
Fast modular reduction for large wordlengths
via One Linear and One Cyclic Convolution

Dhananjay S. Phatak and Tom Goff
Computer Science and Electrical Engineering Department

University of Maryland, Baltimore County
Baltimore, MD 21250

{phatak, tgoff1}@umbc.edu

Abstract— Modular reduction is a fundamental opera-
tion in cryptographic systems. Most well known modular
reduction methods including Barrett’s and Montgomery’s
algorithms leverage some-pre computations to avoid divi-
sions so that the main complexity of these methods lies in a
sequence of two long multiplications. For large wordlengths
a multiplication which is tantamount to a linear convolution
is performed via the Fast Fourier Transform (FFT) or other
transform-based techniques as in the Schonhage-Strassen
multiplication algorithm.

We show a fundamental property (the separation princi-
ple): in a modular reduction based on long multiplications,
the linear convolution required by one of the two long
multiplications can be replaced by a cyclic convolution,
and the halves can be separated using other information
available due to the intrinsic redundancy of the operations.
This reduces the number of operations by about 25%.
We demonstrate that both Barrett’s and Montgomery’s
methods can be sped up by using the aforementioned
fundamental principle. It is shown that a direct application
of this algorithm to modular exponentiation (either using
Barrett’s or Montgomery’s methods) can be expected to
yield about about 17% speedup.

Index Terms— fast modular reduction, large wordlength,
elliptic-curve, cryptography, FFT multiply, number the-
oretic transforms, linear convolution, cyclic convolution,
principle of separation

I. INTRODUCTION

Modular reduction is a fundamental operation in cryp-
tographic systems [1], [2]. In many cases such as in
Elliptic Curve Cryptography, the modulus P (which is
typically a large prime number) is fixed [1]. The fact
that P is a constant makes it feasible to precompute some
values ahead of time which typically results in
(i) avoiding divisions and replacing them by multiplica-
tions instead.
(ii) substantial speed-up of the modular reduction opera-
tion because divisions are avoided and pre-computation
trades off storage for computation effort.

This work was supported in part by NSF grants ECS-9875705 and
and ECS-0196362

For example, both Barrett’s [3] and Montgomery’s [4]
methods need some pre-computations to obviate division
(this is explained in detail in Section I-B and Section I-
C below). The main complexity of these methods lies
in a sequence of two long multiplications. For large
wordlengths a multiplication which is tantamount to a
linear convolution is performed via the Fast Fourier
Transform (FFT) [5], [6] or other transform-based tech-
niques [7]–[9] as in the Schonhage-Strassen [10] multi-
plication algorithm.

We show a fundamental property: in a modular reduc-
tion based on long multiplications, the linear convolution
required by one of the two long multiplications can be
replaced by a cyclic convolution, thereby reducing the
total number of operations by about 25%. We demon-
strate that both Barrett’s and Montgomery’s methods
can be sped up by using the aforementioned principle.
Furthermore, it is shown that a direct application of
this algorithm to modular exponentiation (either using
Barrett’s or Montgomery’s methods) can be expected to
yield about about 17% speedup.

A. Problem Definition

The modular-reduction problem deals with generating
the remainder R when a given dividend X is divided by
a modulus P:

X = Q ·P+ R where 0 < X < P2, 0 ≤ R < P(1)

R = X%P following C syntax

Modulus P is assumed to be n bits long. Typically it is
also a prime number (Montgomery’s method requires P
to be odd, while Barrett’s method imposes no restrictions
on P as long as it is within the range specified by (1)).
Our fundamental speedup-algorithm is independent of
whether P is prime, even, odd.... (i.e., our algorithm
works for any modulus, given some pre-computation).
We also assume that

2n−1 < P < 2n (2)

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on April 22,2010 at 15:17:40 UTC from IEEE Xplore. Restrictions apply.

2
i.e., in the unsigned (magnitude only) form, the nth bit of
P (which has a weight of 2n−1) is 1 and at least one more
of the remaining bits of P is 1. Typically n is a power of 2
(for example, n = 1024, 2048 or higher). Dividend X is at
most 2n bits long and is variable/arbitrary (dynamically
available only at run-time). It is convenient to split X
into an upper half U(X) (i.e., higher order n bits of X)
and a lower half L(x) (i.e., lower order n bits of X):

X = U(X) ·2n + L(X) = Xu ·2n + Xl where

U(Z) = � Z
2n � and

L(Z) = Z%2n (3)

Next we outline Barrett’s and Montgomery’s methods
for finding R.

B. Barret Reduction [3]

The well known Barrett reduction method [3], [6]
leverages the constancy of modulus P to reduce the
problem to that of two multiplications. It is carried out in
3 steps as indicated below [3], [11] (Note that the precise
implementation could slightly differ, the following is our
rendering of the steps to bring out the main ideas)

Pre-computation : Given P, compute

Pinv =
⌊

22n

P

⌋
(4)

Step 1 : For an operand X to be reduced modulo-P,
Barrett’s method first determines quotient-estimate Q̂ :

Q̂ = close approximation to exact quotient

Q =
⌊

X
P

⌋
(5)

X
P

=
X
2n · 22n

P
· 1

2n (6)

Q̂ =
⌊(⌊

X
2n

⌋
·
⌊

22n

P

⌋)
· 1

2n

⌋
(7)⌊

X
2n

⌋
= U(X) = Xu : simply a right shift

yielding the upper half of X (8)⌊
22n

P

⌋
= Pinv (precomputed) (9)

Q̂ =
⌊

Xu ·Pinv

2n

⌋
i.e., upper half of the

result of the multiplication Xu ·Pinv (10)

Step 2 : Carry out Q̂×P
The upper half of this product is guaranteed to closely

match Xu, the upper half of X . Hence, generate only

lower half:

L
′
= (Q̂ ·P)%2n (11)

Step 3 : Subtract and generate remainder estimate R̂ =
Xl −L

′
. Correct remainder R can be obtained from R̂

by subtracting P no more than 3 times.

The main complexity of Barret Reduction therefore
lies in the two long multiply operations (Xu ×Pinv) and
(Q̂×P).

C. Montgomery Reduction [4]

Let R = 2n > P

Pre-computation : Compute R−1 and P
′

such that

RR−1 −P
′
P = 1 and 0 < R−1 < P

and 0 < P
′
< R (12)

This pre-computation is essentially the extended GCD
algorithm.

Now given a T satisfying 0 ≤ T < RP, Montgomery’s
method evaluates TR−1 mod P as follows.

Step 1 :

m = ((T mod R)P
′
) mod R

so that 0 ≤ m ≤ R (13)

Step 2 :

t = (T + mP)/R (14)

Here, t is guaranteed to be an integer, so that the above
division by R is exact.

Step 3 : if t ≥ P return (t −P) else return t

Once again the main complexity lies in the two long
multiplications:
[(T mod R)×P

′
] in Step 1 and

[m×P] in Step 2.

There is some post processing which is besides the
point (not relevant to the matter at hand). Note that Like
Barrett’s method, Montgomery’s method also requires
only half of each product (either upper half or lower
half).

D. Transform-based multiplication for large n

For large n, transform-based multiplication is the
fastest/most efficient method [5]–[8], [12], [13]. The
transform can be a complex valued FFT, or a number-
theoretic transform as in Schonhage-Strassen method [9],

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on April 22,2010 at 15:17:40 UTC from IEEE Xplore. Restrictions apply.

3
[10]. Since integers are polynomials (of the radix),
integer multiplication can be realized via polynomial
convolution [5], [6]. To evaluate C = A × B, integers
A,B are represented as strings of digits of some radix r
(typically a power of 2). A then denotes the coefficients
of a polynomial A(x) where A(x)|x=r = A, the integer
value. Multiplication A(x)B(x) produces a result poly-
nomial C(x) where
degree[C(x)] = degree[A(x)] + degree[B(x)] − 1. This
multiplication is also referred to as a linear convolu-
tion [8], [13].

Step 1 :
create 2n long vectors A2n and B2n by padding 0’s in the
upper halves of A and B. Evaluate 2n-point FFTs of A2n

and B2n, denoted by F 2n(A) and F 2n(B), respectively.

Step 2 :
Point-wise multiply to obtain 2n-FFT of C :

F 2n(C) = F 2n(A)� F 2n(B) (15)

Step 3 :
Perform the 2n-point inverse FFT of F 2n(C) to obtain a
vector of coefficients.
Then convert the coefficients into binary number.

Such a transform based multiplication reduces the
number of operations from O(n2) to O(n lgn). The
main effort is in performing the forward and reverse
transforms. It is well known that for a real valued n-
long input vector V , the amount of operations required
to compute its n-point FFT is θ(n

2 lg(n
2)) [14], [15].

The same holds for inverse transform when the resultant
vector is guaranteed to be real (i.e., the IFFT complexity
is also θ(n

2 lg(n
2))).

We would like to point out that we have used mul-
tiplication based on the conventional FFT (using com-
plex roots of unity) for the purpose of illustration. The
fundamental speedup-mechanism we propose in the next
section is valid irrespective of which specific transform-
based multiplication method is employed. The exact
amount of speedup could differ for different multipli-
cation methods such as FFT based multiply versus the
Schonhage-strassen algorithm, but a speedup is possible
regardless of the specific method employed.

E. Complexity of Barrett’s and Montgomery’s methods

Ignoring pre and post computations, the complexity
of both these methods is dominated by the two long
multiplications. All the remaining operations are O(n).
Since the transforms of the precomputed values can also
be precomputed, in Barrett’s method we assume FFT of
P as well as FFT of (� 22n

P � is precomputed and available.

Likewise in Montgomery’s method, we assume the FFTs
of P and P

′
are precomputed. Then, the complexity of

both methods essentially lies in 2 forward and 2 reverse
transforms:

Barrett’s method

Operation Effort
2n-FFT of Xu n lgn
2n-IFFT of [F (Xu)� F (Pinv)] n lgn
2n-FFT of Q̂ n lgn
2n-IFFT to obtain (P · Q̂) n lgn
total dominant effort 4n lgn

Montgomery’s method

Operation Effort
2n-FFT of Tu n lgn
2n-IFFT (Tu ·P′

) n lgn
2n-FFT of m n lgn
2n-IFFT to obtain (P ·m) n lgn
total dominant effort 4n lgn

II. THE PROPOSED SPEEDUP METHOD

First note that in each multiplication in Barrett’s as
well as Montgomery’s method only half the product
output is needed: either the upper half or the lower
half. Unfortunately this fact alone cannot be leveraged
to reduce the complexity when a transform-based multi-
plication method is used. In other words, when product
C = AB is being generated by transform methods, even
if only the upper or only lower half of C is required,
the full 2n lg2n amount of work needs to be done. The
discussion on the “half cyclic convolution” on page 220
of [16] basically says that there’s no known way (that
scales with n) of just getting one half without the other.

If however either the upper half or lower half or a
sufficiently close approximation to one of the two halves
is known then the effort required can be cut down to
about half. We use the following properties of FFT to
achieve the reduction:

Let C = [U |L]T be the vector of length 2n (represent-
ing integer product C = A×B) and let U and L be the
upper and lower halves of C. Then a cyclic polynomial
convolution of A(x) and B(x) yields

C(x)%(xn −1) = (U(x)xn + L(x))%(xn −1)
= [(U(x)%(xn −1) · (xn%(xn −1))

+L(x)%(xn −1)]%(xn −1)
= U(x)+ L(x) (16)

which is the sum of upper halves U(x) and L(x) of full
(linear) convolution C(x). The cyclic convolution of A
and B can be realized as

U + L = F invn(F n(A)� F n(B)) (17)

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on April 22,2010 at 15:17:40 UTC from IEEE Xplore. Restrictions apply.

4
Note that a cyclic convolution needs transforms of

half the length but it produces (U + L). Our speedup
technique exploits the fact that for Barrett’s method,
the second product Q̂ ·P must be such that the upper
half of that product is almost identical to Xu the upper
half of original operand X . So instead of performing
a linear convolution to implement Q̂×P we perform a
circular convolution to obtain(U + L), then subtract Xu

and perform a small correction to obtain the lower half.

In the Montgomery’s method, note that in the second
step, t = T+mP

R is guaranteed to be an integer. This in-
turn implies that

[lower half of (T + mP)]%R = 0 ⇒
lower half of mP = R−TL = 2n −TL (18)

Accordingly instead of performing linear convolution
to evaluate m × P, we perform a cyclic convolution
(requiring half the effort) and do small corrections to
obtain the upper half.

Algorithm 1: Faster Barrett Reduction
Given a 2n bit number X = Xu ·2n + XL and an
n bit modulus P > 2(n−1), find X%P

Let the integers be represented as
polynomials of radix β = 2k and let the
degree of each polynomial be N −1, so that
each polynomial can be represented as a
vector of length N. Then N = 2n

2k so that N is
a power of 2.

Pre-computation :
In our algorithm, the following are
precomputed:
(1)Pinv =

⌊
22n−1

P

⌋
and its 2N-length FFT.

/* In order to ensure that Xu ×Pinv does not
exceed 2n bits, Pinvis set to

Pinv =
⌊

22n−1

P

⌋
instead of

⌊
22n

P

⌋
*/

(2) P
′
= 2P%(2n −1) and N-length FFT of P

′

/* Part 1 :
Find an estimate of Quotient Xu2n−1

P by a
full linear convolution
Note that

⌊
Xu2n−1

P

⌋
=

⌊
Xu22n−1

P·2n

⌋
=

⌊
XuPinv

2n

⌋
*/

Step 1: 2N-length FFT of 0 padded Xu

Step 2: point-wise multiply:
F 2N(Q) = F 2N(Xu)� F 2N(Pinv)

Step 3: IFFT: Q =
F inv2N(F 2N(Xu)� F 2N(Pinv))

Step 4: Convert Q into integer

Step 5: Truncate: Q̂ =
⌊

Q
2n

⌋

/* Part 2:
obtain the sum of upper and lower halves of
Q̂P

′
by a cyclic convolution */

Step 6: N-length FFT of Q̂
Step 7: point-wise multiply: F N(Q̂)� F N(P

′
)

Step 8: IFFT: Z = U + L = F invN(F N(Q̂)� F N(P
′
))

Step 9: Convert Z into integer

/* Part 3:
Separate U and L */

Step 10: if (Length(Z) > n) then
Z =

⌊
Z
2n

⌋
+ Z%2n

/* cyclic convolution wraps around */
Step 11: L = Z −Xu

if (L < 0) then L = L+ 2n −1
Step 12: L0 = LeastSignificantWord(L)

P0 = LeastSignificantWord(P
′
)

Q̂0 = LeastSignificantWord(Q̂)
T0 = LeastSignificantWord(P0 Q0)
δ = T0 −L0

Step 13: if (δ > 0) then L = L+ δ
Step 14: R = Xl −L

if (R < 0) then
R = R + 2n

δ = δ−1
endif

Step 15: R = R + 2nδ , R = R%P

The dominant complexity lies in forward and reverse
transforms:

Step 1 N lgN
Step 3 N lgN
Step 6 (N/2) lg(N/2)
Step 8 (N/2) lg(N/2)
Overall θ(3N lgN)

The above method has a complexity of θ(3n lgn)
which amounts to a reduction of 25% over prior known
methods.

The main point is that after evaluating U + L, we
separate U and L by leveraging the fact that U ≈ Xu.
We show that

Xu −U(Q̂P
′
) = δ ≤ 4 (19)

In general let integers A,B satisfy A > B > 0. Then⌊
A
B

⌋
≥ A−B

B
(20)

This is the main identity invoked in the proof.

U(Q̂P
′
) = U(Q̂[2P%(2n −1)])

= U(Q̂2P)%(2n −1))
= U(Q̂ ·2P) (21)

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on April 22,2010 at 15:17:40 UTC from IEEE Xplore. Restrictions apply.

5

Q̂ =

⌊⌊
2(2n−1)

P

⌋
·Xu

1
2n

⌋

Q̂ ≥
⌊(

2(2n−1)−P
P

)
·Xu

1
2n

⌋

=

⌊
2(n−1)Xu

P
− Xu

2n

⌋

≥
⌊

2(n−1)Xu

P
−1

⌋

≥
⌊

2(n−1)Xu

P

⌋
−1 (22)

U(Q̂2P) =
⌊

Q̂2P
2n

⌋

≥
⌊(⌊

2(n−1)Xu

P

⌋
−1

)
2P
2n

⌋
(23)

≥
⌊(

2(n−1)Xu −P
P

−1

)
2P
2n

⌋

≥
⌊(

2(n−1)Xu

P
−2

)
2P
2n

⌋
(24)

U(Q̂2P) =
⌊

Xu −2 · P
2n−1

⌋
(25)

Since 2n > P > 2n−1, 4 > 2 · P
2n−1 > 2 we get

U(Q̂2P) ≥ �(Xu −4)�= Xu −4, Hence

δ = Xu −U(Q̂P
′
) ≤ 4 (26)

We find the actual value of δ as follows:

Z −Xu = U + L−Xu = L− δ ⇒ (27)

δ = Z−Xu −L (28)

The key is to realize that since δ is a small value, only
the least-significant words of Z,Xu and L suffice. Since L
is the lower half of the product Q̂2P, it takes only O(1)
work to find out the least significant word of L. Hence

δ = {LeastSignificantWord(Z)−
LeastSignificantWord(Xu)−
LeastSignificantWord(Q̂2P)

}
(29)

In fact 2 least significant bits would suffice but it is
easier to subtract off words rather than access bits
within the words. Next we briefly explain speeding up
of Montgomery’s method

Algorithm 2: Faster Montgomery Reduction
Given a 2n bit number X = Xu · 2n + Xl and an n
bit modulus P > 2(n−1) find X%P.

Pre-computation : Let R = 2n. Several entities
are precomputed:
(1) Numbers R−1 and P

′
such that

RR−1 −P
′
P = 1 and 0 < R−1 < P

and 0 < P
′
< R (30)

This pre-computation typically involves
GCD-like steps.
(2) Transform X to T, a number in the proper
residue class

Part 1 :
find m = ((T mod R)P

′
) mod R

T mod R = Tu, the upper half of T
/* main complexity lies in performing the
product Tu ×P

′
which needs

a full linear convolution requiring 2N lgN work
*/

Part 2 :
find t = (T + mP)/R
/* main complexity lies in finding the
product m×P.
Here since t is guaranteed to be an integer,
lower half of mP satisfies

(L(mP)+L(T))%R = 0 ⇒L(mP) =
{

0
2n −Tl

(31)

Consequently we perform a cyclic convolution to
obtain
Z = U(mP) + L(mP) and then obtain the
upper half. We show only the last few
(correction) steps:

Last Step: t = Z + Tl

if (t > 2n) t = t −2n + 1

t = t + Tu

return t%R (32)

The complexity again is θ(3N lg) an improvement of
25%.

III. IMPLEMENTATION

The separation principle (viz., replacing a linear con-
volution with a cyclic convolution and separating the
halves using other information available due to an in-
trinsic redundancy in the operations) was exhaustively
verified for small wordlengths (upto n = 8,2n = 16).

To demonstrate the speedup, we ran the algorithms
(Algorithm 1 and Algorithm 2 above) for all wordlengths
from n = 26 = 1024 to n = 221 = 2097152. At n = 222

the floating point precision was observed to introduce

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on April 22,2010 at 15:17:40 UTC from IEEE Xplore. Restrictions apply.

6
errors (this is consistent with the findings reported in the
literature [13], [17]. Following the established practices
in literature we used radix r = 216 for the FFT compu-
tations, so that each n bit integer becomes a string of
N = n

16 digits, with each digit being a 16 bit number.
With this representation the an n point FFT on the
original data is equivalent to an N = n

16 point FFT of
the digit string.

For each wordlength, we implemented the following
using the functions available in the GMP (GNU Multiple
Precision library) and measured the execution delay
(averaged over a large number of samples)

(1) Time for our enhanced Barrett reduction, i.e.,
Algorithm 1: TFFT BAR(n)

(2) Time for an n × n multiply using complex
floating point FFT: TFFTM(n)

(3) Time for GMP’s native multiply method:
TGMPM(n)
(they use different methods at increasing
wordlengths, starting with brute-force O(n2)
convolution, then Karatsuba method, then Toom’s
method · · · . Finally for large wordlengths they use
Schonhage-Strassen instead of complex FFT)

(4) Time for Barret reduction implemented using
GMP’s native multiply: TGMP BAR(n)

(5) Time for GMP’s native remaindering: TR(n)

(6) Time for our enhanced Montgomery reduction,
i.e., Algorithm 2: TFFT MTG(n)

(7) Time for conventional Montgomery reduction
(without our enhancements) implemented using
GMP functions: TGMP MTG(n)

Now more details of the implementation: for each
word length, for each of the above cases, at most 100,000
randomly generated pairs (X ,P) are run. For each P
value, 10 X values are run (so that the total number
of random P values used is 10,000). Furthermore we
arbitrarily set a time limit of 5 hours for any single case
(so in the worst case the run for one wordlength cannot
exceed 30 hours). For such large wordlengths, covering
a significant fraction of the input space is impossible. So
we decided to select reasonable number of cases to run
to ensure that the data could be gathered within about
a week or so. The only time counted is the reduction
itself. Pre and post processing times are ignored. All the
cases were run on a 2.5 GHz Pentium IV box with 1 GB
RAM, running FreeBSD 4.7, GMP library version 4.1.3
and FFTW version 3.0.1 [18]. The machine was kept in
a single user mode, isolated from the network for the
entire duration of the runs. It did not run anything (like
X windows) except the bare minimum number of core
processes needed to be able to carry out the experiments.

Since the main complexity in all the algorithms of
interest lies in multiply operations, the proper compar-
ison is to normalize everything by the average time
delay of the multiply operation used in the respective
remaindering methods.

It is expected that the ratio

∆FFT BAR =
TFFT BAR(n)

TFFTM(n)
≈ 1.5 for n ≥ nt (33)

where nt is the threshold above which transform based
multiplication is the most efficient (as opposed to Karat-
suba or other methods). This is because Algorithm1
performs one full multiply (linear convolution) and a half
multiply (cyclic convolution).
In contrast the ratio

∆GMP BAR =
TGMP BAR

TGMPM
≈ 2 (34)

for n ≥ nt since the prior known methods would do two
linear convolutions.

For Montgomery’s method we ignore the pre-and
post processing since that method is mainly used for
modular exponentiation wherein the main complexity is
in repeated squaring and remaindering, not in the pre
and post processing. As a result, the same values can be
expected for Montgomery, viz.,

∆FFT MTG =
TFFT MTG

TFFTM
≈ 1.5 (35)

∆GMP MTG =
TGMP MTG

TGMPM
≈ 2 (36)

 0

 1

 2

 3

 4

 5

 6

22122021921821721621521421321221121029282726

O
pe

ra
tio

n
T

im
e

(m
ul

tip
lie

s)

Operand Length (bits)

Average Relative Execution Time

GMP Barrett

GMP Montgomery

GMP mod

FFT Barrett

FFT Montgomery

FFT half multiply

FIG. 1.AVERAGE NORMALIZED RUN-TIMES OF

ALL ALGORITHMS

Figure 1 shows the average execution times of all
algorithms normalized (divided) by the average delay
of multiplication used in the respective methods. The

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on April 22,2010 at 15:17:40 UTC from IEEE Xplore. Restrictions apply.

7
correspondence between plot label and algorithm is
indicated in the table below

Plot label ←→ Algorithm
GMP-Barrett ←→ Barret reduction

using GMP’s native multiply
GMP-Montgomery ←→ Montgomery reduction

using GMP’s native multiply
GMP-mod ←→ GMP’s native

remaindering
FFT Barrett ←→ Algorithm 1
FFT-Montgomery ←→ Algorithm 2

The plots demonstrate that the ratios come out as
expected.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

22122021921821721621521421321221121029282726

S
pe

ed
up

Operand Length (bits)

Average Speedup

Barrett

Montgomery

FIG. 2. SPEEDUP RATIOS

Figure 2 shows the speedup ratios

SFFT BAR =
∆FFT BAR

∆GMP BAR
≈ 1.5

2
= 0.75 (37)

SFFT MTG =
∆FFT MTG

∆GMP MTG
≈ 1.5

2
= 0.75 (38)

The above equations define the speedup ratios and indi-
cate their approximate expected values.

Again, Figure 2 shows that the speedup ratios come
out as expected. It illustrates that our faster Barrett
and Montgomery methods (Algorithms 1 and 2) take
about 70% of the time needed by the respective baseline
methods (i.e., Barret and Montgomery without our en-
hancements). This is a 30% speedup, which is slightly
better than the theoretically predicted 25% improvement.
We conjecture that the extra gain reflects improvements
in the coefficients of the non-dominant terms. Let the
total computational effort be expressed as a function of
the wordlength:

Effort = C1 · (n lgn)+C2 · (n)+C3 · (lgn)+C4 (39)

Our speedup ratios evaluate only the improvement in
the coefficient of the dominant term (i.e., C1). The other
coefficients are likely to improve as well, which leads
to a gain better than that predicted on the basis of C1

alone.

IV. DISCUSSION AND CONCLUSIONS

A. Application to Modular Exponentiation

Here the problem is to evaluate XY %P. If
X%P = R0, repeated squaring and reducing yields
X2%P, X4%P, X16%P, · · ·X2k

%P.
The pseudo-code to find the result is:

Let Y = (yk−1yn−2 · · ·y0) in binary.
initialize: Rpow = X%P, R = 1
for (i = 0; i < k; i++){

if (yi == 1) R = (R ·Rpow)%P
if (i < k−1) Rpow = (Rpow ·Rpow)%P

}
Both the reductions inside the loop can be done using

either Either Barret or Montgomery. Each of the two
reductions in the loop involves two steps:
(1) First compute (R ·Rpow) or (Rpow)2 which yields a
2n bit value V .
(2) Reduce V%P.

It is clear that the second step can be sped up by 25%
using our algorithms. Since Rpow is a common operand
in both multiplications, each iteration of the loop can be
done with
[(2n lgn + 3n lgn)] + [2n lgn + 3n lgn] effort using our
methods
(instead of [(2n lgn + 4n lgn)] + [2n lgn + 4n lgn] effort
for prior known methods)
This results in a ratio of 5

6 or an improvement of about
17%. We are exploring methods to further speed up
modular exponentiation.

Note that the constancy of modulus P is less important
for modular exponentiation. Since the repeated-squaring
loop is iterated (relatively) large number of times, the
initial setup time to compute Pinvfor Barrett reduction is
not a dominant contributor to the complexity. Likewise,
the pre and post-processing required by Montgomery’s
method is not the main contributor to the complexity.
Hence the speedup mechanisms we proposed are always
applicable to modular exponentiation independent of
whether the modulus P is known ahead of time.

In [19]. it is shown how to do n-bit modular multipli-
cation in time (3 + 1/3)n ·L(n) after a certain modulus
precomputation; where n.L(n) is the time for multipli-
cation modulo the special modulus (2n +1). Our results
are consistent with those in [19].

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on April 22,2010 at 15:17:40 UTC from IEEE Xplore. Restrictions apply.

8
B. Conclusions

We demonstrated a fundamental separation principle:
in a modular reduction based on long multiplications, the
linear convolution required by one of the two long multi-
plications can be replaced by a cyclic convolution and the
halves can be separated using other information available
due to the intrinsic redundancy of the operations. This
reduces the total number of operations by about 25%.
We demonstrated that both Barrett’s and Montgomery’s
methods can be sped up by using the aforementioned
fundamental principle. The theory was experimentally
validated via comprehensive simulations. It was shown
that a direct application of this algorithm to modular
exponentiation (either using Barrett’s or Montgomery’s
methods) can be expected to yield about about 17%
speedup.

Acknowledgment The authors would like to thank Dr.
David Fu from the National Security Agency (NSA) for
his feedback during the course of this project.

REFERENCES

[1] A. Menezes, P. van Oorschot, and S. Vanstone,
Handbook of Applied Cryptography. CRC Press, 1996.
http://www.cacr.math.uwaterloo.ca/hac/.

[2] D. Naccache and D. M’Raı̈hi, “Cryptographic smart cards,” IEEE
Micro, pp. 14–24, June 1996.

[3] P. Barrett, “Implementing the Rivest Shamir and Adleman public
key encryption algorithm on a standard digital signal processor,”
in Advances In Cryptology – CRYPTO ’86 (LNCS 263) (A. M.
Odlyzko, ed.), pp. 311–323, 1987.

[4] P. L. Montgomery, “Modular multiplication without trial divi-
sion,” Mathematics of Computation, vol. 44, no. 170, pp. 519–
521, 1985.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. MIT Press, 2nd ed., 2001.

[6] D. E. Knuth, The Art of Computer Programming – Seminumerical
Algorithms, vol. 2. Addison-Wesley, 3rd ed., 1998.

[7] D. J. Bernstein, “Multidigit multiplication for mathematicians,”
Advances in Applied Mathematics, Aug. 12 2001.

[8] Kerry Bloodworth’s web-site
http://careybloodworth.tripod.com/index.htm.

[9] D. G. Cantor and E. Kaltofen, “On fast multiplication of polyno-
mials over arbitrary algebras,” Acta Informatica, vol. 28, no. 7,
pp. 693–701, 1991.

[10] A. Schönhage and V. Strassen, “Schnelle Multiplikation großer
Zahlen. (German) [Fast multiplication of large numbers],” Com-
puting, vol. 7, no. 3–4, pp. 281–292, 1971.

[11] A. Bosselaers, R. Govaerts, and J. Vandewalle, “Comparison of
three modular reduction functions,” in Advances In Cryptology
– CRYPTO ’93 (LNCS 773) (D. R. Stinson, ed.), pp. 175–186,
1994.

[12] GNU Multi Precision Library Reference Manual
http://www.gnu.org/software/gmp/manual/.

[13] R. Crandall and B. Fagin, “Discrete weighted transforms and
large-integer arithmetic,” Mathematics of Computation, vol. 62,
pp. 305–324, Jan. 1994.

[14] FFT De-mystified
http://http://www.eptools.com/tn/T0001/INDEX.HTM.

[15] Dan Bernstein’s web-site, http://cr.yp.to.

[16] see the discussion on the half cyclic convolution on page 220 of
a recent textbook draft (2004)
http://www.jjj.de/fxt/fxtbook.pdf.

[17] C. Percival, “Rapid multiplication modulo the sum and difference
of highly composite numbers,” Mathematics of Computation,
vol. 72, no. 241, pp. Pages 387–395, 2002.

[18] http://www.fftw.org.
[19] A. Schönhage, “Fast algorithms: a multitape turing machine

implementation,” 1994.

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH’05)

1063-6889/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on April 22,2010 at 15:17:40 UTC from IEEE Xplore. Restrictions apply.

