since numbers are polynomials evaluated at the-radix, results that hold for polynomials hold for integers
as well (the converse is not true).

Let A(x) and B(x) be two polynomials of degree (n− 1), defined by their corresponding vectors of
coefficients A and B of length n. Then their product C(x) is a polynomial of degree (2n− 2). While this
needs a vector of length (2n− 1), the corresponding integer multiplication requires 2n digits. So C(x) is
represented by vector C of length 2n whose upper and lower halves are U and L. Then a cyclic/nega-cyclic
polynomial convolution is defined as the product modulo (xn ∓1) respectively:

cyclic: sum of upper/lower halves: C(x)%(xn −1) = (U(x)xn +L(x))%(xn −1) = U(x)+L(x) (2)

nega-cyclic: difference of the halves: C(x)%(xn +1) = (U(x)xn +L(x))%(xn +1) = L(x)−U(x) (3)

Wrap-around convolutions take less effort :

It is well known that For transform based methods, cyclic/negacyclic convolutions require half the work
of a linear convolution. Even at word lengths where Karatsubba’s method is optimal, cyclic convolutions
are substantially cheaper: if A = (AH |AL) and B = (BH |BL) then full linear convolution needs
{AHBH , ALBL and (AHBL +ALBH)}. Karatsubba’s method computes the last value as
(AH +AL)(BH +BL)−AHBH −ALBL replacing 4 products by 3 products.

If only a cyclic convolution is required, then only two values are required (AHBH +ALBL) and (AHBL +
ALBH). These can be generated with only two products C1 and C2 (instead of the 3 required by a linear
convolution):

C1 = (AH +AL)(BH +BL) C2 = (AH −AL)(BH −BL)

(AHBH +ALBL) =
C1+C2

2
(AHBL +ALBH) =

C1−C2
2

(4)

A negacyclic convolution would need the same effort as a linear convolution if the operands are split into
only 2 halves. (In other words, at wordlengths where the Karatsubba algorithm is the optimal, negacyclic
convolution requires the same effort as a full linear convolution). As the number of parts into which a
vector is split increase, negacylic convolution takes lesser effort. Asymptotically both cyclic and nega cyclic
convolutions take same effort.

2.2.1 Basic Montgomery Reduction

For efficient modular reductio w.r.t. a given modulus P, Montgomery selects an R > P which is relatively
prime w.r.t. P, i.e., gcd(R,P) = 1.

Pre-computation : Compute R−1 and P
′
such that

RR−1 −P
′
P = 1 and 0 < R−1 < P and 0 < P

′
< R

This pre-computation is essentially the extended GCD algorithm.

5

Now given two numbers A and B in the proper residue class satisfying AB < RP, Montgomery’s method
evaluates MonProd(A,B) which is defined as
MonProd(A,B) = ABR−1 mod P
. Step 1 : Compute T = A×B

Step 2 : m = ((T mod R)P
′
) mod R so that 0 ≤ m ≤ R−1

Step 3 : t = (T +mP)/R
Here, t is guaranteed to be an integer, so that the above division by R is exact.
Step 3 : if t ≥ P return (t −P) else return t

Montgomery’s algorithm is the best way of performing modular exponentiation.
Given an X , it calculates t0 = (XR) mod P in the beginning (this is like “forward transformation of X into
the proper residue class (not to be confused with a forward FFT)). From here on, each multiplication modulo
P can be replaced by MonProd(., .) which is a bit more efficient than regular modular reduction. At the end
there is a need to convert the result back from the montgomery residue class.

2.3 Efficient Implementation of Montgomery’s method

The framework in [28] selects an integer Q satisfying

Q
gcd(Q,R)

>
(P−1)2 +(R−1)P

R
≥ t (5)

and performs the two modified steps:

m = ABP
′

mod R (6)

t = (
AB+mP

R
) mod (

Q
gcd(Q,R)

) (7)

Given a double length operand X It shows a method to perform Montgomry reduction (to evaluate XR−1

mod P) with one cyclic and one negacyclic convolutin, requring Θ(2N lgN) effort which is the same as
a linear convolution or a multiply operation. It then shows a way to implement [ABR−1 mod P] with
Θ(3.5N lgN) effort using cyclic convolutions followed by negacyclic ones.

While this set of equations broadly defines a framework, we believe the most interesting variation has
been left out as explained in section Section 3.3.

3 Proposed Research

First We summarize our current work on fast modular reduction and demonstrate the new results. We
propose to thourougly evaluate the real complexity (including issues such as caching efficiency which often
throws off theoretical predictions) of the new algorithms via exhaustive testing. We’ll then implement the
new algorithms in GMP package.

3.1 True remaindering with Θ(2.5N lgN) effort

Let X = RXu +Xl where X < P2 and Xu and Xl are the upper and lower halves w.r.t. R.

X mod P = (RXu mod P+Xl mod P) mod P (8)

RXu =
R2Xu

R
(9)

Let R2 = PPinv +δ where Pinv,δ are precomputed quotient and remainder

when R2 is divided by P

(10)

6

RXu =
(PPinv +δ)Xu

R
=

(P(PinvXu)+δXu)

R
Let

PinvXu = Q
′
R+L then

RXu =
P(Q

′
R+L)+δXu

R
= PQ

′
+

PL+δXu

R
(11)

RXu mod P =

(

PL+δXu

R

)

mod P (12)

where the last modulo w.r.t P is at most one subtraction because

LP+δXu < R ·P+P ·P = RP+P2 < 2RP so that
LP+δXu

R
< 2P and

LP+δXu

R
must be an integer, as seen from (11). (13)

Let t =
LP+δXu

R
then, desired remainder (14)

RXu mod P = t or t −P (15)

Note that selecting R ∈ {R+,R−} yields minimal complexity because

Step 1: L = PinvXu mod R becomes a wrap-around convolution requiring Θ(N lgN) work.

Lemma 1 : step 2:

t =
LP+δXu

R

can also be accomplished via a sum of wrap-around convolutions:

Proof : (i) When R = 2n +1 = R+ then from equation (11), t is an integer implies

LP+δXu = 2nt + t (16)

⇒ sum of upper and lower halves = 2t

2t = U(LP+δXu)+L(LP+δXu)

= [U(LP)+L(LP)]+ [U(δXu)+L(δXu))]

= (LP mod R−)+(δXu mod R−) (17)

and a sum of cyclic convolution is sufficient

Transforms representing the cyclic convolution 〈L ⊗C P〉 and 〈δ ⊗C Xu〉 can be added before taking the
inverse transform so that this step can be done in Θ(1.5N lgN) work: (forward transforms of Xu and L, and
the inverse transform of the sum).

(ii) When R = 2n −1 = R− then t is an integer implies

LP+δXu = 2nt − t (18)

⇒ difference of upper and lower halves = 2t

2t = U(LP+δXu)−L(LP+δXu)

= [U(LP)−L(LP)]+ [U(δXu)−L(δXu)]

= (LP mod R+)+(δXu mod R+) (19)

and a sum of negacyclic convolutions is sufficient

Thus the total effort required is Θ(2.5N lgN)

7

Algorithm StraightRemaidering /* given X = RXu +Xl where X < P2 find X mod P */
Without loss of generality, we illustrate the method for
R = R+ (the other case R = R− is similar).
Pre-computation : Given P, compute quotient and remainder obtained by

dividing R2
+ by P

δ = R2
+ mod P and Pinv = (R2

+−δ)/P and

〈R+ ⊗C P〉 = cyclic convolution of R+and P

Step 1 : L = (XuPinv) mod R+

/* negacyclic convolution, requires Θ(N lgN) work */

Step 2 : Compute

t1 = 〈L ⊗C P〉+ 〈δ ⊗C Xu〉 (20)

t2 = (t1 −〈R+ ⊗C P〉) mod R− (21)

/* Θ(1.5N lgN) work */

Step 3 : small post-processing: Θ(n)

ExpectedLeastSignificantDigit(t) = d0 = (L0P0 +δ0Xu0) mod β
srem = NULL; /* initialize to some invalid remainder value */

foreach t in {t1, t2} do /* one of t1, t2 must yield correct remainder */
if (t mod 2 ! = 0) then

if (t ≥ R+) then
t = t −R−

else if (0 ≤ t < R+) then
t = t +R−

end if
end if
t = t/2
if (t mod β = d0) then

srem = t
break /* if t1 matches, break out of the for loop */

end if
end for
srem = (srem + Xl) mod P
return (srem) 2 Total work is Θ(2.5N lgN)

3.2 Explanation of the post processing steps

(LP+δXu) < RP+P2 < 2R2. If it exceeds R2 then the IFFT yields incorrect result. FFT based compu-
tations are inherently wrap-around-R convolutions where R∈ {R+,R−}. So any overflow gets added back to
the least-significant digit so that overflow necessarily changes the least significant digit. We exploit this
fact to check and correct.

Lemma 2 : If there is overflow the correction is simply to subtract the (precomputed) cyclic convolution
〈R+ ⊗C P〉 of R+ and P.

Proof : The sequence of operations required to find the correct remainder is
(i) Divide LP+δXu by R
(ii) Then take modulo-P, i.e.

8

t = (
LP+δXu

R
) mod P (22)

Since LP+δXu < RP+P2, it must be expressable as (23)

LP+δXu = RP+θ where (24)

θ < P2 and θ is divisible by R, so that (25)

t = (P+
θ
R

) mod P =
θ
R

⇒ (26)

t = (LP+δXu −RP)/R which in turn implies that (27)

2t = 〈m ⊗C P〉+ 〈ti ⊗C ti〉−〈R ⊗C P〉 2 (28)

So we calculate t1 assuming no-overflow and t2 assuming overflow and use the least significant digits to
select one of the two.

The cyclic convolutions are values modulo-R−. So if during the carry release an extra ±R− gets left-in
that will make the result odd. The modulo-2 test simply checks and corrects for this.
3.3 Substantially Increasing Applicability of Montgomery’s Method

Clearly, the results of previous section can be carried over to Montgomery’s method as well, and R can
be selected to be R+or R−. The selection R = R+ is a new variation in the framework proposed in [28] as
explained below. This seemingly trivial change of order of cyclic and negacyclic convolutions substantially
increases the number of moduli for which Montgomery’s method is applicable.

Realizing Montgomery Reduction with one negacyclic and one cyclic convolution

While [28] broadly defines a framework, we believe the most interesting variation has been left out.

Variation 3 : Select R = R+, Q
′
= R− and Q = 2Q

′
.

gcd(R,Q) = gcd(R,Q
′
) = 1 sothat

(
Q

gcd(Q,R)
) = 2R− = 2R+−4 >

(P−1)2 +(R−1)P
R

since (29)

R ≥ P−1 (30)

Now step 1 performs a negacyclic convolution and step2 performs a of cyclic convolution, i.e., if the square
double length product T = AB is fully evaluated, then Montgomery reduction takes Θ(2N lgN) work. The
square-and-reduce iteration (Me = MonProd(Me,Me)) can be realized with Θ(3.5N lgN) work with any
order of cyclic/negacyclic convolutions. in [].

3.3.1 Handle more moduli P by dynamically selecting between R = R+ or R = R−

{R+,R−} are relatively coprime for all values of n. Furthermore, R+ tends to factor into few large
primes. Consequently, there is a high probability that either R+ or R− is relatively co-prime w.r.t. modulus
P. In other words, variation 3 proposed herein makes it feasible to dynamically select R so as to make it co-
prime w.r.t. P. Consequently, the above choice of R substantially increases the cases where Montgomery’s
method can be applied.

Note that R = 2n is a bad choice: for this value of R, the first step of the Montgomery reduction (evalua-
tion of m) becomes equivalent to evaluating only the lower half of a product. To the best of our knowledge,
there is no way to generate only the upper or lower half without also generating the other (see the discussion
on the “half cyclic convolution” on page 220 of [1] basically says that there’s no known way (that scales
with n) of just getting one half without the other.). Isolating the lower half therefore needs a full linear con-
volution. The second step still needs a cyclic convolution, thereby making total effort Θ(3N lgN). Instead

9

of that, true remainder can be evaluated with Θ(2.5N lgN) by the method shown in Section 3.1.

3.4 Extending Montgomery’s Method to cases where gcd(R,P) > 1
but gcd(Rgi,P) = 1

In general, R and P are not always coprime. In that case, there exist integers, Rgi and Pgi such that

RRgi −PgiP = g where g = gcd(R,P) (31)

In general gcd(Rgi,P) can be > 1. However, such values of P are even less frequent (because now gcd w.r.t
both R and Rgi must be > 1).

In this case, (1
Rgi

mod P) exists and the Montgomery reduction procedure can be modified as follows:

m = (TPgi) mod R so that (32)

(mP) mod R = −gT mod R and
(gT +mP)

R
= t wheret = T ·Rgi mod P and tR < gP2 +PP = (g+1)P2 (33)

The overflow (above R2, which can happen as seen from the last equation) can be handled by pre-scaling T:

T = g ·T
′
+T mod g where

T
′

=

⌊

T
g

⌋

and T mod P = g ·
[

T
′

mod P
]

+T mod g

use T
′
in place of T in the reduction (34)

T
′
g+mP ≤ 2R2 (35)

Consequently, the modified Montgomery reduction requires only one additional task:
Pre-Scaling T to find T

′
and (T mod g). Note that this calculation immediately makes gT

′
available so that

the uses of gT−1 in the calculation of t = (mP+gT−1)/R incurs no additional cost.

The prescaling can be considered O(N) if gcd(R,P) can be considered O(1). In that case the complexity
remains Θ(2N lgN)

3.4.1 Realizing the Square-and-reduce iteration with the same Θ(3.5N lgN) work when gcd(R,P) > 1
but gcd(Rgi,P) = 1

The computations required are

(1) ε = (AB mod g) = (A mod g)(B mod g) mod g Θ(N)
(2) l = (AB) mod R+ Θ(N lgN)
(3) m = (lPinv mod R+)− (εPinv mod R+) Θ(N lgN)
(4) 2t = (mP mod R−)+(AB mod R−)− ε Θ(1.5N lgN)
(5) small post processing (identical to that in all previous algorithms) Θ(N)

Total dominant effort is still Θ(3.5N lgN) as before. Instead of explicitly evaluating T and then T −1 the
above method fuses the operations to obtain a saving of (N/2) lgN.

3.5 Fast Modular Exponentiation

The modular exponention loop has the following two computations
Assimilate : if (yi == 1) then Me = Me ·X mod P
Square-and-reduce : Me = M2

e mod P

10

Note that initial operand X required in the assimilation step is independent of loop iteration index. In other
words X can be considered a constant within the loop itself. This in turn implies that a few quantities related
to X can be computed once before the loop and re-used in all the iterations of the loop. This is tantamount
to a precompution. We show ways to leverage such loop-invariant precomputation.

3.5.1 Speeding up Modular Exponention based on True Remaindering

result 1 : Assimilation can be done with Θ(2.5N lgN) work since X is a loop-invariant.
Sketch-of-Proof/Procedure : Identical to true-remaindering

Let C be an invariant, precompute Quotient, Rem before loop (36)

RC = PQ+θ then (37)

Z ·C =
RZC

R
=

(PQ+θ)Z
R

Let QZ = RU +L so that (38)

ZC mod P =
PL+θZ

R
(39)

Complexity (dominent terms)
Compute L = QZ mod R Θ(N lgN) (Negacyclic, assuming R = R+)

Forward Transform L,Z, Inverse Transform sum Θ(3N
2 lgN)

total Θ(2.5N lgN)

result 2 : (X ·C1 +Y ·C2) mod P can be done with Θ(3.5N lgN) work when C1,C2 can be considered
constants (for example, loop invariants)

Procedure : Precompute quotient and remainders Qi,θi :

RCi = PQi +θi ; i = 1,2

(X ·C1 +Y ·C2) mod P =
L1P+θ1X

R
+

L1P+θ1Y
R

=
(L1 +L2)P+θ1X +θ2Y

R
(40)

L1 +L2 = (Q1X +Q2Y) mod R negacyclic, (41)

2 forward FFTs (of negacyclic-modulated X and Y and (42)

one reverse transformΘ(1.5N lgN) (43)

then 3 forward FFT’s and 1 reverse FFT Θ(2N lgN) (44)

total effort Θ(3.5N lgN) (45)

result 3 : Assimilate-square-and-reduce can be realized with Θ(5.5N lgN) work.

Proof : (a) if (yi == 1) then at the end of the loop

Me = (MeX)2 mod P = (M2
e (X

2 mod P)) mod P (46)

= (UR+L)δ mod P where (47)

M2
e = UR+L Full Linear convolution Θ(2N lgN) and (48)

δ = X2 mod P precomputed once before loop (49)

Me = U(Rδ) mod P+Lδ mod P (50)

= (Uγ+Lδ) mod P γ precomputed at loop setup (51)

= by result 2 the last step Θ(3.5N lgN) (52)

= total complexity Θ(5.5N lgN) (53)

(b) if (yi == 1) then Me = M2
e mod P which needs Θ(4.5N lgN) work.

The average work per iteration of the Loop is Θ(5.5+4.5
2 N lgN = 5N lgN) a factor of 2 improvement over

prior results in [].

11

3.5.2 Speeding up Modular Exponention based on modified Montogmery’s method

Result 4 : When C is an invariant, MonProd(Z,C) = ZCR−1 mod P also requires Θ(2.5N lgN) work.
(Here inputs Z and C are assumed to be in proper residue class and so is the output of their Montgomery-
Product).
In other words scaling by a constant followed by remaindering is such a simple operation that Montgomery
Product has no speed/simplicity advantage over true remaindering.

Note that Cyclic and Negacyclic FFTs of Z are required and they cannot be combined ⇒
even if C1 =CR−1 mod P is assumed to be precomputed [(ZC1) mod R] needs a wrap-around convolution.
Then the second step needs 2 forward and one reverse FFT. The overall total effort is therefore Θ(2.5N lgN).

Result 5 : MonProd(M2
e ,X

2) takes Θ(5.5N lgN) work

3.6 Investigation of further enhancements including the new “constant-scale-factor” mod-
ular reduction method

We belive further enhancements are feasible. we illustrate one new algorithm that eveolved during the
writing of this document. Assume (R,P) are relatively co-prime and find R−1,P−1 such that

RR−1 −PP−1 = 1 R2R−1
2 −PP−1

2 = 1 · · · RkR−1
k −PP−1

k = 1 (54)

i.e., all powers of R are also co-prime wrt P. Note that P−1
k increases with powers of R but that has no effect

on the algorithm because the quantity that gets used is P−1
k mod R.

Let mk = TP−1
k mod R = (T mod R)(P−1

k mod R) mod R (55)

mkP mod R = TP−1
k mod R = T (RkR−1

k −1) mod R = −TmodR (56)

t =
mkP+T

R
(57)

i.e., any power of R−1 can be introduced by using the appropriate P−1

Note that if instead of regular product XY of regular integers (not transformed into the montgomery
residue class) if a montgomery product is done, it yields (XYR−1 mod P). We leverage this fact and adjust
the number of monproduct operations and the degree of R−1 introduced so that at the end the total power of
R−1 factored into the result is a constant.

for (i = k−1; i > 0; i = i−1) {
if (yi == 1) {
/* MonProd has no advantage do straight Remaindering
but introduce R−1 via values precompuated from X */

Me = M2
e · [(R

−1)X2] mod P
} else { /* MonProd is better for simply a square-and-reduce */

Me = MonProd(Me,Me)
}

} /* each iteration of the loop introduces one R−1 factor. */
/* total power of R−1 factored in = value of binary string 1 1 1 1 1 of length k
= 2k −1 = I So correct the final answer by multiplying by precomputed Rk mod P */
Me = RIMe mod P The average number of operation per is Θ(4.5N lgN).

Other possible improvements include processing the exponent 2 bits at a time (like Radix-4 booth re-
coding of a multiplier).

12

3.7 Comparison of Montgomery versus straight remaindering

Operation True Remaindering Montgomery
(finds (.)R−1 mod P)

T = AB is fully evaluated Θ(2.5N lgN) Θ(2N lgN)
AB mod P Θ(5.5N lgN) Θ(4N lgN).
X2 mod P Θ(4.5N lgN) Θ(3.5N lgN).

Avg effort per iteration
of the main loop in modular Θ(5N lgN) Θ(4.5N lgN)

exponentiation

We intend to experimentally validate these results (the theory does not account for cache/memory interac-
tions etc).

3.8 Related problems

Since remaindering is fundamental, the above improvements to remaindering will have a ripple effect.
In particular we propose to investigate fast modular inversion.

We also believe it is possible to derive a tighter bound (tighter than the one presented in [35] on the
precision required to support FFT based multiplication of vectors of length n bits. The interesting aspect of
our derivation is that it shows a computation effort vs. accuracy tradeoff.

The method of proof essentially starts off with a butterfly operation that transforms

(z0,z1) =⇒ (z0 +ωz1,z0 +ωz1) (58)

There are lgN such stages where N is the length of the transform.

13

References

[1] see the discussion on the half cyclic convolution on page 220 of a recent textbook draft (2004)
http://www.jjj.de/fxt/fxtbook.pdf.

[2] BigSky: a system to translate expressions into VHDL code and a library of on-line arithmetic modules,
http://arith.cs.ucla.edu.

[3] AMIR, A., LEWENSTEIN, M., AND LEWENSTEIN, N. Pattern matching in hypertext. J. Algorithms
35, 1 (2000), 82–99.

[4] ATALLAH, CHYZAK, AND DUMAS. A randomized algorithm for approximate string matching. AL-
GRTHMICA: Algorithmica 29 (2001).

[5] BARRETT, P. Implementing the Rivest Shamir and Adleman public key encryption algorithm on a
standard digital signal processor. In Advances In Cryptology – CRYPTO ’86 (LNCS 263) (1987),
A. M. Odlyzko, Ed., pp. 311–323.

[6] BRUCEK KHAILANY, WILLIAM J. DALLY, SCOTT RIXNER ET. AL. Imagine: Media Processing
with Streams. IEEE Micro (March/April 2001).

[7] CARTER, T. M., AND ROBERTSON, J. E. The Set Theory of Arithmetic Decomposition. IEEE
Transactions on Computers C-39, 9 (August 1990), 993–1005.

[8] COOLEY, J. W., AND TUKEY, J. W. An algorithm for the machine calculation of complex Fourier
series. j-MATH-COMPUT 19, 90 (Apr. 1965), 297–301.

[9] COOLEY, J. W., AND TUKEY, J. W. On the origin and publication of the FFT paper. Current Contents,
51–52 (1993), 8–9.

[10] CORTADELLA, J., AND LLABERIA, J. M. Evaluation of A + B = K conditions without carry propa-
gation. IEEE Transactions on Computers C-41, 11 (Nov. 1992), 1484–1488.

[11] CRANDALL, R., AND FAGIN, B. Discrete weighted transforms and large-integer arithmetic. Mathe-
matics of Computation 62, 205 (Jan. 1994), 305–324.

[12] D. PHATAK, AND T. GOFF. Fast modular reduction for large wordlengths via One Linear and One
Cyclic Convolution. Proc. of the 17th IEEE International Symposium on Computer Arithmetic, Cape
Cod, MA (June 2005).

[13] ERCEGOVAC, M., AND GRANROV, A. L. On the performance of on-line arithmetic. In Prof. of Int.
conf. Parallel Processing (ICPP) (1980).

[14] ERCEGOVAC, M., AND LANG, T. On recoding in arithmetic algorithms. J. VLSI Signal Processing
14 (1996), 283–294.

[15] ERCEGOVAC, M. D. On-Line Arithmetic: An Overview. Real Time Signal Processing VII SPIE-495
(1984), 86–93.

[16] FISCHER, AND PATERSON. String-matching and other products. In SIAMAMS: Complexity of Com-
putation: Proceedings of a Symposium in Applied Mathematics of the American Mathematical Society
and the Society for Industrial and Applied Mathematics (1974).

1

[17] GOEMANS, M. X., AND WILLIAMSON, D. Approximation algorithms for MAX-3-CUT and other
problems via complex semidefinite programming. In Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing: Hersonissos, Crete, Greece, July 6–8, 2001 (pub-ACM:adr, 2001), ACM,
Ed., pub-ACM, pp. 443–452.

[18] GOFF, T., PHATAK, D. S., AND KOREN, I. Redundancy Management in Arithmetic Processing via
Redundant Binary Representations. Proceedings of ASILOMAR’99 (Annual Conference on Signals
Systems and Computers), Pacific Grove, California (Oct. 1999), 1475–1479.

[19] HANAWA M., ET. AL. A 4.3ns 0.3 µm CMOS 54×54b Multiplier Using Precharged Pass-Transistor
Logic. In in ISSCC Digest of Technical Papers (1996), pp. 364–365.

[20] IRWIN, M. J., AND OWENS, R. M. Fully Digit On-Line Networks. IEEE Transactions on Computers
C-32 (1983), 402–406.

[21] IRWIN, M. J., AND OWENS, R. M. Digit–Pipelined Arithmetic as Illustrated by the Paste–Up System:
A Tutorial . IEEE Computer (Apr. 1987), 61–73.

[22] KAMATH, A. P., KARMARKAR, N. K., RAMAKRISHNAN, K. G., AND RESENDE, M. G. C. An
interior point approach to Boolean vector function synthesis. Proceedings of the 36th MSCAS (1993),
185–189.

[23] KARMARKAR, N. K. A new polynomial–time algorithm for linear programming. Proceedings of the
16th Annual ACM Symposium on Theory of Computing (1984), 302–311.

[24] KARMARKAR, N. K. An interior-point approach to NP-complete problems. An extended abstract,
1990.

[25] KORNERUP, P. Digit-Set Conversions: Generalizations and Applications. IEEE Transactions on
Computers C-43, 6 (May 1994), 622–629.

[26] KORNERUP, P. Necessary and Sufficient Conditions for Parallel and Constant Time Conversion and
Addition. In Proc. 14th IEEE Symposium on Computer Arithmetic (April 1999), IEEE Computer
Society, pp. 152–156.

[27] KUNINOBU, S., NISHIYAMA, T., EDAMATSU, H., TANIGUCHI, T., AND TAKAGI, N. Design of high
speed MOS multiplier and divider using redundant binary representation. Proc. of the 8th Symposium
on Computer Arithmetic (1987), 80–86.

[28] MCLAUGHLIN, P. B. New Frameworks for Montgomery’s Modular Multiplication Method. Mathe-
matics of Computation 73, 246 (2003), 899–906.

[29] MONTGOMERY, P. L. Modular multiplication without trial division. Mathematics of Computation 44,
170 (1985), 519–521.

[30] N. OHKUBO AND SUZUKI, M., ET. AL. A 4.4-ns CMOS 54 × 54-b Multiplier Using Pass-Transistor
Multiplexor. IEEE Journal of Solid-State Circuits 30, 3 (Mar. 1995), 251–256.

[31] NAGENDRA, C., OWENS, R. M., AND IRWIN, M. J. Unifying Carry-Sum and Signed-Digit Number
Representations. Tech. Rep. CSE–96–036, Computer Science and Engineering Department, Pennsyl-
vania State University, 1996.

[32] NIELSEN, A. M., AND KORNERUP, P. MSB-First Digit Serial Arithmetic. Journal of Universal
Computer Science 1, 7 (July 1995).

2

[33] NIELSEN, A. M., AND KORNERUP, P. Redundant Radix Representation of Rings. November 1999.

[34] PARHAMI, B. Generalized signed-digit number systems: a unifying framework for redundant number
representations. IEEE Transactions on Computers C-39 (Jan. 1990), 89–98.

[35] PERCIVAL, C. Rapid multiplication modulo the sum and difference of highly composite numbers.
Mathematics of Computation 72, 241 (2002), Pages 387–395.

[36] PHATAK, D. S. Comments on Duprat and Muller’s Branching CORDIC Paper. IEEE Transactions on
Computers (Sep. 1998), 1037–1040.

[37] PHATAK, D. S. Double Step Branching CORDIC: A New Algorithm for Fast Sine and Cosine Gener-
ation. IEEE Transactions on Computers TC–47, 5 (May 1998), 587–602.

[38] PHATAK, D. S., GOFF, T., AND KOREN, I. Efficient Arithmetic Implementations Based on Carry-
Save Representations. In Proceedings of SPIE’s 45th Annual Meeting, the International Symposium
on Optical Science and Technology, San Diego, CA (2000), pp. 258–266.

[39] PHATAK, D. S., GOFF, T., AND KOREN, I. Constant-time Addition and Simultaneous Format Con-
version Based on Redundant Binary Representations. IEEE Trans. on Computers TC–50, 11 (Nov.
2001), 1267–1278.

[40] ROJAS, J. M. A subexponential algorithm for containment and intersection between translated subtori
and algebraic sets. Proceedings of MEGA 2005 (2005). available via http://www.math.tamu.edu/ rojas.

[41] SCHOENMEYR, T., AND ZHANG, D. Y. FFT-based algorithms for the string matching with mis-
matches problem. J. Algorithms 57, 2 (2005), 130–139.

[42] SCHÖNHAGE, A., AND STRASSEN, V. Schnelle Multiplikation großer Zahlen. (German) [Fast multi-
plication of large numbers]. Computing 7, 3–4 (1971), 281–292.

[43] TAKAGI, N., YASUURA, H., AND YAJIMA, S. High-speed VLSI multiplication algorithm with a
redundant binary addition tree. IEEE Transactions on Computers C-34 (Sep. 1985), 789–796.

3

