CS681 Computational Number Theory

Lecture 26 : Hensel Lifting

Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

We first saw two algorithms to factor univariate polynomials over finite
fields. We shall now get into bivariate factoring over finite fields. Before
that, we need to look at a very important and powerful tool called Hensel
Lifting.

1 Hensel Lifting

The intuition behind Hensel Lifting is the following - you have a function
for which you need to find some root. Suppose you have an x very close
to a root z( in the sense that there is a small error. The question is how can
you use = and the polynomial to get a closer approximation?

Recall the Newton Rhapson Method you might have done in calculus
to find roots of certain polynomials. Let us say f is the polynomial and xg
is our first approximation of a root. We would like to get a better approxi-
mation. For this, we just set 21 = g + €. And by the Taylor Series,

f(xl):f(xO‘i‘E) = f($0)+5f/(g;0)_|_52f//2(!x)

= f(wo) +ef'(z0) + O(e?)

Ignoring the quadratic error terms, we want a better approximation. Thus,
in a sense, we would want f(z1) to be very close to 0. To find the right ¢
that would to the trick, we just set f(x;) = 0 and solve for . With just some
term shuffling, we get

But one crucial property we need here is that f’(zo) is not zero for oth-
erwise division doesn’t make sense. In the same spirit, we shall look at
version 1 of the Hensel Lifting.



1.1 Hensel Lifting: Version 1

Theorem 1. Let p be a prime and c and positive integer, and let f any polynomial.
Suppose we have a solution x that satisfies

f(z) = 0 mod p° , f'(z) # 0 mod p
then we can “lift” x to a better solution x* that satisfies
f(z*) = 0 mod p* , ¥ = x mod p°

It is of course clear that if f(z*) = 0 mod p* then f(x*) = 0 mod p¢ but
the converse needn’t be true. Therefore, z* is a more accurate root of f. The
proof of this is entirely like the proof of the Newton Rhapson Method.

Proof. Set x* = x + hp°. We need to find out what A is. Just as in newton
rhapson,

F@) = fl+hp?) = F(h)+hptf'(z) + (hpc)Zf/;(!x) L
= f(h)+hp°f'(x) + O((hp®)?)

= f(h) + hp°f'(x) mod p**
Since we want f(z*) = 0 mod p*, we just set the LHS as zero and we get
_ f(@)
pef'(x)

Note that f(z) = 0 mod p® and therefore it makes sense to divide f(z) by
p°¢. Thus our 2* = x + hp® where h is defined as above and by definition
* = z mod p°. O

Another point to note here is that since 2* = x mod p°, f(z*) # 0 mod
p as well. Therefore, we could lift even further. And since the accurace
doubles each time, starting with f(z) = 0 mod p, i lifts will take us to an z*
such that f(z*) = 0 mod p*'.

Hensel Lifting allows us to get very good approximations to roots of
polynomials. The more general version of Hensel Lifting plays a very cen-
tral role in Bivariate Polynomial Factoring.



1.2 Hensel Lifting: Version 2

In the first version of the Hensel Lifting, we wanted to find a root of f.
Finding an « such that f(«a) = 0 mod p is as good as saying that we find a
factorization f(z) = (x — o)g(z) mod p. And also, the additional constraint
that f/(a) # 0 mod p is just saying that « is not a repeated root of f or in
other words (z — «) does not divide g. With this in mind, we can give the
more general version of the Hensel Lifting.

Theorem 2. Let R bea UFD and a any ideal of R. Suppose we have a factorization
f = gh mod a with the additional property that there exists s,t € R such that
sg + th = 1 mod a. Then, we can lift this factorization to construct g*, h*, s*, t*
such that

g* = gmoda
h* = hmoda
f = ¢*h* mod a®
s*¢* +t*h* = 1mod a?

Further, for any other ¢', h' that satisfy the above four properties, there exists a
u € a such that

/

Jd = ¢*(1+4u) mod a?
M = h*(1—u)mod a®
Therefore, the lifted factorization in some sense is unique.

Proof. (sketch) Set g* = g + te and h* = h + se. Now solve for e and that
should do it. Finding s*, t* is also similar. (painful!) O

Here is a more natural way is to look at this. What we want is a solution
to the curve XY = f where f is the function we want to factorize. Let us
call F(X,Y) = f — XY. We have X,Y as solutions such that F/(X,Y) =
f—XY =e. Now

FIX+AX,)Y+AY) = f—(X+AX)(Y +AY)
f— XY — (XAY + YAX) 4+ O(A?)
F(X,Y)—- (XAY +YAX)
= e— (XAY +YAX)

Further, we also know that s X +tY = 1 and therefore, if we just set AX =
se and AY = te, we have

F(X +AX,)Y +AY) =e—e(sX +tY) = 0 mod A?



One should also be able to look at the lifts of s and ¢ as solving appro-
priate equations. In the next class, we shall look at this technique put to use
in Bivariate Factorization.



