
Single-Factor Hensel Lifting and its Application to the
Straight-Line Complexity of Certain Polynomials*

Erich Kaltofen

Rensselaer Polytechnic Institute

Department of Computer Science

Troy, New York 12180-3590

Arpa-Net: kaltofen@csv.rpi.edu

Abstract

Three theorems are presented that establish polynomial straight-line complexity for cer-

tain operations on polynomials given by straight-line programs of unbounded input degree.

The first theorem shows how to compute a higher order partial derivative in a single variable.

The other two theorems impose the degree of the output polynomial as a parameter of the

length of the output program. First it is shown that if a straight-line program computes an

arbitrary power of a multivariate polynomial, that polynomial also admits a polynomial

bounded straight-line computation. Second, any factor of a multivariate polynomial given by a

division-free straight-line program with relatively prime co-factor also admits a straight-line

computation of length polynomial in the input length and the degree of the factor. This result

is based on a new Hensel lifting process, one where only one factor image is lifted back to the

original factor. As an application we get that the greatest common divisor of polynomials

given by a division-free straight-line program has polynomial straight-line complexity in terms

of the input length and its own degree.

I. Introduction

The construction of straight-line programs for

certain multivariate polynomials, such AS the

irreducible factors or the GCD of polynomials

given by straight-line programs, was discovered

to be feasible within the past three years [5], [6],

and [7]. The program transformations are in ran-

dom polynomial-time> in the input size and the

total degrees of t,hc inputs. If the degrees of the

* This material is based upon work supported by the National Sci-
ence Foundation under Grant No. DCR-85.04391 and by an IBM
Faculty Development Award.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1987 ACM 0-89791-221-7/87/0006-0443 7%

input polynomials are allowed to be exponential

in the straight-line program length, some basic

constructions such as determining the coefficient

of a single variable power can become #P-hard

with respect to the straight-line program size

alone [18], [6], 55 (see also 52 below). In this

article we study how the input degree restriction

can be weakened while retaining polynomial

straight-line complexity for the anwers.

The first theorem shows how to compute a

higher order partial derivative in a single variable

of a rational function given by a straight-line

program. The simple construction is based on

the Leibniz rule for higher derivatives of products

and can even be carried out in polynomial-time.

The next two theorems impose the degree of the

output polynomial rather than the input polyno-

mial as a parameter of the length of the output

program. Polynomial-time constructibility of the

443

answer programs is lost, however, in part due to

the need of scalars derived from the input poly-

nomials of possibly exponential degree, which
thus can be exponential in size. We show first

that if a straight-line program computes an arbi-

trarily high power of a polynomial. that base

polynomial also admits a polynomial bounded

straight-line computation, provided the charac-

teristic of the scalar field does not divide the

exponent. Our construction is based on taking

roots of univariate power series. Second, we

prove that any factor of a polynomial given by a

division-free straight-line program with relatively

prime co-factor admits a st,raight-line computa-

tion of length polynomial in the input length and

its own degree. The proof of this result intro-

duces a new Hensel lifting procedure [22], one

where only one factor image is restored back to

its original factor.

The assumption of co-primeness in our factori-

zation result can be enforced in the setting of

computing the greatest common divisor of poly-

nomial by Hensel lifting, the so-called EZ-GCD

procedure [12]. Therefore, we get as an applica-

tion that the GCD of polynomials given by a

division-free straight-line program has polynomial
straight-line complexity in terms of the input

length and the degree of the GCD. Furthermore,

we also can derive from this results another solu-

tion to Strassen’s problem 1161 on the straight-
line complexity of the reduced numerator and

denominator of a multivariate rabtional function

given by a straight-line program. The new

approach does not make use of P(add approxima-

tions at all, as was the basis for our first solution

to this’problem [8], 54.

Notation: Generally, F , F, K denote fields,

char(.) their charcteristic, z, y , z, (Y indeter-

minates, f , g , h (multivariate) polynomials, a,

b field elements, P, Q straight-line nrograms.

Permitted operands in the instruction sequence
of straight-line programs are field elements,

indeterminates, and previous program variables.

Permitted operators are +. -. x: and f If the

latter does not orcur we call the program

division-free. For a precise definition of the

straight-line model we refer to [6], $2, or to (15].

By ldcfXl(f) E F[zz ,..., zn] we denot,c the

coefficient of the highest power of z , in j E

(Fb, 7.“) x,])[z ,I. A4 (d) denotes a function

for the asymptotic complexity of d-degree poly-

nomial multiplication, at best M (d) == d log(d)

log(log(d)) 1141, [4]. Finally, we use := and =:

as a shorthand to indicate the introduction of

symbols, the new symboIs occurring on the side

of the colon.

2. Higher Derivatives

We now show how to compute the k-th order

derivative in. a single variable of a straight-line

program. For polynomials of bounded degree

this problem can be solved by computing

straight-line programs for the coefficients in the

single variable [18], [6]. The following solution,

based on the Leibniz formula of higher deriva-

tives, is much simpler and works also for rational

functions and does not depend on the input

degrees.

Theorem 1: Let f E F (z 1,. . . , x,) be given by

a straight-line program P of length 1. Then

akf /axf can be computed by a straight-line

program Q of length len(Q) = 0 (k21).

Proof: For every program variable w A, 1 < X < 1,

in P we introduce k additional variables v A tK) , 1

< IC ,< k, VA(‘) = ox, such that ~1”) computes

the n-th derivative of the function computed in

vx. Now let an individual assignment be w + u

o v . The following relations apply:

c; = +: w(4 = &I + J4

Therefore, clearly ‘w fK) can be determined from

u to)). . . ! u (q w(O)). . .) &), w to) , . . . , w(” I)
in 0 (K) assignments. Notice that if an operand,

u say, is an indeterminate or scalar, then u (j) =

Oexceptifqb =x1, then ~(~1 = 1. Overall, each

444

assignment in P gets expanded into at most
0 (k”) assignments and the result follows. o

The construction of Q from P can be accom-
plished in polynomial-time, that is the transfor-

mation is uniform in the sense of [6]. That

means that we have another Monte-Carlo solu-

tion for finding the degree of a polynomial f E

w, ,“‘, Z, 1, namely by testing programs for

af (Yq,-+,) a”f (Yq,-.,Y4 . . .
aY ‘-‘.’

7
3Y”

for zero by random evaluation: Our first solution

used an interpolation approach IS], $5, and is in

general more efficient. Notice that if the first k

derivatives do not evaluate to zero, the input is

either a polynomial of higher degree or a non-

polynomial rational function. In the latter case,

a more general test is available, cf. [8], Corollary

4.1.

There is evidence that it is impossible to com-

pute the k-th derivative in (2 log(k))O 0) assign-

ments. Consider the example from [18],

9(Yl,...,Yn1Z1,*,..-IZn,n)=~ 5 Yj"i,j .
i=l I I j=l

Then the coefficient of the monomial y I * . . yn in

g is the permanent. of the matrix [zi,j IISi, j in ,

Notice that in contrast to theorem 1,

a’, g

aYl--aY,
= Perm(12i,j11&i,j<n 17

which makes taking partial derivatives in mixed

variables #P-hard. Now performing a Kronecker

substitution z (n +l)‘-’ for yi this permanent

appears as the coefficient ck (2 1 L , . . . , 2, ,n) of 1
x k fo1

k = l+(n -tl)+(n +1)2+. +(n +I)~ I,

in

f b,+p.,~,J

= g(x, ZRfl f”‘., 2(“+1)n-‘, 21 ,I,..., z,,,).

Therefore

akf hQ,l,“‘, b,,,)
azk r=o

computes k! perm([q ,j]), whereas f can be

computed by a division-free program of length
0 (n 2). One may argue that divisions in the
program for the k-th derivative can make the

substitution z = 0 invalid, but we do not believe

that divisions endow the straight-line complexity

model with exponentially more power (see $6,
problem 5). Also the exponentially sized con-

stant k ! should not enable an exponential speed

up of the computation of the permanent.

3. Large Exponent Roots

Our next theorem shows, for instance, that a
very high power of a hard polynomial, such as

the n by n permanent raised to the power Zn ,

cannot have a straight-line computation of poly-

nomial length. It is based on the fact that the

d-degree root of a polynomial only depends on
its d fl low order coefficients, provided the con-

stant coefficient is non-zero 191. 54.7. Our proof.

however, will be based on the asympt,otically fas-

ter Newton iteration.

Theorem 2: Let f E F [z I> . . . , z,] be given by

a straight-line program P of length 1: card(F) >

Z1+l, and let g E F[s,, . .., x,], d = deg(g), be

such thatge = f, e not divisible by char(F).
Then g can be computed by a straight-line pro-

gram Q of lengthlen = 0 (1 M(d)).

Proof: By working with the translated polyno-
mial

7-(q, “‘f z,, Y I:=, (Z,Y +a1 ,..., ZnY +a,).

a; E F , we can find the Taylor series coefficients

co ,‘**9 Cd E F[s,,..., x,J of

7(+*.,&Y) -

cob 1, . . .4,)+c ,(z 1, * *. 92,)Y

+.-*+cd(z,,...,zn)yd mod yd+’

in 0 (I M(d)) assignments [6]. Moreover, the

ai can be chosen such that co # 0. Here we

make use of the assumption that the field is suffi-

ciently large. Let

d

i&,..., z,, Y) := cqq,..., Zn)Yi
i=O

445 := g(zg+a I,..., z,y+a,).

Since

cob 1, * ..,x,)=T(q ,...) x,,O)=f (U1)...) a&F

we have uu E F with ug = cu. VVe determine

Ul ,“‘, Q by Newton iteration of ze - f = 0

on the power series approximation of f . We

now describe this iteration in detail.

For i t 1,. . . , [log,@ +1)1 Do

At this point we have computed

uo,-.., uj, wO,*-., wj E F [X 11.. * 7 x,]>

j := zi-1 - 1, such that for

“i-l(Y)= h 2”kYkl Pi-,iY~=,k~owkYk~
k=O

we have

c~~-~p~-r~l mod yj+‘, at-rzjrmod yj+r.

We now encode straight-line assignments for

uj+l 1'") '112j-J1 wit-1 >'*'j w2j-1 that

satisfy

Iyj(Y) = (l- :Jai- l(Y)

+ +rpi_,(Y)e-l mod ymi4d+132iL

and if 2’ < d +l,

Notice that

~yi- Qi-l-
ze-f

a(Ze -fw

and

mod y 2’
2 =a&*

pi- pi- - +-i
l a(l/ t--a;)/az r=fii-l

mod y2’.

The amount of straight-line cod.e for this step

is 0 (log(e)A4 (2’)) using binary exponentia-

tion for finding p;“_i’ mod y 2i.

The total cost for the Newton iteration is

0 (lode NW)), or with log(e) = 0 (I),

0 (I M(d)) assignments. q

The construction of Q in the above proof is

“almost” in random polynomial-time, all that is

required as additional input is us E F and e

(given in binary). If e is polynomial in value, we

could have also used the factorization algorithm

in [7] to construct a program for g , but then the

above method also leads to a random polynomial

time algorithm. for constructing the program Q .

Moreover, this approach is more efficient both in

terms of the asymptotic length of the resulting
program as well as practicality.

We remark that the cardinality restriction on

F is unessential in the above and also in the fol-

lowing theore:ms. If card(F) 6 2’+‘, we can

carry out the construction in an algebraic exten-

sion F (0) of degree m := [F (6):F]. The point

is now that the resulting program Q , which uses
scalars in F (8), can be transformed to a pro-

gram Q over F (z r , . . . , xll). For future refer-

ence, let us formulate the following lemma.

Lemma 1: Let f E F(zl ,..., zn) be given by

a straight-line program P over K (2, , . . . , 2,),

K := F [B]/ (g (19)) where g (6) E F [B] is

irredzlcible. Furthermore, let 1 :- len(P) and m

:= deg(g). Then g can be computed by a

straight-line program Q over F (x I , . . . , z,) of

lengthlen = 0 (M(m)log(m) 1).

Proof: The idea is to construct for each function
vA E K(zl ,..., zR), 1 6 X < I, computed in

the kth assignment of P a straight-line code

segmentforWAPE F(zl,...,zcn),O<~ <m, 1
such that

m-l
vi G C w~,~~~II mod g(e).

p=o

Division is the most costly operation and requires

0 (M (m) log(m)) assignments to determine

w~,~ from the corresponding coefficients of the

dividend and divisor, using the extended polyno-
mial version of the Knuth-Schdnhage GCD algo-

rithm to invert the divisor modulo g (0), see e.g.

PI.

If one were to carry out this step constructively,
certain program variables in F (z 1 , . . . , 2,)

would need to be tested for zero, which can be
accomplished by the Monte-Carlo algorithm in

161, 53. Th ese es s can be avoided, however, by t t

446

computing the coefficients of the inverse modulo
y as quotients of minors in the Sylvester matrix

[3] employing a division-free determinant pro-

gram. The cost is then m w “+‘(l), where w is

the matrix multiplication exponent, and Q is

obtained deterministically in polynomial time in

1 and m. u

4. Low Degree Factors

In [7] we have established that any factors of a
family of multivariate polynomials with polyno-

mially bounded degree and straight-line complex-

ity can themselves be computed by straight-line

programs of polynomial length. We now general-

ize this result by relaxing the degree bound con-

dition on the input polynomials. The additional

restrictions in the following theorem needed for

our argument are discussed further after its
proof.

Theorem 3: Let f E F[zl ,..., zn] be given by

a division-free straight-line program P of length 1,

and let g E F [zl , . . . , 2, 1, d := deg(g), be a

factor off such that GCD(g , f / g) = 1. Furth-

ermore, assume that card(F) > 2’ (2d +l). Then

g can be computed by a division-free straight-line

program Q of length

len(Q) = O(I M(d3) + d2M(d2)).

Before we can prove theorem 3 we need to
introduce a new approach to Hensel lifting [22],

1131. (211. This new algorithm only lifts the ori-

giual image of one factor and we hence refer to it

by the name single-factor lifting.

Algorithm Single-Factor Lifting

Assumef(z;y)=g(z!y)h(s,y),f,g,h E

F [z: y], F a field, d, := deg, (g), dY:=

deg, (y), such that

ldcf, (f) E F , GCD(g (X , 0), h (z, 0)) = 1. (1)

This algorithm describes a method for lifting the

equation

s(z,O) h(z,O) = f (z,y) mod y

to obtain y (2, y) without accessing deg, (I)

coefficients. Its inputs are a truncated g (Z , O)-

adic expansion of h (z , 0) and / (Z , y) mod

d, +I
Y *

Input: go(z) := g (z, 0),

h (z, 0) mod g,,(~)~~+‘=:
i=o

idi) E F[z], deg(hd’)) < d,, and

f (x7 Y) mod (so(z Jd” +l. Y d” ‘l)

=: $ & /^j(i)(z)yjgo(2)i,
i=o j=o

ji(i) E F [z], deg(j {‘I) < d 2’ Here and in the

following the polyno&als “with hats” are always

in F [z]. (It might be unclear at the moment

how to obtain the ji(i’ without accessing all

coefficients of f , but as we will explain later, for

f given by division-free straight-line programs

this is not difficult.)

output: g (2) y).

For k t 0,. . . , dY Do Step L. Then Return

!I (’ > Y) = C~'!zOij tx)Yi f

Step L: This step lifts by one degree in y For

a polynomial $(z, y) E F [z, y] let $k (x, y) :=

(‘1/1(~,~) mod ~“~‘1. $k(z)yk := $~(z.Y) -

$k- 1(z, y), k: 2 1, 4, = tiO. In normal lifting,

at this point we have gk , hk and determine tik +, ,

i k-t1 by

ho@)Sk +1(x 1 + gob J&k +AZ 1

fk+1(5,Y)-gk(Z,Y)hk(2,Y)mod Yk+2
=

Y
k+l 9

de!&+,) < d,, deg(&+l) < deg(ho). Let

ik++)yktl := fk+l - gkhk mod yk+2,
1
tk+l E Fbl, deg(&+l) < deg, (f) by (1). The
key identity is

^ .
h 0ik.l + gOhk+l = tk+l. (2)

In this algorithm we determine &. +1 by

!ik +I = (&+,h,’ mod 90). (3)

We will compute along sufficiently high-order
go-adic expansions of the h, ‘s E F [zc , y]. For

Hz, Y) E F[z, Y] let

447

.
i +1

d,(i) := tik mod go - Gk mod gt,

ss
- E FM

i 2 0. Notice that $ii’ is the i-tb digit in the

go-adic expansion of 4, . Also deg(!&k(;)} < d, .

As the loop invariant, at this point we have gk

andXj’),O< j <k,O< i 6 dy--j. Wefirst

find~~~,O<i <d -k. Thisisdoneby
Y

multiplying

i=O j=O *

d,-k k+l
_I c c &.(i)(z)yizi mod (zd~-k, yk+2)

(4)

1 7
;=o j=o -

Gj(i) f F [z], deg(Gi(i)) < 2d, -1. Here z is a

placeholder for go. Also by the invariant we

must have ~j (i) = 0 for all 0 < j 6 k and all

corresponding i .

Then the go-adic “digits” and “carries” are

determined by division with remainder for i = 0

i-t&i (2) =: fk’:‘1 (x) + t&,(2)ik(;)l (z),

deg(;,(j],) < d, . Finally, for i = 0 , . . . , d -k ,

by (2) set

ik(i'l = i,(:,, - (i,'j + &y)), &$/I =o.

Thus by (3) jk+l 3 (6p')-'i&t,, mod go.

Now the &(:I , 0 6 i 6 d -k - 1, ,are determined

by
d,-k-l

c i (iJgi+l =
k+lO -

i=O

4 -k*
c tk(&; - /jk+ld~kl;$)g; d-k+1

mod go .
i=O’ i=o

Again, “digits and carries” of & tld$i) have to

be computed by remaindering. q

Lemma 2: Algorithm Single-Factor Lifting

requires 0 (dy2it4 (d, dy)) arithmetic operations

in F.

Proof: Each iteration in the loop i:s dominated by

the cost of computing the ~j (‘) in (4). That is

essentially 0 (d,) bivariate multiplications of

polynomials degree < d, in z and degree k f dy

in y , each of which can be done in 0 (M (d, dy))

arithmetic operations. o

We now can prove theorem 3.

Proof of Theorem 9: For a polynomial ;q E F [z I

,‘.‘J zn] let

x(q,..., ql, Y) :=

x(s,+q, ys2+b2q+a2 ,..., yz;tb,q+a,).

Now we choose a r , . . . , a,, , b, , , . . , b,, E F

such that for h := f / g

GCD(&, 0,. . . ,O), k(zI, 0,. . . , 0)) = 1. (5)

This means that the points must not be a zero of

a certain leading coefficient and resultant. We

refer to the analysis of the Factorization algo-

rithm in [8] for more detail. Observe that

deg(f) < 2’. The idea is now to interpret r as

a bivariate polynomial in z1 and y over the field

F := F (z2 , . .., zn). The key property that

allows us to use the Single-Factor Lifting algo-

rithm is that

x0 := &,.‘., zn, 0) E S[zJ

is actually an element in F [zr]. Therefore the

coefficients of go and i 4’) E F [z ,] required as

input for single-factor lifting are scalars and most

certainly have short computations. The input

assumptions (1) to the lifting algorithm are satis-

fied by (5). In addition we need a straight-line

program that computes ijc,i,! E F, where

*= .- 7 mod (go(z r)‘+l, y d +I).

Notice that

degq@) = d and degy (g) 6 d.

We determine PiI; by finding the corresponding

polynomials for each program variable in P,
where I’ is the straight-line program for r. We
illustrate this process for the assignment w +- u

x v. Assume ~j’~) ,’ i)j’~ compute the coeffi-

448

cients of z;Ry j in the i-th digit of the go-adic

expansion of the polynomials computed in 21 and
‘u , respectively. First we find the tri-variate con-

volutions

- (i)

Wj,m =

C C C ~j~~,~j~~, ,

i,+i,=i j,+j2= j m,+mym

O<i<d,O<j, < d, 0 < m < 2d -2. This

we can do in 0 (M (d’)) assignments per multi-

plication in P. We now take care of the “carries

with radix ijo.” We encode the division with

remainder for all 0 < i , j < d ,

2d-2
c i”px;n =:

m=O

d-l

mzo ('I

d-2

C ‘j,inx;” + SO(Xl) C ijy+!z;l.

m =o

There are 0 (d2) divisions each of which can be

carried out in 0 (M (d)) assignments. Finally

we set

?ij’;m’ + r jyA + ,j’i,-“, ,j’;ll = 0,
1 7

O<m <d-lYO<i,j<d.

Additive assignments in p are a much simpler

affair, and the overall cost for computing iiyd is

0 (I M(d3)). We like to point out that it is

here that we must exclude divisions from P .

The reason is that we cannot necessarily invert

all functions modulo ijo by which is divided. It

appears that this problem cannot be handled by

translating the input.

Now we have straight-line computations for all
elements in r needed as inputs to the Single-

Factor Lifting algorithm. It remains to encode

the arithmetic operations performed during this

algorithm at an additional cost of 0 (d ‘A4 (d’))

assignments (see lemma 2). Notice that we
obtain f by setting y = 1 and performing the
proper back-translations. D

If deg(j) = 1 O(l) the result in [8] is obviously

stronger than this theorem, so let us suppose

that deg(f) is super-polynomial in 1. Our proof
methods based on the Single-Factor Hensel Lift-

ing procedure above then do not permit an
unconditionally uniform, that is random

polynomial-time, construction of Q from P

alone, although if d is significantly smaller than

deg(f), the Single-Factor Lifting algorithm may
prove more efficient than standard lifting even in
practice.

The assumption that GCR(g , f / g) = 1 is

essentially equivalent to stating that g be irredu-
cible and its multiplicity e in f be small, that is

e = 1 O(l). Unfortunately, we do not know how

to eliminate this condition on e (see 56, problem

3). Notice first, however, that if deg(f / gc) =

I ’ (I), a straight-line program of length (2 d)’ (l)

for g could still be constructed. For we could

apply theorem 3 to f / ge in place of g and find

a straight-line program with divisions for g e ,

The construction of g then follows by Theorem

2. Second, observe that the elimination of the

multiplicity bound e of g in f would also elim-

inate the assumption that P be division-free.

This follows by replacing each straight-line

assignment in P with assignments that compute

the unreduced polynomial numerator and denom-
inator of the rational function corresponding to

that assignment. Clearly the irreducible g would
he a factor of the numerator corresponding to the

assignment that computes the polynomial f .

5. Low Degree Greatest Common Divisors

Two interesting corollaries follow from

theorem 3. The first, concerns the determination

of a straight-line program for the degree bounded

GCD of polynomials given by a division-free

straight-line program. Surprisingly, the Euclide-

an algorithm does not enter in its proof, instead

it is based on the so-called EZ-GCD method [12].

It is not even clear to us how an equivalent state-
ment can be derived by using a remainder

sequence.

Theorem 4: tet f; E F [cc 1 , . . . , z,], 1 6 i 6

r , be given by a division-free straight-line pro-

gram P of length 1, g := GCD(f , , . . . , f ,), d

:= deg(g), card(F) > 2’(2&-tl). Then g can be

computed by a straight-line program & of length

len(Q) = O(I M(d3) + d2M(d2)).

449

Proof: We observe that if card(F) > d there the unreduced numerators and denominators of

exist Oi E F , 1 6 i < r , such that the intermediate rational functions explicitly

GCD(g , e I+
f,,

along. As for the previous theorem we can find

+*. *+ a,
-2 = l. @)

a I, b,, a2, b:! E F such that

In [20] this observation is attributed to D. Spear.
GCD(h , a 1 f -‘-!I 1g) = 1,

Here is a justification. Temporarily define for f GCD(h, azf +b,g) = 1, ‘+‘2’- ezblf ”

E F[q ,,.., z,J Now using theorem 3 on both ai f h -t 6; gh we

f := f (q, y2+291,..., YnSq&), can find straight-line programs for ai j’ +bi g of

where Z; are new variables. Let length (deg(f g)len(P))‘(‘), i = 1, 2. From

~(~l,..., ar) E F[q,-e-7 a,]
those f and g are computed as linear combina-

tions. The length of the straight,-line program
be a non-zero coefficient of a monomial in the obtained in such a fashion is asymptotically
variables y 2 , . . . , y, , t2 , . . . , tn of much longer than the one obtained by the Padd

approximation solution for this problem [8]. We

feel, however, that this new approach further

emphasizes the usefulness of theorem 3 even to

Since the two arguments of the resultant are

relatively prime polynomials sucln a u exists.

Now

+,,?..., a,) # 0 (7)

implies that
-

GCD(g, k a.;
i=l

(8)

programs wit,h divisions. For the record, let us

state the following theorem, which extends Corol-

lary 4.3 in [8] in case F is a small finite field.

Theorem 5: Let P be a straight-line progrum of

length I over .F (z 1 , . . . , TC,), F an arbitrary field,

that computes f / g, f , g E F[z 1 , . . . , 2,]
relatively pr,ime, and let d := max(deg(f),
deg(g)). Th.en there exists a straight-line pro-

over F(y, ,..., tn)[zl]. However, ldcfZl(@) E gram Q over F (x1 , . . . , z,) of parallel depth

W2 ,..a, Z,) so (8) remains t:rue over F (z 2 0 (log(d) log(d 1)) and size (d 1)‘(‘I that also

7”‘) qJq 3”‘) YJ Furtermore, since the computes f /I g .

substitution zi = y; +z; z r is an isomorphism on Proof: The construction compounds t,he follow-

that domain (7) must imply (6). By deg(cr) 6 ing results.

degZl(g) = d th e existence of Ui’s satisfing (6) is p

established.

We can now apply theorem 3 to, Cl= lai f i in

place of f and obtain a straight-line program for

9. fJ

The second application provides a new solu-

tion to Strassen’s problem on computing the

numerator and denominator of a rational func-

tion. Let P be a straight-line program that com-

putes f / 9, f , g E F [x1 ,) 2, J, GCD(f ,
g) = 1. At issue is to find a straight-line pro-

gram for f and g . Clearly, we can compute f h

and gh for some h E F [z I , , . . , z,] by carrying

1 by the above, or by [8], algorithm Rational

Numerator or Denominator

Q 1 over F (B) (z 1 , . . . , zn), 0 algebraic over

F , that computes f and g separately

J. by [16] (see also [6], Theorem 7.1)

Q2 over F(B)[z, ,..., xn] that computes j ,

9

L by a variation of the Lemma in $3

93 over F [zr , **-, z,] that computes f , g

450

5 by [19] or by IlO]

Q4 over F(s, ,..., x,] that computes f and

g in parallel

1 divide f by 9

Q Cl

6. Conclusion

This article proves theorems on polynomial

straight-line complexity for higher derivatives,

roots, factors, and greatest common divisors

derived from polynomials given by straight-line
programs that can have arbitrarily high degree.

It thus extends the theory of closure properties of

p-computable polynomials (181, (81, to polynomi-

als of unbounded input degree. We conclude

with a collection of carefully considered open

problems in the theory of straight-line complexity

of polynomials.

Problem 1 (Strassen [17], §7, Problem 1): Can

theorem 1 be combined with the Baur and

Strassen result [l], that is given f E F (zl , . &.,
z,) by a straight-line program of length 1, can

all ak f / axik~ 1 Q i 6 n, be computed by a

straight-line program of length 0 (k21)?

Problem 2 (Moses (II], Strassen [17], 59, Prob-

lem 2): Given f f C[z], C the complex

numbers, by a division-free straight-line program

over C[z] of length 1, can s f (z)dz be com-

puted by a straight-line program of length 1’ (I)?

Problem 3: Can the condition GCD(g , f / 9)

= 1 in theorem 3 be eliminated keeping len(Q)

=(1d) , ’ (l)7 A positive answer to this problem

would imply the following: For f E C(Z 1 , . . . ,

z,] consider a zero-test tree of minimal height h

for f , which includes straight-line code

segements and tests vx ?= 0 at which the com-

putation forks, where V> is a previously com-

puted intermediate result. The leaves in the tree
output f =0 or f #O, which must be true if we

execute the tree for any specialization in C” of
the variables X~ . Then a soIution to this problem

implies that { can be computed by a straight,-

line program of length h deg(/)’ (l).

Problem 4: Can theorem 4 be proven with

len(Q) = I O(l), that is for arbitrarily high
degrees of the GCD?

Problem 6: If / E F [x] has straight-line com-

plexity 1 with divisions, can f be computed by

a division-free straight-line program of length
10 (I)?

Problem 6: In theorem 5, does there hold a
lower bound on the depth better than the trivial

fv%(~ H?

Acknowledgements: Theorem 1 was jointly derived
with B. David Saunders. Volker Strassen first indicated

to me the consequence of a solution to problem 3, and

later Thomas Spencer refreshed my memory. Problem z

was first brought to my attention by Leslie Valiant, prob-

Iem 4 by Joos Heintz and Malte Sieveking, and problem 5

by Charles Rackoff. I also thank Lakshman Yagati for

his comments.

References

1.

2.

3.

4.

5.

6.

W. Baur and V. Strassen, “The complexity of partial

derivatives,” Theoretical Comp. Sci., vol. 22, pp. 317-

330, 1983.

R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun,

“Fast solution of Toeplitz systems of equations and

computation of Pad& approximants,” J. Algorithms,

vol. 1, pp. 259-295, 1980.

W. S. Brown and J. F. Traub, “On Euclid’s algorithm

and the theory of subresultants,” J. ACM, vol. 18, pp.
505-514, 1971.

D. G. Cantor and E. Kaltofen, “Fast multiplication of

polynomials with coefficients from an arbitrary ring,”

Manuscript, March 1987.

J. von zur Gathen, “Irreducibility of muhivariate

polynomials,” J. Comp. System Sci., vol. 31, pp. 225-

264, 1985.

E. Kaltofen, “Greatest common divisors of polynomi-

als given by straight-line programs,” Math. Sci.

Research Inst. Preprint, vol. 01918-86, Berkeley, CA,

1986. Expanded version to appear in J. ACM. Prel-
iminary version under the title “Computing wit,h

polynomials given by straight-line programs I:

Greatest common divisors” in Proc. 17th ACM Symp.

Theory Camp., pp. 131-142, 1985.

451

E. Kaltofen, “Factorization of polyn~omials given by

straight-line programs,” Math. Sci. Research Inst.

Preprint, vol. 02018-86, Berkeley, CA, 1986. To

appear in: “Randomness in Computation,” Advances

in Computing Research, S. Micali ed.., JAI Press Inc.,

Greenwich, CT, January 1987.

E. Kaltofen, “Uniform closure properties of p-

computable functions,” Proc. 18th ACM Symp.

Theory Comp., pp. 330-337, 1986.

D. E. Knuth, The Art of Programming, vol. 2, Semi-

Numerical Algorithms, ed. 2, Addison Wesley, Read-

ing, MA, 1981.

10. G. L. Miller, V. Ramachandran, and E. Kaltofen,

“Efficient parallel evaluation of straight-line code and

arithmetic circuits,” Proc. A WOC ‘X6, Springer Lee.

Noterr Comp. Sci., vol. 227, pp. 236-245, 1986.

11. J. Moses, “Algebraic simplification: A guide for the

perplexed,” Commun. ACM, vol. 1.4, pp. 548-560,

1971.

12. J. Moses and D. Y. Y. Yun, “The EZ-GCD algo

rithm,” Proc. 1973 ACM National Conf., pp. 159-166,

1973.

13. D. R. Musser, “Multivariate polynomial factoriza-

tion,” J. ACM, vol. 22, pp. 291-308, 1975.

14. A. SchBnhage, “Schnelle Multiplikation von Polyno-

men fiber Ktlrpern der Charakteristik 2.” Acta In.,

vol. 7, pp. 3915-398, 1977. (In German).

15. V. Strassen, “Berechnung und Programm I,” Acta

In/., vol. 1, pp. 320-335, 1972. (In German:).

16. V. Strassen, “Ve, meidung von Divisionen,” J. reine u.

angew. Math., vol. 264, pp. 182-202, 1973. (In Ger-

man).

17. V. Strassen, “Algebra&he Berechnungskomplexit’dt,”

in Anniverstrry of Oberwoljach 1984, Perspectives in

Mathematics, pp. 509-550, Birkhlluser Verlag, Basel,

1984. (In German).

18. L. Valiant, “Reducibility by algebraic projections,”

L %nseigner?ent mathkmatique, vol. 28, pp. 253-268.

1982.

19. L. Valiant, !j. Skyum, S. Berkowitz, and C. Rackoff,

“Fast parallel computation of polynomials using few

processors,” SIAM J. Comp., vol. 12, pp. 641-644,

1983.

20. P. S. Wang. “The EEZ-GCD algorithm,” SZGSAM

Bulietin, vol. 14/2, pp. 5&60, 1980.

21. D. Y. Y. Yun, “The Hensel lemma in algebraic mani-

pulation,” Ph.D. Thesis, M.I.T., 1974. Reprint: Gar-

land Publ., New York 1980.

22. H. Zassenh.aus, “On Hensel factorization I:” J.

Number Theory, vol. 1, pp. 291-311, 1969.

452

