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Abstract 

Three theorems are presented that establish polynomial straight-line complexity for cer- 

tain operations on polynomials given by straight-line programs of unbounded input degree. 

The first theorem shows how to compute a higher order partial derivative in a single variable. 

The other two theorems impose the degree of the output polynomial as a parameter of the 

length of the output program. First it is shown that if a straight-line program computes an 

arbitrary power of a multivariate polynomial, that polynomial also admits a polynomial 

bounded straight-line computation. Second, any factor of a multivariate polynomial given by a 

division-free straight-line program with relatively prime co-factor also admits a straight-line 

computation of length polynomial in the input length and the degree of the factor. This result 

is based on a new Hensel lifting process, one where only one factor image is lifted back to the 

original factor. As an application we get that the greatest common divisor of polynomials 

given by a division-free straight-line program has polynomial straight-line complexity in terms 

of the input length and its own degree. 

I. Introduction 

The construction of straight-line programs for 

certain multivariate polynomials, such AS the 

irreducible factors or the GCD of polynomials 

given by straight-line programs, was discovered 

to be feasible within the past three years [5], [6], 

and [7]. The program transformations are in ran- 

dom polynomial-time> in the input size and the 

total degrees of t,hc inputs. If the degrees of the 
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input polynomials are allowed to be exponential 

in the straight-line program length, some basic 

constructions such as determining the coefficient 

of a single variable power can become #P-hard 

with respect to the straight-line program size 

alone [18], [6], 55 (see also 52 below). In this 

article we study how the input degree restriction 

can be weakened while retaining polynomial 

straight-line complexity for the anwers. 

The first theorem shows how to compute a 

higher order partial derivative in a single variable 

of a rational function given by a straight-line 

program. The simple construction is based on 

the Leibniz rule for higher derivatives of products 

and can even be carried out in polynomial-time. 

The next two theorems impose the degree of the 

output polynomial rather than the input polyno- 

mial as a parameter of the length of the output 

program. Polynomial-time constructibility of the 
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answer programs is lost, however, in part due to 

the need of scalars derived from the input poly- 

nomials of possibly exponential degree, which 
thus can be exponential in size. We show first 

that if a straight-line program computes an arbi- 

trarily high power of a polynomial. that base 

polynomial also admits a polynomial bounded 

straight-line computation, provided the charac- 

teristic of the scalar field does not divide the 

exponent. Our construction is based on taking 

roots of univariate power series. Second, we 

prove that any factor of a polynomial given by a 

division-free straight-line program with relatively 

prime co-factor admits a st,raight-line computa- 

tion of length polynomial in the input length and 

its own degree. The proof of this result intro- 

duces a new Hensel lifting procedure [22], one 

where only one factor image is restored back to 

its original factor. 

The assumption of co-primeness in our factori- 

zation result can be enforced in the setting of 

computing the greatest common divisor of poly- 

nomial by Hensel lifting, the so-called EZ-GCD 

procedure [ 12]. Therefore, we get as an applica- 

tion that the GCD of polynomials given by a 

division-free straight-line program has polynomial 
straight-line complexity in terms of the input 

length and the degree of the GCD. Furthermore, 

we also can derive from this results another solu- 

tion to Strassen’s problem 1161 on the straight- 
line complexity of the reduced numerator and 

denominator of a multivariate rabtional function 

given by a straight-line program. The new 

approach does not make use of P(add approxima- 

tions at all, as was the basis for our first solution 

to this’problem [8], 54. 

Notation: Generally, F , F, K denote fields, 

char(.) their charcteristic, z, y , z, (Y indeter- 

minates, f , g , h (multivariate) polynomials, a, 

b field elements, P, Q straight-line nrograms. 

Permitted operands in the instruction sequence 
of straight-line programs are field elements, 

indeterminates, and previous program variables. 

Permitted operators are +. -. x: and f If the 

latter does not orcur we call the program 

division-free. For a precise definition of the 

straight-line model we refer to [6], $2, or to (15]. 

By ldcfXl(f) E F[zz ,..., zn] we denot,c the 

coefficient of the highest power of z , in j E 

(Fb, 7.“) x, ])[z ,I. A4 (d) denotes a function 

for the asymptotic complexity of d-degree poly- 

nomial multiplication, at best M (d ) == d log( d ) 

log(log(d )) 1141, [4]. Finally, we use := and =: 

as a shorthand to indicate the introduction of 

symbols, the new symboIs occurring on the side 

of the colon. 

2. Higher Derivatives 

We now show how to compute the k-th order 

derivative in. a single variable of a straight-line 

program. For polynomials of bounded degree 

this problem can be solved by computing 

straight-line programs for the coefficients in the 

single variable [18], [6]. The following solution, 

based on the Leibniz formula of higher deriva- 

tives, is much simpler and works also for rational 

functions and does not depend on the input 

degrees. 

Theorem 1: Let f E F (z 1,. . . , x, ) be given by 

a straight-line program P of length 1. Then 

akf /axf can be computed by a straight-line 

program Q of length len( Q ) = 0 (k21 ). 

Proof: For every program variable w A, 1 < X < 1, 

in P we introduce k additional variables v A tK) , 1 

< IC ,< k, VA(‘) = ox, such that ~1”) computes 

the n-th derivative of the function computed in 

vx. Now let an individual assignment be w + u 

o v . The following relations apply: 

c; = +: w(4 = &I + J4 

Therefore, clearly ‘w fK) can be determined from 

u to) ). . . ! u (q w(O) ). . .) &), w to) , . . . , w(” I) 
in 0 (K) assignments. Notice that if an operand, 

u say, is an indeterminate or scalar, then u (j) = 

Oexceptifqb =x1, then ~(~1 = 1. Overall, each 
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assignment in P gets expanded into at most 
0 (k”) assignments and the result follows. o 

The construction of Q from P can be accom- 
plished in polynomial-time, that is the transfor- 

mation is uniform in the sense of [6]. That 

means that we have another Monte-Carlo solu- 

tion for finding the degree of a polynomial f E 

w, ,“‘, Z, 1, namely by testing programs for 

af (Yq,-+,) a”f (Yq,-.,Y4 . . . 
aY ‘-‘.’ 

7 
3Y” 

for zero by random evaluation: Our first solution 

used an interpolation approach IS], $5, and is in 

general more efficient. Notice that if the first k 

derivatives do not evaluate to zero, the input is 

either a polynomial of higher degree or a non- 

polynomial rational function. In the latter case, 

a more general test is available, cf. [8], Corollary 

4.1. 

There is evidence that it is impossible to com- 

pute the k-th derivative in (2 log(k ))O 0) assign- 

ments. Consider the example from [18], 

9(Yl,...,Yn1Z1,*,..-IZn,n)=~ 5 Yj"i,j . 
i=l I I j=l 

Then the coefficient of the monomial y I * . . yn in 

g is the permanent. of the matrix [zi,j IISi, j in , 

Notice that in contrast to theorem 1, 

a’, g 

aYl--aY, 
= Perm(12i,j11&i,j<n 17 

which makes taking partial derivatives in mixed 

variables #P-hard. Now performing a Kronecker 

substitution z (n +l)‘-’ for yi this permanent 

appears as the coefficient ck (2 1 L , . . . , 2, ,n ) of 1 
x k fo1 

k = l+(n -tl)+(n +1)2+. +(n +I)~ I, 

in 

f b,+p.,~,J 

= g(x, ZRfl f”‘., 2(“+1)n-‘, 21 ,I,..., z,,,). 

Therefore 

akf hQ,l,“‘, b,,,) 
azk r=o 

computes k! perm([q ,j]), whereas f can be 

computed by a division-free program of length 
0 (n 2). One may argue that divisions in the 
program for the k-th derivative can make the 

substitution z = 0 invalid, but we do not believe 

that divisions endow the straight-line complexity 

model with exponentially more power (see $6, 
problem 5). Also the exponentially sized con- 

stant k ! should not enable an exponential speed 

up of the computation of the permanent. 

3. Large Exponent Roots 

Our next theorem shows, for instance, that a 
very high power of a hard polynomial, such as 

the n by n permanent raised to the power Zn , 

cannot have a straight-line computation of poly- 

nomial length. It is based on the fact that the 

d-degree root of a polynomial only depends on 
its d fl low order coefficients, provided the con- 

stant coefficient is non-zero 191. 54.7. Our proof. 

however, will be based on the asympt,otically fas- 

ter Newton iteration. 

Theorem 2: Let f E F [z I> . . . , z, ] be given by 

a straight-line program P of length 1: card(F) > 

Z1+l, and let g E F[s,, . .., x,], d = deg(g), be 

such thatge = f, e not divisible by char(F). 
Then g can be computed by a straight-line pro- 

gram Q of lengthlen = 0 (1 M(d)). 

Proof: By working with the translated polyno- 
mial 

7-(q, “‘f z,, Y I:=, (Z,Y +a1 ,..., ZnY +a,). 

a; E F , we can find the Taylor series coefficients 

co ,‘**9 Cd E F[s,,..., x,J of 

7(+*.,&Y) - 

cob 1, . . .4, )+c ,(z 1, * *. 92, )Y 

+.-*+cd(z,,...,zn)yd mod yd+’ 

in 0 (I M(d)) assignments [6]. Moreover, the 

ai can be chosen such that co # 0. Here we 

make use of the assumption that the field is suffi- 

ciently large. Let 

d 

i&,..., z,, Y) := cqq,..., Zn)Yi 
i=O 

445 := g(zg+a I,..., z,y+a,). 



Since 

cob 1, * ..,x,)=T(q ,...) x,,O)=f (U1)...) a&F 

we have uu E F with ug = cu. VVe determine 

Ul ,“‘, Q by Newton iteration of ze - f = 0 

on the power series approximation of f . We 

now describe this iteration in detail. 

For i t 1,. . . , [log,@ +1)1 Do 

At this point we have computed 

uo,-.., uj, wO,*-., wj E F [X 11.. * 7 x,]> 

j := zi-1 - 1, such that for 

“i-l(Y)= h 2”kYkl Pi-,iY~=,k~owkYk~ 
k=O 

we have 

c~~-~p~-r~l mod yj+‘, at-rzjrmod yj+r. 

We now encode straight-line assignments for 

uj+l 1'") '112j-J1 wit-1 >'*'j w2j-1 that 

satisfy 

Iyj(Y) = (l- :Jai- l(Y) 

+ +rpi_,(Y)e-l mod ymi4d+132iL 

and if 2’ < d +l, 

Notice that 

~yi- Qi-l- 
ze-f 

a(Ze -fw 

and 

mod y 2’ 
2 =a&* 

pi- pi- - +-i 
l a(l/ t--a;)/az r=fii-l 

mod y2’. 

The amount of straight-line cod.e for this step 

is 0 (log( e )A4 (2’ )) using binary exponentia- 

tion for finding p;“_i’ mod y 2i. 

The total cost for the Newton iteration is 

0 (lode NW)), or with log(e) = 0 (I), 

0 (I M(d)) assignments. q 

The construction of Q in the above proof is 

“almost” in random polynomial-time, all that is 

required as additional input is us E F and e 

(given in binary). If e is polynomial in value, we 

could have also used the factorization algorithm 

in [7] to construct a program for g , but then the 

above method also leads to a random polynomial 

time algorithm. for constructing the program Q . 

Moreover, this approach is more efficient both in 

terms of the asymptotic length of the resulting 
program as well as practicality. 

We remark that the cardinality restriction on 

F is unessential in the above and also in the fol- 

lowing theore:ms. If card(F ) 6 2’+‘, we can 

carry out the construction in an algebraic exten- 

sion F (0 ) of degree m := [F (6 ):F]. The point 

is now that the resulting program Q , which uses 
scalars in F (8 ), can be transformed to a pro- 

gram Q over F (z r , . . . , xll ). For future refer- 

ence, let us formulate the following lemma. 

Lemma 1: Let f E F(zl ,..., zn) be given by 

a straight-line program P over K (2, , . . . , 2, ), 

K := F [B]/ (g (19 )) where g (6) E F [B] is 

irredzlcible. Furthermore, let 1 :- len(P ) and m 

:= deg(g ). Then g can be computed by a 

straight-line program Q over F (x I , . . . , z, ) of 

lengthlen = 0 (M(m)log(m) 1). 

Proof: The idea is to construct for each function 
vA E K(zl ,..., zR), 1 6 X < I, computed in 

the kth assignment of P a straight-line code 

segmentforWAPE F(zl,...,zcn),O<~ <m, 1 
such that 

m-l 
vi G C w~,~~~II mod g(e). 

p=o 

Division is the most costly operation and requires 

0 (M (m ) log( m )) assignments to determine 

w~,~ from the corresponding coefficients of the 

dividend and divisor, using the extended polyno- 
mial version of the Knuth-Schdnhage GCD algo- 

rithm to invert the divisor modulo g (0 ), see e.g. 

PI. 

If one were to carry out this step constructively, 
certain program variables in F (z 1 , . . . , 2, ) 

would need to be tested for zero, which can be 
accomplished by the Monte-Carlo algorithm in 

161, 53. Th ese es s can be avoided, however, by t t 
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computing the coefficients of the inverse modulo 
y as quotients of minors in the Sylvester matrix 

[3] employing a division-free determinant pro- 

gram. The cost is then m w “+‘(l), where w is 

the matrix multiplication exponent, and Q is 

obtained deterministically in polynomial time in 

1 and m. u 

4. Low Degree Factors 

In [7] we have established that any factors of a 
family of multivariate polynomials with polyno- 

mially bounded degree and straight-line complex- 

ity can themselves be computed by straight-line 

programs of polynomial length. We now general- 

ize this result by relaxing the degree bound con- 

dition on the input polynomials. The additional 

restrictions in the following theorem needed for 

our argument are discussed further after its 
proof. 

Theorem 3: Let f E F[zl ,..., zn] be given by 

a division-free straight-line program P of length 1, 

and let g E F [zl , . . . , 2, 1, d := deg(g ), be a 

factor off such that GCD(g , f / g ) = 1. Furth- 

ermore, assume that card(F) > 2’ (2d +l). Then 

g can be computed by a division-free straight-line 

program Q of length 

len(Q) = O(I M(d3) + d2M(d2)). 

Before we can prove theorem 3 we need to 
introduce a new approach to Hensel lifting [22], 

1131. (211. This new algorithm only lifts the ori- 

giual image of one factor and we hence refer to it 

by the name single-factor lifting. 

Algorithm Single-Factor Lifting 

Assumef(z;y)=g(z!y)h(s,y),f,g,h E 

F [z: y], F a field, d, := deg, (g), dY:= 

deg, (y ), such that 

ldcf, (f ) E F , GCD(g (X , 0), h (z, 0)) = 1. (1) 

This algorithm describes a method for lifting the 

equation 

s(z,O) h(z,O) = f (z,y) mod y 

to obtain y (2, y ) without accessing deg, (I ) 

coefficients. Its inputs are a truncated g (Z , O)- 

adic expansion of h (z , 0) and / (Z , y ) mod 

d, +I 
Y * 

Input: go(z) := g (z, 0), 

h (z, 0) mod g,,(~)~~+‘=: 
i=o 

idi) E F[z], deg(hd’) ) < d,, and 

f (x7 Y ) mod (so(z Jd” +l. Y d” ‘l) 

=: $ & /^j(i)(z)yjgo(2)i, 
i=o j=o 

ji(i) E F [z], deg(j {‘I) < d 2’ Here and in the 

following the polyno&als “with hats” are always 

in F [z]. (It might be unclear at the moment 

how to obtain the ji(i’ without accessing all 

coefficients of f , but as we will explain later, for 

f given by division-free straight-line programs 

this is not difficult.) 

output: g (2) y ). 

For k t 0,. . . , dY Do Step L. Then Return 

!I (’ > Y ) = C~'!zOij tx )Yi f 

Step L: This step lifts by one degree in y For 

a polynomial $(z, y) E F [z, y] let $k (x, y ) := 

(‘1/1(~,~) mod ~“~‘1. $k(z)yk := $~(z.Y) - 

$k- 1(z, y ), k: 2 1, 4, = tiO. In normal lifting, 

at this point we have gk , hk and determine tik +, , 

i k-t1 by 

ho@ )Sk +1(x 1 + gob J&k +AZ 1 

fk+1(5,Y)-gk(Z,Y)hk(2,Y)mod Yk+2 
= 

Y 
k+l 9 

de!&+,) < d,, deg(&+l) < deg(ho). Let 

ik++)yktl := fk+l - gkhk mod yk+2, 
1 
tk+l E Fbl, deg(&+l) < deg, (f ) by (1). The 
key identity is 

^ . 
h 0ik.l + gOhk+l = tk+l. (2) 

In this algorithm we determine &. +1 by 

!ik +I = (&+,h,’ mod 90). (3) 

We will compute along sufficiently high-order 
go-adic expansions of the h, ‘s E F [zc , y ]. For 

Hz, Y) E F[z, Y] let 
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. 
i +1 

d,(i) := tik mod go - Gk mod gt, 

ss 
- E FM 

i 2 0. Notice that $ii’ is the i-tb digit in the 

go-adic expansion of 4, . Also deg(!&k(; )} < d, . 

As the loop invariant, at this point we have gk 

andXj’),O< j <k,O< i 6 dy--j. Wefirst 

find~~~,O<i <d -k. Thisisdoneby 
Y 

multiplying 

i=O j=O * 

d,-k k+l 
_I c c &.(i)(z)yizi mod (zd~-k, yk+2) 

(4) 

1 7 
;=o j=o - 

Gj(i) f F [z], deg(Gi(i)) < 2d, -1. Here z is a 

placeholder for go. Also by the invariant we 

must have ~j (i) = 0 for all 0 < j 6 k and all 

corresponding i . 

Then the go-adic “digits” and “carries” are 

determined by division with remainder for i = 0 

i-t&i (2 ) =: fk’:‘1 (x ) + t&,(2 )ik(;)l (z), 

deg(;,(j], ) < d, . Finally, for i = 0 , . . . , d -k , 

by (2) set 

ik(i'l = i,(:,, - (i,'j + &y) ), &$/I =o. 

Thus by (3) jk+l 3 (6p' )-'i&t,, mod go. 

Now the &(:I , 0 6 i 6 d -k - 1, ,are determined 

by 
d,-k-l 

c i (iJgi+l = 
k+lO - 

i=O 

4 -k* 
c tk(&; - /jk+ld~kl;$)g; d-k+1 

mod go . 
i=O’ i=o 

Again, “digits and carries” of & tld$i) have to 

be computed by remaindering. q 

Lemma 2: Algorithm Single-Factor Lifting 

requires 0 ( dy2it4 (d, dy )) arithmetic operations 

in F. 

Proof: Each iteration in the loop i:s dominated by 

the cost of computing the ~j (‘) in (4). That is 

essentially 0 (d, ) bivariate multiplications of 

polynomials degree < d, in z and degree k f dy 

in y , each of which can be done in 0 (M (d, dy )) 

arithmetic operations. o 

We now can prove theorem 3. 

Proof of Theorem 9: For a polynomial ;q E F [z I 

,‘.‘J zn] let 

x(q,..., ql, Y) := 

x(s,+q, ys2+b2q+a2 ,..., yz;tb,q+a,). 

Now we choose a r , . . . , a,, , b, , , . . , b,, E F 

such that for h := f / g 

GCD(&, 0,. . . ,O), k(zI, 0,. . . , 0)) = 1. (5) 

This means that the points must not be a zero of 

a certain leading coefficient and resultant. We 

refer to the analysis of the Factorization algo- 

rithm in [8] for more detail. Observe that 

deg(f ) < 2’. The idea is now to interpret r as 

a bivariate polynomial in z1 and y over the field 

F := F (z2 , . .., zn). The key property that 

allows us to use the Single-Factor Lifting algo- 

rithm is that 

x0 := &,.‘., zn, 0) E S[zJ 

is actually an element in F [zr]. Therefore the 

coefficients of go and i 4’ ) E F [z ,] required as 

input for single-factor lifting are scalars and most 

certainly have short computations. The input 

assumptions (1) to the lifting algorithm are satis- 

fied by (5). In addition we need a straight-line 

program that computes ijc,i,! E F, where 

*= .- 7 mod (go(z r)‘+l, y d +I). 

Notice that 

degq@) = d and degy (g) 6 d. 

We determine PiI; by finding the corresponding 

polynomials for each program variable in P, 
where I’ is the straight-line program for r. We 
illustrate this process for the assignment w +- u 

x v. Assume ~j’~) ,’ i)j’~ compute the coeffi- 
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cients of z;Ry j in the i-th digit of the go-adic 

expansion of the polynomials computed in 21 and 
‘u , respectively. First we find the tri-variate con- 

volutions 

- (i) 

Wj,m = 

C C C ~j~~,~j~~, , 

i,+i,=i j,+j2= j m,+mym 

O<i<d,O<j, < d, 0 < m < 2d -2. This 

we can do in 0 (M (d’)) assignments per multi- 

plication in P. We now take care of the “carries 

with radix ijo.” We encode the division with 

remainder for all 0 < i , j < d , 

2d-2 
c i”px;n =: 

m=O 

d-l 

mzo ('I 

d-2 

C ‘j,inx;” + SO(Xl) C ijy+!z;l. 

m =o 

There are 0 ( d2) divisions each of which can be 

carried out in 0 (M (d )) assignments. Finally 

we set 

?ij’;m’ + r jyA + ,j’i,-“, ,j’;ll = 0, 
1 7 

O<m <d-lYO<i,j<d. 

Additive assignments in p are a much simpler 

affair, and the overall cost for computing iiyd is 

0 (I M(d3)). We like to point out that it is 

here that we must exclude divisions from P . 

The reason is that we cannot necessarily invert 

all functions modulo ijo by which is divided. It 

appears that this problem cannot be handled by 

translating the input. 

Now we have straight-line computations for all 
elements in r needed as inputs to the Single- 

Factor Lifting algorithm. It remains to encode 

the arithmetic operations performed during this 

algorithm at an additional cost of 0 (d ‘A4 (d’)) 

assignments (see lemma 2). Notice that we 
obtain f by setting y = 1 and performing the 
proper back-translations. D 

If deg( j ) = 1 O(l) the result in [8] is obviously 

stronger than this theorem, so let us suppose 

that deg( f ) is super-polynomial in 1. Our proof 
methods based on the Single-Factor Hensel Lift- 

ing procedure above then do not permit an 
unconditionally uniform, that is random 

polynomial-time, construction of Q from P 

alone, although if d is significantly smaller than 

deg( f ), the Single-Factor Lifting algorithm may 
prove more efficient than standard lifting even in 
practice. 

The assumption that GCR(g , f / g ) = 1 is 

essentially equivalent to stating that g be irredu- 
cible and its multiplicity e in f be small, that is 

e = 1 O(l). Unfortunately, we do not know how 

to eliminate this condition on e (see 56, problem 

3). Notice first, however, that if deg(f / gc ) = 

I ’ (I), a straight-line program of length (2 d )’ (l) 

for g could still be constructed. For we could 

apply theorem 3 to f / ge in place of g and find 

a straight-line program with divisions for g e , 

The construction of g then follows by Theorem 

2. Second, observe that the elimination of the 

multiplicity bound e of g in f would also elim- 

inate the assumption that P be division-free. 

This follows by replacing each straight-line 

assignment in P with assignments that compute 

the unreduced polynomial numerator and denom- 
inator of the rational function corresponding to 

that assignment. Clearly the irreducible g would 
he a factor of the numerator corresponding to the 

assignment that computes the polynomial f . 

5. Low Degree Greatest Common Divisors 

Two interesting corollaries follow from 

theorem 3. The first, concerns the determination 

of a straight-line program for the degree bounded 

GCD of polynomials given by a division-free 

straight-line program. Surprisingly, the Euclide- 

an algorithm does not enter in its proof, instead 

it is based on the so-called EZ-GCD method [12]. 

It is not even clear to us how an equivalent state- 
ment can be derived by using a remainder 

sequence. 

Theorem 4: tet f; E F [cc 1 , . . . , z, ], 1 6 i 6 

r , be given by a division-free straight-line pro- 

gram P of length 1, g := GCD( f , , . . . , f , ), d 

:= deg(g), card(F) > 2’(2&-tl). Then g can be 

computed by a straight-line program & of length 

len(Q) = O(I M(d3) + d2M(d2)). 
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Proof: We observe that if card(F) > d there the unreduced numerators and denominators of 

exist Oi E F , 1 6 i < r , such that the intermediate rational functions explicitly 

GCD(g , e I+ 
f,, 

along. As for the previous theorem we can find 

+*. *+ a, 
-2 = l. @) 

a I, b,, a2, b:! E F such that 

In [20] this observation is attributed to D. Spear. 
GCD(h , a 1 f -‘-!I 1g ) = 1, 

Here is a justification. Temporarily define for f GCD(h, azf +b,g) = 1, ‘+‘2’- ezblf ” 

E F[q ,,.., z,J Now using theorem 3 on both ai f h -t 6; gh we 

f := f (q, y2+291,..., YnSq&), can find straight-line programs for ai j’ +bi g of 

where Z; are new variables. Let length (deg(f g)len(P))‘(‘), i = 1, 2. From 

~(~l,..., ar) E F[q,-e-7 a,] 
those f and g are computed as linear combina- 

tions. The length of the straight,-line program 
be a non-zero coefficient of a monomial in the obtained in such a fashion is asymptotically 
variables y 2 , . . . , y, , t2 , . . . , tn of much longer than the one obtained by the Padd 

approximation solution for this problem [8]. We 

feel, however, that this new approach further 

emphasizes the usefulness of theorem 3 even to 

Since the two arguments of the resultant are 

relatively prime polynomials sucln a u exists. 

Now 

+,,?..., a,) # 0 (7) 

implies that 
- 

GCD(g, k a.; 
i=l 

(8) 

programs wit,h divisions. For the record, let us 

state the following theorem, which extends Corol- 

lary 4.3 in [8] in case F is a small finite field. 

Theorem 5: Let P be a straight-line progrum of 

length I over .F (z 1 , . . . , TC, ), F an arbitrary field, 

that computes f / g, f , g E F[z 1 , . . . , 2, ] 
relatively pr,ime, and let d := max(deg(f ), 
deg(g )). Th.en there exists a straight-line pro- 

over F(y, ,..., tn)[zl]. However, ldcfZl(@) E gram Q over F (x1 , . . . , z, ) of parallel depth 

W2 ,..a, Z, ) so (8) remains t:rue over F (z 2 0 (log(d ) log(d 1)) and size (d 1 )‘(‘I that also 

7”‘) qJq 3”‘) YJ Furtermore, since the computes f /I g . 

substitution zi = y; +z; z r is an isomorphism on Proof: The construction compounds t,he follow- 

that domain (7) must imply (6). By deg(cr) 6 ing results. 

degZl(g) = d th e existence of Ui’s satisfing (6) is p 

established. 

We can now apply theorem 3 to, Cl= lai f i in 

place of f and obtain a straight-line program for 

9. fJ 

The second application provides a new solu- 

tion to Strassen’s problem on computing the 

numerator and denominator of a rational func- 

tion. Let P be a straight-line program that com- 

putes f / 9, f , g E F [x1 , . ...) 2, J, GCD(f , 
g ) = 1. At issue is to find a straight-line pro- 

gram for f and g . Clearly, we can compute f h 

and gh for some h E F [z I , , . . , z, ] by carrying 

1 by the above, or by [8], algorithm Rational 

Numerator or Denominator 

Q 1 over F (B ) (z 1 , . . . , zn ), 0 algebraic over 

F , that computes f and g separately 

J. by [16] (see also [6], Theorem 7.1) 

Q2 over F(B)[z, ,..., xn] that computes j , 

9 

L by a variation of the Lemma in $3 

93 over F [zr , **-, z, ] that computes f , g 
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5 by [19] or by IlO] 

Q4 over F(s, ,..., x, ] that computes f and 

g in parallel 

1 divide f by 9 

Q Cl 

6. Conclusion 

This article proves theorems on polynomial 

straight-line complexity for higher derivatives, 

roots, factors, and greatest common divisors 

derived from polynomials given by straight-line 
programs that can have arbitrarily high degree. 

It thus extends the theory of closure properties of 

p-computable polynomials (181, (81, to polynomi- 

als of unbounded input degree. We conclude 

with a collection of carefully considered open 

problems in the theory of straight-line complexity 

of polynomials. 

Problem 1 (Strassen [17], §7, Problem 1): Can 

theorem 1 be combined with the Baur and 

Strassen result [l], that is given f E F (zl , . &., 
z, ) by a straight-line program of length 1, can 

all ak f / axik~ 1 Q i 6 n, be computed by a 

straight-line program of length 0 (k21 )? 

Problem 2 (Moses (II], Strassen [17], 59, Prob- 

lem 2): Given f f C[z], C the complex 

numbers, by a division-free straight-line program 

over C[z ] of length 1, can s f (z )dz be com- 

puted by a straight-line program of length 1’ (I)? 

Problem 3: Can the condition GCD(g , f / 9 ) 

= 1 in theorem 3 be eliminated keeping len( Q ) 

=(1d) , ’ (l)7 A positive answer to this problem 

would imply the following: For f E C(Z 1 , . . . , 

z, ] consider a zero-test tree of minimal height h 

for f , which includes straight-line code 

segements and tests vx ?= 0 at which the com- 

putation forks, where V> is a previously com- 

puted intermediate result. The leaves in the tree 
output f =0 or f #O, which must be true if we 

execute the tree for any specialization in C” of 
the variables X~ . Then a soIution to this problem 

implies that { can be computed by a straight,- 

line program of length h deg( / )’ (l). 

Problem 4: Can theorem 4 be proven with 

len( Q ) = I O(l), that is for arbitrarily high 
degrees of the GCD? 

Problem 6: If / E F [x] has straight-line com- 

plexity 1 with divisions, can f be computed by 

a division-free straight-line program of length 
10 (I)? 

Problem 6: In theorem 5, does there hold a 
lower bound on the depth better than the trivial 

fv%(~ H? 
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