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EXTENDED ABSTRACT

For modularreductionw.r.t. afixedmodulusP we,show thefollowing results:

(1) Weshow astraightremainderingmethodthatyieldsthetrueremainderin Θ
�
2 � 5N lgN � effort, which

is equivalentto 2.5wrap-around(cyclic/negacyclic) convolutions-with-one-operand-fixed. Themain
featuresof thismethodare
(a) it producesthe true remainder(X modP) in Θ

�
2 � 5N lgN � effort (in contrast,Montgomery’s re-

ductionstepproducesX � R� 1 modP).
(b) most importat : it works for any modulusP, irrespective of whetherrelatively co-primewith
certainradicii.

Thismethodcoversall caseswhereMontgomery’s algorithmis notapplicable(eitherbecause
(i) themodulusP is not relatively co-primew.r.t theradicii of interest,or
(ii) becausethenumberof repeated-relatedmodularreductionsrequiredis small: for exampleper-
formingasinglemodularmultiplicationA � B modP. Here,theforward-andreversetransformations
requiredby Montgomery’s methodmake it tooslow)
(iii) By castingstraightremainderingin a form similar to Montgomery’s methodwe have effectively
extendedtheframework in [?] to straightremaindering.

(2) For Montgomery-reduction: we show a new variationwherein,the orderof cyclic andnegacyclic
convolutions can be changed(so that the total effort remainsΘ

�
2N lgN � ). This seeminglytrivial

changeof orderhasfundamentalimplicationsbecauseit allowsthechoiceof R � R��� 2n 	 1 thereby
substantiallyincreasingthenumberof caseswhereMontgomery’s methodis applicablebecauseof 3
reasons:
(i) 2n 	 1 haslot fewer facctorsthan2n 
 1 sothatit is morelikely to becoprimew.r.t. modulii P.
(ii) R��� 2n 	 1andR� � 2n 
 1 arealwaysrelatively coprimewhichallowsfor thedynamicselection
of oneof thetwo astheR.
(iii) For mostefficient FFT computationstheword-lengthn is a power of 2. SoR� � 22n 	 1 which
arethewell known Fermatnumbers.Thishasits own advantagesfurtherexplainedin themanuscript.



(3) WeextendMontgomery’smethodto includemodulli P thatarenotrelatively co-primew.r.t. R but are
relatively co-primew.r.t. Rgi (which is thegeneralizedR� 1 Themodularinverseof Rdoesnotexist).
This furtherenhancestheapplicabilityof theproposedimplementationsof Montgomery’s methods.

(4) The focusis on large wordlengthswheremultiplication is implementedvia complex floating point
FFTs However, the algorithmsare castin termsof wrap-around(cyclic/negacyclic) convolutions.
Hence,themethodswill yield a speedupeven for smallword-lengts(beyonda few machinewords,
certainly512bitsandabove). Fundamentally, aslongastheeffort requiredto performawrap-around
convolution is different from the effort requiredto performa full-linear convolution, the proposed
methodswill reflectthegain.

(Thealgorithmsandtheanalyticalresultsin thepaper, have beenextensively simulatedin MapleandVeri-
fied). fastmodularreduction,largewordlength,elliptic-curve,cryptography, FFT multiply, num-
bertheoretictransforms,linearconvolution,cyclic convolution,principleof separation

1 Intr oduction and Background

1.0.1 Notation

Word lengthof operandsin bits= n.
Rn � 2n � R � 2n � 1 andR� � 2n � 1
n-bit numbersarerepresentedasN digit numberswhereeachdigit is aradix-β digit, sothatlength
of thetransformsis N � 2n � lgβ. For transformlengthN to beapowerof 2, β is typically selected
from theset � 24 � 28 � 216 � . 64-bitarchitecturesimply thatfor efficienthardwaresupport,β is limited
to 216 andtransformlengthto N to about217

Cyclic convolutionof A andB is denotedas � A � C B�
Negacyclic convolution is denotedas � A � N B�
A wrap-aroundconvolution (whichcanbecyclic or negacyclic) is denotedas � A � W B� .
Linearconvolution is thefull productA � B andneedsnoothernotation.
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1.1 ProblemDefinition

1.1.1 Modular Reduction

Themodular-reductionproblemdealswith generatingtheremainderRwhenagivendividendX is
dividedby amodulusP:

X � Q � P � S where 0 � X � P2 � 0 � R � P (1)

S � X%P following C syntax

ModulusP is assumedto ben bits long:

2n � 1 � P � 2n (2)

i.e., in theunsigned(magnitudeonly) form, thenth bit of P (which hasa weightof 2n � 1) is 1 and
at leastonemoreof theremainingbits of P is 1.

It is convenientto split X into anupperhalf ��� X � (i.e., higherordern bits of X) anda lower half� � x� (i.e., lowerordern bits of X):

X � ��� X � � 2n � � � X � � Xu � 2n � Xl where��� Z � � ! Z
2n " and� � Z � � Z%2n (3)

1.1.2 Modular Exponentiation

Here the problemis to evaluateXY%P. If X%P � R0, repeatedsquaringand reducingyields
X2%P� X4%P� X16%P� �#�$� X2k

%P.
Thepseudo-codeto find theresultis:

Let Y � � yk � 1yn � 2 �$�$� y0 � in binary.
initialize: Rpow � X%P� R � 1
for (i = 0; i < k; i++) �

if � yi �%� 1� R � � R � Rpow � %P
if � i � k � 1� Rpow � � Rpow � Rpow � %P�
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1.2 Linear versusWrap-ar ound convolutions

Sincenumbersarepolynomialsevaluatedat the-radix,resultsthathold for polynomialshold for
integersaswell (theconverseis not true).

Let A � x� andB � x� be two polynomialsof degree � n � 1� , definedby their correspondingvectors
of coefficientsA andB of lengthn. Thentheir productC � x� is a polynomialof degree � 2n � 2� .
While this needsa vectorof length � 2n � 1� , thecorrespondingintegermultiplicationrequires2n
digits. SoC � x� is representedby vectorC of length2n whoseupperandlowerhalvesareU andL.
Thenacyclic polynomialconvolution is definedastheproductmodulo � xn � 1� :

C � x� % � xn � 1� � � U � x� xn � L � x�$� % � xn � 1�� & � U � x� % � xn � 1�'�(� xn% � xn � 1�$�� L � x� % � xn � 1�*) % � xn � 1�� U � x� � L � x� (4)

which is thesumof upperhalvesU � x� andL � x� of full (linear)convolutionC � x� .
Likewise,anegacyclic convolution is definedasaproductmodulo � xn � 1� .

C � x� % � xn � 1� � � U � x� xn � L � x�$� % � xn � 1�� L � x� � U � x� (5)

1.2.1 Wrap-ar ound convolutions take lesseffort

[1] For transformbasedmethods,cyclic/negacyclic convolutionsrequirehalf thework of a linear
convolution. Assumethebit-lengthn is a power of 2 (otherwisethetransformbasedmethodsare
a little lessefficient). Transformbasedmethodsselecta radix β � 2k so that an n bit numberis
representedasanN digit numberwhereN � n

k .
(a) To performa linear convolution of two numberesA andB of lengthN digits (representedby
vectorsA � B) thefollowing stepsareneeded.
(i) Zero-padA andB with N zeroesin highersignificantpositions
(ii) evaluatetheFFT of thezero-padedvectors(eachFFT takesΘ � N lgN � work).
(iii) point-wisemultiply thetwo FFTs(this takesonly Θ � N � work)
(iv) Inversetransformtheresult(this requiresanotherN lgN work).
(v) Carry-release(this is alsoΘ � N � ).
A linearconvolution takes3N lgN work in general.If oneof thetwo operandsis known aheadof
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time (sothat its transformcanbeassumedto bepre-computed),thenonly oneforwardtransform
is required.In thatcasea linearconvolution requires2N lgN effort.

(b) A cyclic convolution is obtainedby
(i) takingforwardtransformsof A andB (without thezeropadding).EachFFT is now of lengthN
andthedatais real.SoeachFFT requiresΘ � N

2 lgN � work.
(ii) point-wisemultiply thetwo FFTs
(iii) InverseFFT theresult(Θ � N2 lgN � )
(iv) releasethecarries.
Cyclic convolutiontakeshalf theeffort but yieldsthesumof upperandlowerhalves(U � L). Note
thatwith precomputation,acyclic convolution requiresΘ � N lgN � work.

(c) Thenegacyclic convolution is obtainedby
(i) modulateA andB with Ω2N which is a vectorconsistingof first N powersof the2Nth root of
unity:

Ω2N �+& 1 � ω2N
� ω2

2N
� �$�$� ωN � 1

2N ) (6)

ModulatingavectorA meansmultiplying thekth elementof A & k) � Ak by zk.
(ii) FFT the two vectors.It canbeshown that theparticularmodulationby Ω2N doesnot change
theeffort level, i.e., theFFT of themodulatedvectorstakesΘ � N2 lgN � effort.
(iii) point-wisemultiply theFFTs
(iv) Inversetransform(Θ � N2 lgN � )
(iv) Demodulate
(v) releasecarries.
Note thatwith precomputation,a negacyclic convolution alsotakesΘ � N lgN � work, which is the
sameorderof complexity asacyclic convolutionandhalf thework requiredby alinearconvolution
(it yieldsthedifferenceof thetwo halves(L � U ).

[2] Evenat word lengthswhereKaratsubba’s methodis optimal,cyclic convolutionsaresubstan-
tially cheaper:if A � � AH ,AL � andB � � BH ,BL � thenfull linearconvolutionneeds� AHBH , ALBL and � AHBL

� ALBH � � . Karatsubba’smethodcomputesthelastvalueas � AH
� AL �-� BH

�
BL � � AHBH

� ALBL replacing4 productsby 3 products.

If only a cyclic convolution is required,thenonly two valuesarerequired � AHBH
� ALBL � and� AHBL

� ALBH � . Thesecan be generatedwith only two productsC1 andC2 (insteadof the 3

5



requiredby a linearconvolution):

C1 � � AH
� AL �-� BH

� BL �
C2 � � AH

� AL �-� BH
� BL �� AHBH

� ALBL � � C1 � C2
2� AHBL

� ALBH � � C1 � C2
2

(7)

A negacyclic convolution would needthe sameeffort asa linear convolution if the operandsare
split into only 2 halves. (In otherwords,at wordlengthswherethe Karatsubbaalgorithmis the
optimal,negacyclic convolution requiresthesameeffort asa full linearconvolution).

However, all thenew algorithmspresentedhrereinusebothcyclic andnegacyclic convolutionsand
hencewill requirelesseffort thanif theconvolutionswerelinearones.
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2 Results

2.1 True remainderingwith Θ . 2 / 5N lgN 0 effort

Let X � RXu
� Xl whereX � P2 andXu andXl aretheupperandlowerhalvesw.r.t. R.

X modP � � RXu modP � Xl modP� modP (8)

RXu � R2Xu

R
(9)

Let R2 � PPinv
� δ wherePinv

� δ areprecomputedquotientandremainder

whenR2 is dividedby P

RXu � � PPinv
� δ � Xu

R � � P � PinvXu � � δXu �
R

Let

PinvXu � Q1 R � L then

RXu � P � Q1 R � L � � δXu

R � PQ1 � PL � δXu

R
(10)

RXu modP � 2
PL � δXu

R 3 modP (11)

wherethelastmodulow.r.t P is at mostonesubtractionbecause

LP � δXu � R � P � P � P � RP � P2 � 2RP sothat
LP � δXu

R
� 2P and

LP � δXu

R
mustbeaninteger, asseenfrom (10). (12)

Let t � LP � δXu

R
then,desiredremainder (13)

RXu modP � t or t � P (14)

NotethatselectingR 45� R � R� � yieldsminimal complexity because

Step1: L � PinvXu modR becomesawrap-aroundconvolution requiringΘ � N lgN � work.
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Lemma 1 : step2:

t � LP � δXu

R

canalsobeaccomplishedvia asumof wrap-aroundconvolutions:

Proof : (i) WhenR � 2n � 1 � R thenfrom equation(10) t is anintegerimplies

mP � δXu � 2nt � t (15)6 sumof upperandlowerhalves � 2t

2t � ��� LP � δXu � � � � LP � δXu �� & ��� LP� � � � LP�*) � & ��� δXu � � � � δXu �$�*)� � LP modR�7� � � δXu modR�8� (16)

andasumof cyclic convolution is sufficientv

Transformsrepresentingthe cyclic convolutionsof L � P andδ � Xu canbe addedbefor taking the
inversetransformsothat this stepcanbedonein Θ � 1 9 5N lgN � : (forward transformsof Xu andL,
andtheinversetransformof thesum).

(ii) WhenR � 2n � 1 � R� thent is anintegerimplies

LP � δXu � 2nt � t (17)6 differenceof upperandlowerhalves � 2t

2t � ��� LP � δXu � � � � LP � δXu �� & �:� LP� � � � LP�*) � & �:� δXu � � � � δXu �*)� � LP modR;� � � δXu modR;� (18)

andasumof negacyclic convolutionsis sufficient

Thusthetotal effort requiredis Θ � 2 9 5N lgN � < .

This is almostidenticalto Montgomery’smethod,but therearesomekey differences:
(1) Therewasno useof any coprimenessor modularinverses,in otherwordstheabovederivation
doesnot restrict P in any manner. (2) The fact that δ is now multiplying X necessicitatesthe
evaluationof onemoreforwardtransformin thereductionphase.This transformis theadditional
work overwhatmontgomery’smethodneedsto do. Howeverit shouldbenotedthatmontgomery’s
methodcalculatesXR� 1 modP insteadof thetrueremainderX modP. Now webriefly statethe
algorithm.
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Problemdefinition /* given X � RXu
� Xl where X � P2 find X modP */

Without loss of generality, we illustrate the method for
R � R (the other case R � R� is similar).
Pre-computation: Given P, compute quotient and remainder obtained by dividing

R2 by P δ � R2 modP and Pinv � � R2 � δ � � P and� R=� C P� � cyclic convolution of R and P

Algorithm StraightRemaidering

Step1 : L � � XuPinv � modR
/* negacyclicconvolution, requires Θ � N lgN � work */

Step2 : Compute

t1 � � L � C P� � � δ � C Xu � (19)

t2 � � t1 � � R=� C P�#� modR� (20)

/* Θ � 1 9 5N lgN � work */

Step3 : small post-processing: Θ � n�
ExpectedLeastSignificantDigit � t � � d0 � � L0P0

� δ0Xu0 � modβ
srem = NULL; /* initialize to some invalid remainder value */

foreach t in � t1 � t2 � do /* one of t1 � t2 must yield correct remainder */
if (t mod2 ! � 0) then

if (t > R ) then
t � t � R�

else if (0 � t � R ) then
t � t � R�

end if
end if
t � t � 2
if � t modβ � d0 � then

srem = t
break /* if t1 matches, break out of the for loop */

end if
end for
srem = (srem + Xl) mod P
return (srem) < Total work is Θ � 2 9 5N lgN �
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2.2
?

Explanation of the post processingsteps

� LP � δXu �@� RP � P2 � 2R2. If it exceedsR2 thenthe IFFT yields incorrectresult. FFT based
computationsareinherentlywrap-around-R convolutionswhereR 4A� R � R� � . So any overflow
getsaddedbackto the least-significantdigit so thatoverflow necessarilychangesthe least sig-
nificant digit . Weexploit this factto checkandcorrect.

Lemma 2 : If thereis overflow the correctionis simply to subtractthe (precomputed)cyclic
convolution � RB� C P� of R andP.

Proof : Thesequenceof operationsrequiredto find thecorrectremainderis
(i) DivideLP � δXu by R
(ii) Thentakemodulo-P, i.e.

t � � LP � δXu

R
� modP (21)

Since LP � δXu � RP � P2 � it mustbeexpressableas (22)

LP � δXu � RP � θ where (23)

θ � P2 andθ is divisibleby R, sothat (24)

t � � P � θ
R
� modP � θ

R
6 (25)

t � � LP � δXu
� RP� � R which in turn impliesthat (26)

2t � � m � C P� � � ti � C ti � � � R � C P� < (27)

So we calculatet1 assumingno-overflow and t2 assumingoverflow andusethe leastsignificant
digits to selectoneof thetwo.

Thecyclic convolutionsarevaluesmodulo-R� . So if during thecarry releaseanextra C R� gets
left-in thatwill make theresultodd.Themodulo-2testsimplychecksandcorrectsfor this.

2.3 Substantially Incr easingApplicability of Montgomery’sMethod

Clearly, theresultsof previoussectionapplyandR canbeselectedto beR or R� . Theselection
R � R is a new variatiionin theframework proposedin [?] asexplainedbelow. This seemingly
trivial changeof orderof cyclic andnegacyclic convolutionssubstantiallyincreasesthenumberof
modulii for whichMontgomery’smethodis applicable.
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2.3.1 BasicMontgomery Reduction

Pre-computation: ComputeR� 1 andP1 suchthat

RR
� 1 � P1 P � 1 and 0 � R

� 1 � P

and 0 � P1D� R (28)

Thispre-computationis essentiallytheextendedGCDalgorithm.

Now giventwo numbersA andB in theproperresidueclasssatisfyingAB � RP, Montgomery’s
methodevaluatesABR� 1 mod P asfollows.

Step0 : ComputeT � A � B (full linearconvolution).

Step1 :

m � �$� T mod R� P1E� mod R

sothat 0 � m � R (29)

Step2 :

t � � T � mP� � R (30)

Here,t is guaranteedto beaninteger, sothattheabovedivisionby R is exact.

Step3 : if t > P return(t � P) elsereturn t

Montgomery’salgorithmis thebestwayof performingmodularexponentiation.
GivenanX, it calculatest0 � � XR� modP in thebeginning(this is like“forwardtransformationof
X into theproperresidueclass(not to beconfusedwith aforwardFFT)).Fromhereon,it performs
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thefollowing two computationsin a loop (seeSection1.1.2).

Loop :

ti  1 � TiR
� 1 modP where Ti � t2

i

Si  1 � F Si if yi = 0
Si � ti  1 modP if yi = 1

End Loop :

At theendit performsoneextra iterationto reverse-transformtheresultback.

We call theimplementationof thefirst equationwithin theloop asthesquare-and-reduceopera-
tion. Both thecomputationstogetherarereferredto asthesquare-reduce-assimilateoperation.

2.3.2 RealizingMontgomery Redudctionwith onenegacyclicand onecyclic convolution

Theframework in [?] selectsanintegerQ satisfying

Q
gcd� Q � R� G � P � 1� 2 � � R � 1� P

R
> t (31)

andperformsthetwo modifiedsteps:

m � ABP1 modR (32)

t � � AB � mP
R

� mod � Q
gcd� Q � R� � (33)

While this setof equationsbroadlydefinesa framework, we believe themostinterestingvariation
hasbeenleft out.

Variation 3 : SelectR � R � Q1 � R� andQ � 2Q1 .
gcd� R� Q� � gcd� R� Q1 � � 1 � Q

gcd� Q � R� � � 2R� � 2R � 4 � N � 1�
2R � 4 G � P � 1� 2 � � R � 1� P

R
since (34)

R > P � 1 (35)
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Now step1 performsa negacyclic convolution andstep2performsa of cyclic convolution, i.e., if
thesquareT � t2

i is fully evaluated,thenMontgomeryreductiontakesΘ � 2N lgN � work.

2.3.3 Realizing the square-and-reduceiteration with Θ � 3 9 5N lgN � work with any order of
cyclic/negacyclicconvolutions

A straightevaluationof the squarefollowed by the reductionwould take Θ � 4N lgN � work. As
in [?], however, the square-andreducestepcanbe realizedwith Θ � 3 9 5N lgN � work. We briefly
statethealgorithmfor variation3 proposedabove.(thecasewhenR � R� is variation2 in [?]).

Given an n bit modulus P G 2 H n � 1I and n bit scaled remainder ti
find � t2

i R� 1 � %P.

Without loss of generality, let R � 2n � 1. (this is simply for the purpose of
illustraiton, the maple code dynamically selects either R or R� , whichever is
relatively coprime with P).

Pre-computation: Several entities are precomputed:
(1) Numbers R� 1 and P1 such that

RR
� 1 � P1 P � 1

(36)

The FFT’s of those numbers are also pre-computed
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Algorithm FusedSquareAndReduce

Step1 : Tl � T modR � � ti � N ti �
/* negacyclicconvolution of ti with itself requires Θ � N lgN � work. */

Step2 : m � � TlP1 � modR
/* negacyclicconvolution, requires Θ � N lgN � work */

Step3 : Compute

t1 � � m � C P� � � ti � C ti � (37)

t2 � � t1 � � R=� C P�#� modR� (38)

/* Θ � 1 9 5N lgN � work */

Step4 : small post-processing: Θ � n�
ExpectedLeastSignificantDigit � t � � d0 � � m0P0

� T0 � modβ /* Θ � 1� */
srem = NULL; /* initialize to some invalid remainder value */

foreach t in � t1 � t2 � do /* one of t1 � t2 must yield correct remainder */
if (t mod2 ! � 0) then

if (t > R ) then
t � t � R�

else if (0 � t � R ) then
t � t � R�

end if
end if
t � t � 2
if � t modβ � d0 � then

srem = t
break /* if t1 matches, break out of the for loop */

end if
end for
if (srem G P) srem = srem - P
return (srem) <
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2.3.4 Handle moremodulii P by dynamically selectingbetweenR � R or R � R�
� R � R� � are relatively coprimefor all valuesof n. Furthermore,R tendsto factor into few
largeprimes.Consequently, thereis a high probabilitythateitherR or R� is relatively co-prime
w.r.t. modulusP. In otherwords,the above choiceof R substantiallyincreasesthe caseswhere
Montgomery’smethodcanbeapplied.

Note thatR � 2n is a badchoice: for this valueof R, thefirst stepof the montgomeryreduction
(evaluationof m) becomesequivalentto evaluatingonly thelowerhalf of aproduct.To thebestof
ourknowledge,thereis nowayto generateonly theupperor lowerhalf withoutalsogeneratingthe
other. Henceisolatingthelowerhalf needsa full linearconvolution. Thesecondstepstill needsa
cyclic convolution, therebymakingtotal effort Θ � 3N lgN � . Insteadof that,trueremaindercanbe
evaluatedwith Θ � 2 9 5N lgN � by themethodshown in Section??.

2.4 Extending Montgomery’sMethod to caseswhere gcd. RJ P0LK 1
but gcd. Rgi J P0NM 1

In general,R andP arenotalwayscoprime.In thatcase,thereexist integers,Rgi andPgi suchthat

RRgi
� PgiP � g whereg = gcd(R� P) (39)

In generalgcd� Rgi
� P� canbe G 1. However, suchvaluesof P areevenlessfrequent(becausenow

gcdw.r.t bothR andRgi mustbe G 1).

In this case,

1
Rgi

modP exists

andthemontgomeryreductionprocedurecanbemodifiedasfollows:

m � � TPgi � modR sothat (40)� mP� modR � � gT modR and� gT � mP�
R � t where

t � T � Rgi modP (41)

tR � gP2 � PP � � g � 1� P2 (42)
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The overflow (above R2, which canhappenaseennfrom the last equation)canbe handledby
pre-scalingT:

T � g � T 1 � T modg where

T 1 � O Tg P (43)

T modP � g � Q T 1 modPR � T modg

useT 1 in placeof T in thereduction (44)

T 1 g � mP � 2R2 (45)

(46)

Consequelty, themodifiedMontgomeryreductionrequiresonly oneadditionaltask:
Pre-ScalingT to find T 1 and(T modg). Notethatthis calculationimmediatelymakesgT 1 avail-
ablesothattheusesof gT 1 in thecaculationof t � � mP � T � � R incursnoadditionalcost.

The prescalingcan be consideredO � N � if gcd(R� P) can be consideredO � 1� . In that casethe
complexity remainsΘ � 2N lgN �
2.4.1 Realizing the Square-and-reduce iteration with the same Θ � 3 9 5N lgN � work when

gcd� R� P� G 1 but gcd� Rgi
� P� � 1

Thecomputationsrequiredare

(1) ε � � AB modg� � � A modg�(� B modg� modg Θ � N �
(2) l � � AB� modR Θ � N lgN �
(3) m � lPinv modR � εPinv modR Θ � N lgN �
(4) 2t � � mP modR�8� � � AB modR�7� � ε Θ � 1 9 5N lgN � (5) smallpostprocessing(identicalto
thatin all previousalgorithms) Θ � N �
Totaleffort is still Θ � 3 9 5N lgN � asbefore.Insteadof explicitly evaluatingT andthenT 1 theabove
methodfusestheoperationsto obtaina saving of � N � 2� lgN.
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2.4.2 Fermat Numbers

For mostefficientcomputationtransformlengthN andhencebit-world-lengthn needto bepowers
of 2. In this case

R � 2n � 1 � 22m � 1 � Fm (47)

Fermatnumbersarewell studiedandfactorinto very few relatively largefactors(for anup-to-date
listing of known factorizationsof Fermatnumbers,visit theweb-site[?]). Sinceany factorwhich
is lessthan232 (i.e.,aboutonemachineword long)canbeconsideredto beO � 1� , smallfactorsdo
not posea problem;aslong asgcd� Rgi

� P� � 1 caseswheregcd� R � P� G 1 but canbeconsidered
O � 1� canbehandledasexplainedin sectionSection?? above).

When gcd� R � P� G O � 1� ), then the complexity of modified montgomerymethod(modified to
dealwith orderO � 1� gcds)increases,andanothervalueof R mustbeselected.For all theabove
algorithmsto benot-applicablethemodulusP mustsimultaneouslysatisfy

gcd� P� RS� G O � 1� and gcd� P� Rgi S� G 1 AND (48)

gcd� P� R�T� G O � 1� and gcd� P� Rgi �T� G 1 AND (49)

2n G P G 2n � 1 (50)

Giventhatfermatnumbershavevery few factors,weexpectthenumberof modulii thatsatisfythe
aboveconditionsto beverysmall.For instancefor n � 1024

R � F10 � 45592577� 6487031809�
4659775785220018543264560743076778192897 � P252

R� � � F9 �(� F8 �(� F7 �U�$�$� 9 9 5 9 3
In this case,thefirst 2 factorsof R canbeconsideredto beO � 1� . Likewisefor , all factorsof R�
below F7 canbeconsideredto beO � 1� . That leavesvery few choicesto createa P thatsatifiesall
the(pathological)conditionsabove.

If suchaP (whosegcdwrt R � R� G O � 1� ) is athand,thenit is betterto usethestraightremainder-
ing algorithmpresentedin Section??. In thesecasesP containsfactorsof fermatnumberswhich
areof theform � k 9 2q � 1� whereq > m � 2. Weconjecturethatthepresenceof suchfactorswith a
specificform in themodulusP shouldmakeit possibleto tailor thestraightremainderingmethods
of sectionSection??anddroptheir complexity furtherbelow 2 9 5N lgN,
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3 Discussionand Conclusions

3.1 Alter nate forms of straight remaindering in Θ . 2 / 5N lgN 0
Originally we hadderived an alternateΘ � 2 9 5N lgN � remainderingalgorithmbasedon the asso-
ciativity of cyclic convolution. It wasan improvementover our prior results[?] whereinwe first
evaluatedQe, averycloseapproximationto thequotiontQ �V! � X � � P" via afull linearconvolution.

Qe � O XP P (51)

X
P � X

R
� R2

P
� 1
R

where, R � 2n (52)

Qe � O 2 O XR P � O R2

P P 3 � 1
RP (53)

� O XuPinv
R P where (54)

O R2

P P � Pinv (precomputed) (55)

Accordingly, theprior Θ � 3N lgN � methodweproposedin [?] hadthefollowing steps.

Step1 : Do thefull linearconvolutionXu � Pinv andretrieve theupperhalf Qe (56)

Step2 : performacyclic convolutionof Qe andP (57)

andsubtractXu andperformsomesimplecorrections

(58)

To derivea Θ � 2 9 5N lgN � method,notethat

2Qe � � XuPinv � modR � � XuPinv � modR� (59)� 2Qe � C P� � 2Qe � P modR�� & � XuPinv � modR � � XuPinv � modR�S�W) P modR�� & � Xu �-� P � Pinv �W) modR� � & � XuPinv � modR;�*)X� P modR�� � Xu∆ � modR� � � mP� modR� where (60)

m � XuPinv modR and∆ � PinvP modR�� 2Qe � C P� � � Xu∆ � mP� modR� (61)
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It thrnsout that this (older) methodis numericallynot aswell behaved andneedssomewhat in-
volvedintermediatechecks.We’vementionedit for thesakeof completeness.

3.2 Crossover: word lengthswhere a speedupcanbeseen

Note that the methodsuseboth cyclic and negacyclic convolutions. At any wordlengthabove
machine-word-length,a cyclic convolution is alwaysfasterthana full linear convolution. A ne-
gacyclic convolution takessameeffort asa linear convolution at small lengthsandrequiresonly
half theeffort at largewordlengths.In any case,nagacyclic convolutionneverrequiresmoreeffort
thana linearconvolution. So,replacing2 linearconvolutionswith onecyclic andonenegacyclic
will alwaysbe faster. Consequently, even at small wordlengths(512 bits andabove) a gain can
be expected(sucha gain wasseenin the experimentaldatapresentedin [?] at relatively small
worldlengths:768bits andabove)

3.3 Straight Remaindering vs. Montgomery Reduction

The above resultsdemonstratethe fundamentalreasonwhy whenever applicable,Montgomery’s
methodis alwaysfaster. Montgomery’s methodcalculatessomethingotherthanthe trueremain-
der (X modP). Thevalueit calculatesis carefullychosento make its evaluationeasy(which is
theessentialinginuity of Montgomery’s method).Theability get-away with aneasy-to-calculate
alternatevaluemustresultin lesswork required,which is reflectedin theΘ � N2 lgN � lesswork for
montgomeryasopposedto straightremaindering.

3.4 Modular Exponentiation

Thebestknown prior results[?,?] show waysto accomplishoneentireiterationof this
square-reduce-assimilateloopwith Θ � 10N lgN � effort.

(1) If the straight-remainderingis usedone iterationcan be donein Θ � 9N lgN � work. (To the
bestof our knowledgesquare-and-true-remainderiterationrequiresthe full linear convolution to
computet2

i followedby thestraightremainderingwhichmakesthetotal effort Θ � 4 9 5N lgN � . None
of themethodsof fusingoperations(thatwe’ve tried) seemsto yield a lower total effort).

(2) Usingtheproposedfused-square-and-montgomery-reducemethodoneiterationcanbedonein
Θ � 7N lgN � work.
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