
J. Parallel Distrib. Comput. 97 (2016) 78–95
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

New distributed algorithms for fast sign detection in residue number
systems (RNS)
Dhananjay S. Phatak ∗, Steven D. Houston
CSEE Department, UMBC, 1000 Hilltop Circle, Baltimore, MD 21250, USA

h i g h l i g h t s

• Most operations hitherto deemed hard to realize in RNS share the same bottleneck.
• Finding the LSB of an unknown in the Chinese Remainder Theorem is that bottleneck.
• Show 2 new fast methods to solve the bottleneck, one meets analytic speed bound.
• Moduli selection enables exhaustive pre-computation even at very long word lengths.

a r t i c l e i n f o

Article history:
Received 20 August 2015
Received in revised form
27 May 2016
Accepted 13 June 2016
Available online 6 July 2016

Keywords:
Residue number systems
RNS
Reconstruction coefficient
Partial reconstruction
Reduced precision
Fast sign detection

a b s t r a c t

We identify a canonical parameter in the Chinese Remainder Theorem (CRT) and call it the
‘‘Reconstruction Coefficient’’, (denoted by ‘‘RC ’’); and introduce the notions of ‘‘Partial’’ and ‘‘Full’’
Reconstruction. If the RC can be determined efficiently, then arithmetic operations that are (relatively)
harder to realize in RNS; including Sign Detection, Base change/extension and Scaling or division by a
constant can also be implemented efficiently. This paper therefore focuses on and presents two distinct
methods to efficiently evaluate the RC at long wordlengths. A straightforward application of these
methods leads to ultra-fast sign-detection.

An independent contribution of this paper is to illustrate non-trivial trade-offs between run-time
computation vs. pre-computation and look-up. We show a simple method to select the moduli which
leads to both the (i) number of RNS channels n; as well as (ii) the largest channel modulus mn satisfying
{O(n) , O(mn)} / N ≡ the full-precision bit-length. The net result is that formany canonical operations;
exhaustive look-up covering all possible input values is feasible even at long cryptographic bit-lengths N .
Under fairly general and realistic assumptions about the capabilities of current hardware, the memory
needed for exhaustive look-up tables is shown to be bounded by a low degree polynomial of n. Moreover,
both methods to compute RC can achieve a delay of O(lg n) in a RN system with n channels. To the best
of our knowledge, no other method published to date has shown a path to achieve that lower bound on
the execution delay. Further, small values of channel moduli make it ideal to implement each individual
RNS channel on a simple core in a many-core processor or as a distributed node, and our algorithms
require a limited number of inter-channel communications, averaging O(n). Results from a multi-core
GPU implementation corroborate the theory.

© 2016 Elsevier Inc. All rights reserved.
1. Notation and definitions

A residue number system (RNS) uses a set M of pairwise co-
prime positive integers called the moduli-set:

M = {m1,m2, . . . ,mr , . . . ,mn} (1)

∗ Corresponding author.
E-mail address: phatak@umbc.edu (D.S. Phatak).

http://dx.doi.org/10.1016/j.jpdc.2016.06.005
0743-7315/© 2016 Elsevier Inc. All rights reserved.
where each component-modulus mr > 1 ∀r ∈ [1, n] and
gcd(mi,mj) = 1 for i ≠ j. For convenience, we assume mi < mj if
i < j.

The number of residue channels n is the cardinality of the
moduli-set:

n ≡ |M| = number of moduli.
The total modulus M is the product of all moduli in the moduli-

set:
M = m1 ×m2 × · · · ×mn.
Every integer Z ∈ [0,M − 1] can be uniquely represented by

a touple/vector of its residues (remainders) w.r.t (with respect to)

http://dx.doi.org/10.1016/j.jpdc.2016.06.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.06.005&domain=pdf
mailto:phatak@umbc.edu
http://dx.doi.org/10.1016/j.jpdc.2016.06.005

D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95 79
each component modulus:

Z ←→ Z = [z1, z2, . . . , zn], where (2)
zr = (Z mod mr), r = 1, . . . , n. (3)

The RNS full-precision is defined as N base-b digits, where N =
⌈logb M⌉ and b is the radix (or base) of the original representation
of the integer Z .

Conversion from residues back to an integer is done using the
Chinese Remainder Theorem (CRT) as follows:

Z = (ZT mod M) where (4)

ZT =


n

r=1

Mr · ρr


(5)

ρr = (zr · hr) mod mr (6)

with outer-weightsMr : Mr =
M
mr

(7)

and inner-weights hr : hr = M−1r mod mr . (8)

Note that the weights hr and Mr are constants for a given M.
The reconstruction remainders are defined as the per-channel ρr

values defined by Eq. (6) and are therefore bounded:

0 ≤ ρr < mr ⇒ 0 ≤
ρr

mr
< 1. (9)

Eq. (4) can then be rewritten as

Z = ZT −RC z ·M where (10)

RC z =


ZT
M


= the quotient of integer division of ZT by M. (11)

We define the reconstruction coefficient for integer Z to be the
integer RC z . For simplicity we also use only RC , dropping the
variable-name-indicator when it is not needed. This canonical
coefficient RC satisfies magnitude bounds as explained below:

ZT
M
=

n
r=1


Mr · ρr

M


=

n
r=1


ρr

mr


. (12)

From relations (12) and (9), it follows that

0 ≤
ZT
M

< n ⇒ 0 ≤ RC z ≤ (n− 1). (13)

Full-reconstruction is defined as the generation of the entire unique
digit-string for an integer, representing its numerical value in a
non-redundant, weighted-positional format (such as the ‘‘sign-
magnitude’’, ‘‘two’s-complement’’ or the ‘‘mixed-radix format’’).

We define the partial reconstruction of an integer as evaluation
of RC for that integer without explicitly evaluating all digits in the
full reconstruction.

2. Introduction

Wewould like to emphasize thatwe focus on RNSmethods that
can scale to bit-lengths commonly encountered in cryptography.
The widely deployed RSA method uses one of the largest operand
lengths, typically at least 1024 bits. We are therefore mainly
interested in RNS methods that can scale to and work efficiently
with operands that are 1024-bits or longer.

2.1. Advantages of RN systems and why they are ideal for crypto-
graphic hardware

The main advantage of the RNS system is that in the Residue-
Domain (RD), the operations in the set S =


±,×,

?
=


can be

performed in parallel in all n channels [30,19,23,12].
In other words, any of the operations in S on long word-
length operands can be substituted by many smaller operations in
channels (with operands that are no larger than the corresponding
channel-modulus) that are completely independent of each other;
and therefore can be performed in parallel. Note that equality of
two numbers can be checked by comparing their residues which
can be done in parallel in all channels. For this reason RN systems
can be the ideal vehicles to implement cryptographic hardware
with long word-lengths.

However, the extreme ease of implementing many of the basic
arithmetic operations (those in the set S) in the RNS is negated
to a substantial extent by the fact that the following equally
fundamental arithmetic operations are relatively harder to realize
in the RNS [19,23,12]:

1. Full-reconstruction [19,23].
2. Sign detection or equivalently, magnitude comparison, or

under/over-flow detection.
3. Base extension or a change of base.
4. Scaling or division by a constant, wherein, the divisor is known

aheadof time (such as themodulus in theRSAorDiffie–Hellman
algorithms).

5. Division by an arbitrary divisor whose value is dynamic,
i.e., available only at run-time.

2.2. Full vs. partial-reconstruction

Reconstruction by straightforward application of the CRT
(Eq. (4)) requires a remaindering with respect to M, which makes
it slow (especially at long word-lengths used in cryptographic
applications). To circumvent this difficulty, the CRT can be restated
in an alternate form as an exact integer equality (see Eq. (10)).
However, that relation contains an unknown: the Reconstruction
Coefficient RC .

It turns out that a full-reconstruction is not necessary for any of
the relatively harder operations that are listed above (except the
full-reconstruction itself). If the value of RC can be determined
efficiently, then we can substitute the ‘‘exact-integer-equality’’
in lieu of the exact unique-digit-string for the operands, thereby
avoiding a full reconstruction (or equivalently, an excursion out of
the residue domain) which is costly since it requires a relatively
large number of operations as well as a long delay. Therefore, in
this paper, we show two highly distributed methods (the ‘‘Partial
Reconstruction’’ algorithms) that allow a fast computation of RC
without necessarily performing a full reconstruction, and show
how the value of RC can be used to perform sign detection.

The rest of the paper is organized as follows: Section 3
presents a brief overview of prior and related work in RNS,
clearly identifying their shortcomings. That naturally leads to an
intuitive description of our new methods as well as their formal
specification as algorithmic pseudo-code. Section 6 unveils an
ultra-fast signdetection (or equivalently, amagnitude comparison)
algorithm that can use any of the partial reconstruction algorithms.
Performance analysis and comparison with existing methods can
be found in Section 9.

3. Brief overview of prior and related work

Various aspects of RNS have been extensively studied for a
while (approximately since [30,6]). For instance: for a sampling
of works related to fast base change, see [27,17]; for a sampling
of methods that use fractional intermediate computations, see
[28,33,18].

SignDetection or equivalently,magnitude comparisonmethods
have also been extensively researched (ex, [30,6,33,21,8,20,
11,16,24,7,35,29,1,37]). A sampling of several other general
improvements can be found in [15,9,25]. Efficient implementation

80 D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95
of fullmodular exponentiationwithin RNS has been studied aswell
(for a sample, see [2–5,13]).

Consistent with the title and scope of the paper (and to
not exceed a reasonable length), this paper focuses only on
Sign Detection (or equivalently, magnitude comparison methods).
A comparison with other base-extension or change; modular
reduction and other aspects are considered in the follow-on set of
subsequent parts in separate papers.

Moreover, we restrict ourselves only to methods that can work
with general/arbitrary moduli sets. Algorithms that use special
moduli sets such as


2(m)
− 1, 2m, 2(m)

+ 1

simply do not scale

well to large cryptographic word lengths (for example, imagine a
total modulus size of over 1000 bits with only three channels: in
this case each channel would have operands of length≈

 1000
3


=

334-bits, which is too long and slow). Hence, for the sake of fair and
meaningful comparisons, only thosemethods that use non-specific
general moduli are compared with the algorithms proposed in this
paper (in Table 4).

3.1. The well-known ‘‘extra-modulus’’ (integer domain only)
method to evaluate RC by itself is not sufficient for sign-detection

Shenoy and Kumaresan proposed a fast and efficient base-
extension method [27]. Therein, besides the residues for the
original setM, they require the residue of the target integer Z , with
respect to one ‘‘extra/redundant’’ modulus me, i.e. (Z mod me) to
be computed/available (we therefore refer to this method as the
‘‘Extra Modulus Method or (EMM)’’ in the rest of this paper).

Their method rearranges the statement of the CRT in the same
form as in (10).

Z = ZT − α ·M

where 0 ≤ α ≤ n− 1 (in our notation, α , RC) (14)

where α is unknown. To evaluate α, they take the remainder (of
both sides) of Eq. (14) with respect to the extra modulus me and
use the known value of (Z mod me):

α = [(1/M mod me)

× (ZT mod me − Z mod me)] mod me. (15)

In order to be able to retrieve the value of α in this manner, the
extra-modulusme must satisfy the following conditions:

me ≥ n and (16)
gcd(me, M) = 1. (17)

Once the value of RC = α is retrieved as per (15), then it can be
plugged back into (14) to obtain an exact equality for Z . This works
fine when it assumed that the value of (Z mod me) is available
(note that this would be true if a freshly read-in binary number is
converted to RNS and it is then required to extend or change the
base. In that case, since the original value of Z was known, it is
clear that the exact/correct value of (Z mod me) is also known;
and therefore, the method works for base conversion).

However, when the RNS value ZRNS is produced as a result of
Addition or Subtraction, i.e.

ZRNS = (X ± Y) mod M then

ZRNS =

Z if there is no over/under flow, i.e. if 0 ≤ Z ≤M
Z −M if there is an overflow, Z > M and
Z +M if there is an underflow, Z < 0.

(18)

From relation (17), (M mod me) ≠ 0 ⇒

(ZRNS mod me) ≠ (Z mod me) whenever there is a wrap-around.

An overflow causes wrap-around from the right-hand side,
whereas an underflow causes wrap-around from the opposite
(i.e., left) side.
In other words, exact/accurate value of (Z mod me) (the sec-
ond term in the numerator of the Right Hand Side (RHS) in Eq. (15))
is not always available after a subtract (or add) operation. Hence,
EMM cannot be used to find the RC of a number resulting from a
subtraction. Consequently, the EMM is not sufficient to determine
the sign (or compare two numbers in the residues format).

3.1.1. A small numerical example to demonstrate the insufficiency of
the ‘‘extra modulus’’ method by itself for sign detection

The above fact can be demonstrated with the following simple
numerical example:

Let the vector of moduli M = [2, 3, 5, 7]⇒M = 210.
The vector of outer-weights

(defined in Eq. (7)) = [105, 70, 42, 30] and
the vector of inner-weights

(defined in Eq. (8)) = [1, 1, 3, 4].
Finally, assume that the extra-modulus isme = 11.
Let two randomly selected integers be X = 13 and Y = 44.
RNS representation of X ≡ Vx = [1, 1, 3, 6] and

Y ≡ Vy = [0, 2, 4, 2].
Then, Z = X − Y = 13− 44 = −31 so that
ZRNS = Z mod M = −31+ 210 = 179.

Suppose that in the residue domain, vector Vz is calculated by a
channel-wise modular subtractions of elements of Vx and Vy, so
that Vz = [1, 2, 4, 4].

The extra channel will evaluate
Z mod me = (X mod me − Y mod me) mod me

= 2 mod 11 = 2 .

However, (ZRNS mod me) = 179 mod 11 = 3 ≠ (Z mod me)

because of the wrap-around (underflow).

3.2. Drawbacks of known Fractional Domain Method(s) to evalu-
ate RC

The CRT equation can be re-arranged in the following form:

ZT
M
=

n
i=1

ρi

mi
= RC +

Z
M

so that (19)

RC =


n

i=1

ρi

mi


= Integer part of a sum of n proper-fractions. (20)

The above idea of using the ‘‘fractional-representation’’ of CRT (i.e.,
the form shown in Eq. (20)), has been around for a while.
However, to the best of our knowledge; all of the fractional domain
methods and their derivatives/extensions that have appeared in
the literature as of today suffer from one or both of the following
drawbacks:
D-1. Full precision fractional computations (with 1024 or larger
number of fractional bits) are required:

This can be done either by using indefinite-precision libraries
for floating-point operations or using scaling and indefinite-
precision libraries for integer arithmetic. Either way, such
computations are obviously slower than operating on smaller
word-lengths, and the full precision fractional bits require substan-
tial storage.

For instance, Vu [34,33] proposed using a Fractional interpre-
tation of the CRT in the mid 1980s. However, the method uses a
very high precision of ⌈lg(n ·M)⌉ bits (see equations 13 and (14) in

D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95 81
Ref. [33]). To the best of our knowledge to date, none of the subse-
quent follow-ons extendingVu’swork have circumvented the need
for such a large precision.

D-2. Iterations on the order of the bit-length are needed:
For example, the algorithmproposed in [18] and all of its deriva-

tives as of today use amethod to evaluate an approximate estimateRC in a sequential, bit-by-bit (i.e., one bit-at-a-time) manner and
then derive conditions under which the approximation is error-
free. The iterative structure of this method makes it very slow at
cryptographic word-lengths under consideration.

3.3. Additional methods that do not scale

Lu and Chiang [8,20] introduced a conceptually elegant method
to use the ‘‘least significant bit’’ (lsb) to keep track of the sign. They
start with the following observation:

If two integers X and Y have the same lsb, then Z = (X ± Y) is
even.

Otherwise Z is odd.
Assume that the total modulus M is odd; 0 ≤ {X, Y } ≤ M − 1

and let Zres be the residue domain representation of Z .
Then note that if (X ± Y) is out of the range [0, M − 1] then

Zres = (X ± Y ∓M) = Z ∓M
⇒ (Zres mod 2) ≠ (Z mod 2)⇒

if the lsb of Z is known, then
comparing it with the lsb of Zres yields a method to detect
whether a wrap-around (i.e. over or under flow) occurred; which,
in-turn allows the determination of the correct sign of Z .

To see the close connection of this method with the extra
modulus method, note that since M is odd, the condition in
Eq. (17) is satisfied. Further, for any integer Z, lsb (Z) = Z mod 2.
Hence, knowing lsb is tantamount to knowing the remainder with
respect to the extra modulusme = 2.

It is therefore not surprising that these methods run into the
same problem as all other EMMs: how to make sure that the value
of lsb of actual (non-residue-domain true unique integer) value of
Z is available in all cases?

In [8] the authors assume that they have an exhaustive look-up
table for all possible inputs (see Table 1 on page 79 in Ref. [8]).

Such an exhaustive look-up table is not feasible for crypto-
graphic word-lengths.

The second approach proposed by the authors in [20] is to resort
to full precision computations of rational numbers (including
fractions, see Eq. (9) and the implicated relations (which include
the symbol ‘‘⇒’’) right below it, toward the end of Section 2, in
column 1 on page 1029 in Ref. [20]). This is too slow at the long
word-lengths under consideration as explained above.

Abtahi and Siy [1] also employ amethod that assumes the value
of lsb is known beforehand, although it is used in conjunction
with core functions to help detect sign. Because of the reliance
on the parity of Z , their method will fail if overflow/underflow
occurred. Furthermore, it requires the pre-computation of specific
parameters that would require full exhaustion over the entire RNS
range [0, 2N−1), which does not scale to large bit lengths.

Dimauro et al. [11] propose a novel technique of labeling the
‘‘diagonals’’ of the RNS space. The algorithm effectively maps each
of the RNS numbers to a smaller set, and the label of the set can
be used to compare the magnitude of two numbers. However, the
method does not scale to large cryptographic bit-lengths, as either
a modulo with respect to


Mr must be computed, or a lookup

table with


Mr entries is required.
Fig. 1. Summation of drastically reduced precision fraction estimates (obtained by
table look-ups) to estimate the reconstruction coefficient RC .

4. The novel reduced-precision partial reconstruction algo-
rithm: RPPR

In this section, we develop a new reduced-precision partial
reconstruction algorithm RPPR_BASE. It combines aspects of
both Integer-domain as well as fractional-domain methods to
circumvent all the difficulties illustrated in the previous section.

4.1. Narrowing the estimate of RC with limited precision

Since Z < M, it is clear from Eq. (10) that

RC =


ZT
M


=


n

r=1

fr


where (21)

fr =
ρr

mr
< 1. (22)

Relation (21) states thatRC can be approximately estimated as the
integer part of a sum of atmost n proper fractions fr , r = 1, . . . , n,
as illustrated in Fig. 1.

To speed up such an estimation of RC , we can leverage
precomputations and look-ups of approximations to fr . The look-
up table for channel r (with modulus mr) simply contains the
values


R


1
mr


, R


2
mr


, . . . , R


mr−1
mr


, where R is a truncation

towF digits. Note that if the reconstruction remainder ρr = 0, then
the table entry is 0 which need not be explicitly stored.

Definefr = truncation of fr to wF digits (23)

S =  n
r=1

fr =I +F , where (24)

I = ⌊S⌋ (25)F =S −I. (26)

The following result shows that the precomputed fractions fr
can be stored with drastically reduced precision, and RC can still
be confined to one out of two consecutive integers.

Theorem 1. In order to narrow the estimate of RC down to one out
of two consecutive integers,I andI + 1, it is sufficient to carry out
the summation of the fractions in relation (24) in a fixed-point format
with no more than wI = ⌈logb n ⌉ digits for the integer part and
wF = ⌈logb n ⌉ digits for the fractional part.

Proof. As seen in Fig. 1, our method simply looks up the estimatesfr as specified by Eq. (23) and adds them together in a fixed-point
format with a total precision of wI +wF digits. Since the rounding
mode is truncation,fr can only underestimate fr , giving 0 ≤ fr ≤
fr < 1. Since each summand satisfiesfr < 1, their sumS satisfies
0 ≤S < n. Thus, the integer part ofS satisfies ⌊S⌋ ≤S < n. This
implies logb(⌊S⌋) < logb n, which proves the condition for wI .

82 D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95
Fig. 2. Fundamental relation between δ and required precision.

Next, we demonstrate the sufficiency of precision of the
fractional part. With truncation to wF digits, the error ϵr between
fr andfr satisfies 0 ≤ ϵr = fr −fr < 1

bwF . This gives

fr ≤ fr =fr + ϵr <fr + 1
bwF

. (27)

Summing relations (27) over all i from 1 to nwe obtain

S ≤ fr = RC +
Z
M

<S + n
bwF

. (28)

Then, the interval length δ of the error zone for


fr is

δ =
S + n

bwF


−S = n

bwF
. (29)

In Fig. 2, it is clear that in order to narrow the estimate of the
integer part of the sum to one out of two consecutive integers, the
total length of the error zone (which is denoted by δ) must satisfy
δ ≤ 1. This constraint is satisfied by imposing the condition

n
bwF
≤ 1 or wF ≥ ⌈logb n⌉ . (30)

Finally, taking the floor of each expression in (28) and using
δ ≤ 1 we obtain

⌊S⌋ ≤ RC ≤ ⌊S + 1⌋ (31)

givingI ≤ RC ≤I + 1. � (32)

From Fig. 2, it can be seen that further discrimination among
the two consecutive candidate values of RC to select the correct
one is possible or not-possible depending on whether or not the
error zone straddles (i.e., includes) an integer:

(a) when the error zone δ does not straddle across an integer,
then the value of RC can be determined exactly as the smaller
integer to the left of the error-zone (for example, the value 0 in
Case (a) of the figure)

(b) if the error zone δ straddles across or includes an integer, then
further disambiguation between the two candidate RC values
is necessary (for instance, {(n− 2), (n− 1)} in Case (b) shown
of the figure).

4.2. No-Ambiguity Zone

Even with the minimal precision stated in Theorem 1, it turns
out that for a significant number of values of Z in the total range
[0, (M − 1)], we can determine the exact value of RC . The values
of Z requiring no disambiguation of RC tend to be clustered in
a big region around the mid-point of the range, i.e., M−1

2 , while
the values of Z requiring disambiguation of RC between two
consecutive integers tend to lie near the ends of the RNS range
(toward 0 andM).

These properties are illustrated in Fig. 3. The x axes in the sub-
figures show the range of a sample RNS systemwith n = 6 moduli
in the set M = {3, 5, 7, 11, 13, 17}. The Y axes in the figures show
the frequency count of individual Z for which disambiguation of
RC is required. It is clear that both extremely small and large Z
values (with respect to M) have a high probability of requiring
disambiguation between two values of RC , while Zs near the
midpoint of the RNS range have an extremely low probability. The
sub-figures also show (and we will soon prove), that by slightly
increasing the precision of the stored fractions (in this case from 3
to 6-bits), the vast majority of Z values require no disambiguation
of RC .

If the value of the integer Z (which is being partially re-
constructed) happens to lie in the regions filled with red colored
bars, then Z may require extra computations to discriminate
between two possible values for RC (since the figures are
frequency histograms, Z will require disambiguation or some
nearby Z ′ will).

However, if Z is in the large white area (lacking histogram
bars) in the center of the x-range in each of the sub-figures, then
the error zone for Z ’s RC calculation does not straddle an integer
and therefore RC can be determined without the need to further
disambiguate.

Hence, we refer to the approximately ‘‘wide U’’ shaped (or
concave bowl shaped) white area that includes the mid-point of
the total range (i.e., (M−1)

2) as the No-Ambiguity Zone, or the NAZ.
More precisely, for any given RNS (which in turn decides

minimal precision and other parameter values) and a given
instance of partial reconstruction algorithm, we define the NAZ as
the largest interval NL ≤ Z ≤ NH , such that the algorithm can
exactly determine the RC for all Z in NL ≤ Z ≤ NH .

Increasing the precision leads to a smaller error zone, and
a larger NAZ, which is experimentally demonstrated in Fig. 3:
the word-length is increased from 3-bits (minimum required to
narrow the estimate of RC down to one out of two consecutive
integers when n = 6) in the top sub-figure to 6 bits in the
bottom sub-figure. It is clear that the frequency of ambiguation
dramatically decreases and the size of the NAZ substantially
increases with small increases in precision.

The following derivation is a generalization of Theorem 1 and
gives a sufficient stored fraction precision for a given Z to lie in the
NAZ.

Theorem 2. If Z satisfies

1
Φ
≤

Z
M
≤ 1−

1
Φ

(33)

where, Φ is an arbitrary precision parameter (or a constant) that
satisfies the condition

0 <
1
Φ
≤

1
2

(34)

then to determine the value of RC exactly, it is sufficient to carry
out the summation of the fractions in relation (24) in a fixed-point
format with no more than wI = ⌈logb n⌉ digits for the integer part
and wF ≥ ⌈logb (n · Φ)⌉ digits for the fractional part.

Proof. The condition for wI in Theorem 1. Eq. (28) gives us

S − Z
M
≤ RC <S − Z

M
+

n
bwF

. (35)

D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95 83
Fig. 3. Ambiguity of RC in RPPR. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Adding the constraints of Theorem 2 gives

S − 1− 1
Φ


≤ RC <S − 1

Φ
+

n
bwF

. (36)

Since 1
2 ≤


1− 1

Φ


< 1, and 1

Φ
≥

n
bwF , then

S − κ ≤ RC <S, where
1
2
≤ κ < 1. (37)

Therefore, only one integer RC can satisfy Eq. (37):

RC = ⌊S⌋ =I. � (38)

By application of Theorem 2, by increasing the precision of the
stored fractions by just 2 bytes beyond minimal precision (wF =

⌈logb n⌉ + 16) yields an NAZ which occupies almost the entire
range, i.e.;

length(NAZ)
M

≥ 1−
1

32768
. (39)

In otherwords, if Z is uniformly distributed in the range of the RNS,
then less than one in 30,000 cases will we fail to return the exact
value of RC in a single shot. Consequently the expected or average
delay of our RPPR algorithm is small.

4.3. Specification of the RPPR algorithm

Algorithm1presents a baseRPPRmethod using Theorems 1 and
2 to reduce the possible values of RC to at most two consecutive
integers. Given an input Z and precomputations, it outputs the
correct value of RC or an approximationI if RC needs further
disambiguation.
Algorithm 1: RPPR_base
Input : An integer Z in RNS form: Z = [z1, z2, . . . , zn];

Precision parameter Φ > 2 with (Φ mod me) = 2
Output: R̂ and a binary flag Approx; if Approx= 0, then

RC = R̂; otherwise, if Approx= 1, then RC equals
either R̂ or R̂+ 1

1 begin
/* Per-channel memory stores precomputed

approximations αr = ⌊2w
· ρr/mr⌋, where

w = ⌈lgΦn⌉. */

2 c ← number of non-zero zr with r ≤ n;
3 AL ←

n
r=1 αr /* sum of pre-computed w-bit

integers; scaled low estimate */

4 AH ← AL + c /* scaled high estimate */

5 aL ← AL/2w /* unscaled low estimate */

6 aH ← AH/2w /* unscaled high estimate */

7 if aL == aH then
8 return R̂ = aL, Approx = 0 ;
9 else

/* disambiguation is needed */

10 return R̂ = aL, Approx = 1 ;

It turns out that if Z lies outside the NAZ, then Z can be it-
eratively multiplied by (Φ − 1) until the NAZ of the RPPR_base
algorithm is reached. This iterative algorithm (denoted RPPR) is
specified in Algorithm 2.

Lemmas 1 and 2 prove, respectively, that:

(1) Z and the multiplied result are congruent with respect to an
extra modulusme, and

84 D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95
Algorithm 2: RPPR
Input : An integer Z in RNS form: Z = [z1, z2, . . . , zn];

Extra modulusme with gcd(M,me) = 1; Precision
parameter Φ > 2 with Φ mod me ≡ 2.

Output: The correct value of RC .
1 begin
2 Iter← 1;
3 RC ,Approx← RPPR_base (Z, Φ);
4 wr ← zr ;
5 RC ← RC ;

/* Iteratively multiply by (Φ − 1) and call
RPPR_base until the NAZ is reached */

6 while Approx == 1 do
7 wr ← ((Φ − 1)wr) mod mr ;
8 Iter← Iter+ 1;
9 RC ,Approx← RPPR_base (W, Φ);

10 if Iter == 1 then
11 return RC

12 re ← RC +M−1(


ρr,ZMr −


ρr,WMr)mod me ;
/* M−1 mod me is a constant known ahead of time

or looked up */

/* Lookup ρr,ZMr mod me and ρr,WMr mod me,

indexed by the values of zr and wr */

13 if RC mod me == re then
14 return RC

15 else
16 return RC + 1

(2) since the exact value of RC for the multiplied result can be
determined, the exact value of RC for Z can be determined.
The only conditions are Φ mod me ≡ 2 and gcd (M,me) = 1,
allowing us to choose an extra modulus me = 2, when the mr
of the moduli-set are odd and Φ is even.

Lemma 1. If λ is the final value of Iter in Algorithm 2, with W =
(Φ − 1)(λ−1) Z mod M, then, (W mod me) = (Z mod me) when
Φ mod me ≡ 2.

Proof. Let Wi denote the RNS number with residues wr in the ith
iteration of the while loop, where Wi =


(Φ − 1)i−1 Z mod M


.

Due to Theorem 2, when M
Φ
≤ Wi ≤

M(Φ−1)
Φ

, the value of RC can
be determined with a call to RPPR_base and the loop will exit.

Otherwise, let Wi+1 = (Φ − 1)Wi. Then 0 ≤ Wi+1 < M(Φ−1)
Φ

or (Φ − 2)M + M
Φ
≤ Wi+1 < (Φ − 1)M ⇒ Wi+1 mod M =

(Φ−1)Wi−cM where c = 0 or c = (Φ−2). Thus,Wi+1 mod me =

Wi mod me = Z mod me, when (Φ − 1) mod me = 1 ⇒
Φ mod me = 2. �

Lemma 2. In Algorithm 2, an exact value of RC can be determined
for Z if Φ mod me = 2 and gcd(M,me) = 1.

Proof. After the while loop, an exact value of RC can be found for
W = (Φ − 1)(λ−1) Z mod M (since Approx = 0), and from
Lemma 1, W mod me = Z mod me. We therefore have

r

ρr,ZMr


−MRC Z


mod me

=


r

ρr,WMr


−MRCW


mod me

⇒ RC Z mod me = RCW mod me

+


1
M

mod me

 
(ρr,Z − ρr,W)Mr


mod me



which can be determined exactly if gcd(M,me) = 1. Thus, since
RC ,Z is known to be one of two consecutive integers, we can
determine RC Z exactly. �

It is further proven in Appendix A that the maximum number
of iterations of RPPR_base in RPPR is bounded by


log(Φ−1) M


(Theorem 6). However, the average number of iterations for RPPR
turns out to be a very small constant. For Z randomly chosen
uniformly in 0 < Z < M , if λ is the number of iterations required
for each instance, then the average or expected value of λ satisfies

E[λ] <
Φ

Φ − 2
=⇒ (40)

E[λ] = Θ(1). (41)
Please refer to Theorem 7 in Appendix A for further details.

4.4. Small numerical example illustrating the steps in RPPR

As a small example of RPPR, let n = 4 with the modulus set
m1 = 3,m2 = 5,m3 = 7, and m4 = 11 and extra modulus
me = 2. Then, the total modulus M = 1155, the outer-weights
are M1 = 385,M2 = 231,M3 = 165, and M4 = 105, and the
inner-weights are h1 = 1, h2 = 1, h3 = 2, and h4 = 2.

We will calculate the value of RC for Z = 10, using the RPPR
parameter Φ = 8. We have residues z1 = 1, z2 = 0, z3 = 3,
and z4 = 10, and a total of ⌈lg(nΦ)⌉ = 5 bits are required
for each of the fractions (which is truncated scaled and stored in
look-up table). Each channel looks up αr = ⌊32 · ρr/mr⌋, where
ρr = (hr · zr) mod mr , giving α1 = 10, α2 = 0, α3 = 27, and
α4 = 26. Summing the αr , we get AL = 63, and since there are
three non-zero residues, AH = 66. Shifting by 5 bits gives a low
estimate for RC of 1 and a high estimate of 2.

Since we must disambiguate, we multiply the zr by Φ − 1. The
residues pr of Φ − 1 are p1 = 1, p2 = 2, p3 = 0, and p4 = 7. With
wr = (Φ − 1)zr mod mr , we have w1 = 1, w2 = 0, w3 = 0,
and w4 = 4. Again, each channel looks up αr in its lookup-table
memory, giving α1 = 10, α2 = 0, α3 = 0, and α4 = 23. Using
the same procedure, we get AL = 33, AH = 35 and both a low
and high estimate of 1 forRC . Since the upper and lower estimates
converge to the same value, we have exactly determined theRC of
W = (Φ − 1)Z . As a result, we exit the iterations-loop and back-
calculate the exact value of RC of Z .

Each channel now looks up it extra modulus information in the
table; namely ρr,ZMrmod 2 and ρw,ZMrmod 2, respectively. We
obtain


(ρr,ZMr −ρw,ZMr)mod 2 = 1. SinceM−1 mod 2 = 1, we

have re = (1 + 1 · 1)mod 2 = 0. We now compare, re to the low
estimate of RC for Z . Since they are not equal, the exact value of
RC for Z is the high estimate of 2.

5. The mixed-radix partial reconstruction algorithm: MRPR

Even though the reduced-precision partial reconstruction
algorithm RPPR, is very fast in the average case, it does require
several iterations of the RPPR_base routine in the worst case.
We now unveil a different novel algorithm that requires more
precomputation and memory but limits the iterations to 1 in ALL
cases.

Suppose that we pre-compute and store the value of ρrMr for
all (mr −1) possible values of ρr , excluding the case where ρr = 0,
in each channel r; for 1 ≤ r ≤ n.

Then, each term of the sum ZT =


ρrMr in the CRT (Eq. (5)) is
in the mixed-radix form ⟨t(r,n), t(r,n−1), . . . , t(r,1)⟩with digits t(r,k):

ρrMr = t(r,n) · (mn−1 ·mn−2 · · ·m2 ·m1)
+ t(r,n−1) · (mn−2 ·mn−3 · · ·m2 ·m1)
+ · · ·

+ t(r,3) · (m2 ·m1)+ t(r,2) ·m1 + t(r,1)
where 0 ≤ t(r,k) < mk. (42)

D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95 85
This is the usual/standard mixed-radix representation associated
with any given RNS; wherein, the component modulus mn (which
is the highest in magnitude among all moduli) is left out; and the
channels are assigned remaining moduli arranged in a descend-
ing order of magnitude. In the above equation, note that instead
of increasing powers of a single value (called the radix or base);
the weights of each position include successively higher num-
ber of moduli multiplied together. Hence the name ‘‘mixed-radix’’
representation. Since ρrMr < M , dividing both sides of this
inequality by the product (m(n−1) · · ·m1), it follows that the
most significant mixed-radix digit must satisfy the constraint
t(r,n) < mn; and the remainder must satisfy the relation Rem <
(m(n−1) · · ·m1). Iteratively dividing the (next) remainder by the
(next) appropriate product of moduli yields the constraints on all
the digits. Thus, we can define the mixed-radix digits of the sum-
mation as ⟨Tn, Tn−1, . . . , T1⟩, with carry-outs cn through c1, given
by the recursive relations:

T1 =


r

t(r,1)


mod m1

c1 =


r

t(r,1)


/m1



Tk =


ck−1 +


r

t(r,k)


mod mk, k > 1

ck =


ck−1 +


r

t(r,k)


/mk


, k > 1.

(43)

The following theorem presents an important result about the
final carry-out:

Theorem 3. If the sum in the CRT (as per Eq. (5)) is carried out in the
mixed-radix format, substituting the values of (ρr ·Mr) in the mixed-
radix format (as per Eq. (42)), then the final carry-out cn resulting
from the summation is equal to RC .

Proof. Since Z = ZT mod M, the mixed-radix form of Z is the
mixed-radix sum of ⟨t(r,n), t(r,n−1), . . . , t(r,1)⟩ over all r .

Note that since ZT = Z +RCM, and the weight of a single/unit
carry-out (i.e., the numerical value of a carry-out cn of value 1) of
the Mixed-radix-format is M, the final carry out cn of the mixed-
radix sum represents the value cn ·M. Then equating the two values
of Z , it follows that cn = RC . �

5.1. A carry-look-ahead framework

Our algorithm uses a carry-look-ahead technique to determine
cn. The derivation of this look-ahead framework is explained in the
remainder of this sub-section. (Therefore, a casual reader can skip
the rest of this section without loss of generality or missing out
main concepts/ideas.)

To startwith, note that each channel r canperforma summation
(of the form shown in (43)); corresponding to its mixed radix-
modulusmr ; in parallel.

Such an in-channel summation of small values (themixed-radix
digits, wherein, each digit or summand in channel r is strictly less
than mr , the incremental modulus for channel r) can be further
sped-up because the mixed-radix digits turn out to be sparse;
thereby limiting themaximumvalue the carry-out cr from channel
r can assume.

The following lemma shows the sparseness of the mixed-radix
digits t(r,k).
Lemma 3. The mixed-radix digit t(r,k) equals 0 for r > k.
Proof. If k = 1, then

t(r,k) = t(r,1) =
ρrM
mr

mod m1 = 0 when r > 1, since m1 is a
factor ofM/mr when r ≠ 1.

Similarly, if 1 < k < n, then

t(r,k) =


ρrM
mr(m1 · · ·m(k−1))


mod mk = 0 when r > k. �

Because of the sparseness of the mixed-radix digits, we can
limit the maximum value of the carries, as given in the following
theorem.

Theorem 4. The mixed-radix sum carry ck satisfies ck < k for all k.
Proof. From Lemma 3, t(r,1) = 0 for r > 1. Thus, since t(1,1) < m1,
we have T1 = t(1,1) and c1 = 0.

Similarly, for k > 1, t(r,k) = 0 for r > k. This gives,


r t(r,k) ≤
k(mk− 1). Consequently, from Eq. (43), ck ≤ ⌊(ck−1+ k(mk− 1))/
mk⌋ < k if ck−1 < k− 1. By induction, since c1 = 0 < 1, ck < k for
all k. �

Thus, by choosing mk ≥ k (by ordering the radices appropri-
ately), we can limit ck to be less than mk. Initially, the t(r,k) values
can be added in each channel k in parallel (over all values of the
first index r); using the h/w tree-adder in each channel; producing
a sum of magnitude less than [lgmk+ lg k] bits. By ignoring the in-
coming carry-ins, we can determine an approximate carry-out and
sum (using Barrett reduction or a small look-up-table or any other
method of choice):

Tk = 
r

t(r,k)


mod mk

ck = 
r

t(r,k)


/mk


< k.

(44)

The actual carry-out satisfies, for k > 1,

ck = ck + Tk + ck−1

/mk


. (45)

By choosingmk ≥ k, Theorem 4 gives ck = ck or ck = ck + 1.
We define gk as the difference between the approximate and

actual channel carry-outs:

gk = ck − ck = 0 or 1 for all k ≥ 1. (46)
Thus, Eq. (45) can be written as the following recurrence:

gk =
Tk +ck−1 + gk−1


/mk


(47)

with g0 and c0 defined as 0.
For i ≤ j, define g0

[i,j] = gj if gi were to equal 0, and g1
[i,j] = gj if

gi were to equal 1. Note that g0
[0,n] = gn. This lends itself to a carry-

look-ahead scheme to calculate cn = gn + cn in ⌈lg n⌉ steps/levels,
by computing the bits g0

[i,j] and g1
[i,j] across blocks of channels of

increasing size. This framework is similar to the conditional-sum
addition (which is a technique for fast binary addition [19,23,12]).

As the base case, we have, for 0 ≤ i < n:

g0
[i,i+1] =

Ti+1 +ci /mi+1


g1
[i,i+1] =

Ti+1 +ci + 1

/mi+1


.

(48)

Note that channel k can compute g0
[k−1,k] and g1

[k−1,k] after obtainingck−1 from channel (k− 1).
In the second level of the carry-look-ahead tree, define for

even j:

g0
[j,j+2] = g0

[j+1,j+2] if g0
[j,j+1] = 0

g0
[j,j+2] = g1

[j+1,j+2] if g0
[j,j+1] = 1

g1
[j,j+2] = g0

[j+1,j+2] if g1
[j,j+1] = 0

g1
[j,j+2] = g1

[j+1,j+2] if g1
[j,j+1] = 1.

(49)

86 D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95
In general,we have at the (λ+1)th level of the carry-look-ahead
tree, for j mod 2λ

≡ 0, and r = 2λ−1:

g0
[j,j+2r] = g0

[j+r,j+2r] if g0
[j,j+r] = 0

g0
[j,j+2r] = g1

[j+r,j+2r] if g0
[j,j+r] = 1

g1
[j,j+2r] = g0

[j+r,j+2r] if g1
[j,j+r] = 0

g1
[j,j+2r] = g1

[j+r,j+2r] if g1
[j,j+r] = 1.

(50)

The following theorem proves that the final carry-out can easily
be determined by the final value g0

[0,n] of the carry-look-ahead
scheme.

Theorem 5. The final carry-out cn equals cn + g0
[0,n].

Proof. Without loss of generality, assume n is a power of two. If
n is not a power of two, dummy g variables (with value 0) can
be appended on the right side of the look-ahead tree. Lemma 6 in
Appendix A states, with λ = lg n+1 and r = n, that if g0 = 0, then
gn = g0

[0,n]. Since g0 = 0 by definition, cn = cn+gn = cn+g0
[0,n]. �

5.2. MRPR algorithm specification

Pseudo-code forMRPR is given in Algorithm 3.

5.3. Small numerical example to illustrateMRPR

As a small example of MRPR, let us again use n = 4 with the
modulus set m1 = 3,m2 = 5,m3 = 7, and m4 = 11 and
extra modulus me = 2. As before, the total modulus M = 1155,
the outer-weights are M1 = 385,M2 = 231,M3 = 165, and
M4 = 105, and the inner-weights are h1 = 1, h2 = 1, h3 = 2,
and h4 = 2.

Once again, we will calculate the value of RC for Z = 10, with
residues z1 = 1, z2 = 0, z3 = 3, and z4 = 10. We have ρ1M1 =

385, ρ2M2 = 0, ρ3M3 = 990, and ρ4M4 = 945. Channel r looks
up the mixed-radix digits tr,k of ρrMr , giving t1,k = ⟨3, 4, 3, 1⟩,
t2,k = ⟨0, 0, 0, 0⟩, t3,k = ⟨9, 3, 0, 0⟩, and t4,k = ⟨9, 0, 0, 0⟩.

Each channel now computes an initial sum Sr =


i t(i,r), giving
S1 = 1, S2 = 3, S3 = 7, and S4 = 21. The channels then calculate
the estimates cr = ⌊Sr/mr⌋ and Tr = Sr mod mr : c1 = 0, c2 = 0,c3 = 1, c4 = 1, and T1 = 1, T2 = 3, T3 = 1, T4 = 10.

The base values for the carry look-ahead are: g0
[0,1] = 0, g1

[0,1] =

0, g0
[1,2] = 0, g1

[1,2] = 0, g0
[2,3] = 0, g1

[2,3] = 0, g0
[3,4] = 1, and

g1
[3,4] = 1.
The 2nd-level values of the carry look-ahead are: g0

[0,2] = 0,
g1
[0,2] = 0, g0

[2,4] = 1, and g1
[2,4] = 1.

The 3rd and final level of the carry look-ahead gives: g0
[0,4] = 1

and g1
[0,4] = 1.

Thus, we have RC = c4 + g0
[0,4] = 2.

6. Sign detection

We now present an algorithm that uses our partial-
reconstruction algorithms to efficiently determine whether or not
an overflow or underflow has occurred after a RNS operation. This
can equivalently be used to compare themagnitude of two RNS in-
tegers. The following two lemmas will form the basis for our sign
detection algorithm.

Lemma 4. If Z = X + Y mod M, where 0 ≤ X, Y < M,
then the addition operation overflowed (X + Y ≥ M) if and only
if Z mod me ≠ (X + Y) mod me for an extra modulus me with
gcd(M,me) = 1.
Algorithm 3: MRPR
Input : An integer Z in RNS form: Z = [z1, z2, . . . , zn]
Output: The correct value of RC

1 begin
/* Per-channel memory stores pre-computed

mixed-radix representations of ρrMr for all

possible zr and are looked up in parallel across
channels. */

2 ⟨t(r , n), t(r , n−1) , . . . , t(r , 1)⟩ ← MixedRadix(ρrMr) ;
/* In parallel, each channel fills the rows of a

central FRiP–SCiP block in parallel as described

in Section 8.2 and shown in Figure 5. Then, in

parallel, each column in the block then computes

an initial sum using a dedicated tree-adder,

returning the sum Sr to channel r. */

3 Sr ←


i t(i,r)

;

/* Each channel calculates an initial carry-out

estimate, using Barrett reduction or a small

lookup-table */

4 cr ← Sr/mr ;
5 Tr ← Sr mod mr ;

/* In parallel, each channel adds incoming carry and

calculates base g values. */

6 Vr ← Tr +cr−1 ;
7 if Vr ≥ mr then
8 g0

[r−1,r] ← 1 ;
9 g1

[r−1,r] ← 1 ;
10 else
11 g0

[r−1,r] ← 0 ;
12 if Vr + 1 ≥ mr then
13 g1

[r−1,r] ← 1 ;
14 else
15 g1

[r−1,r] ← 0 ;

/* All g values are limited to {0,1} and are
processed by the carry-look-ahead block. */

16 for λ← 2 to ⌈lg n⌉ + 1 do
17 R← 2λ−1 ;
18 u← g0

[j,j+R] ;
19 v← g1

[j,j+R] ;
20 g0

[j,j+2R] ← gu
[j+R,j+2R] ;

21 g1
[j,j+2R] ← gv

[j+R,j+2R] ;

22 return (cn + g0
[0,n]) ;

Proof. If the addition operation did not overflow, then X + Y < M
and Z = X + Y . Therefore, Z mod me = (X + Y) mod me.
Conversely, if the addition operation did overflow, then X+Y ≥ M
and Z = X+Y−M. Therefore, Z mod me = (X+Y−M) mod me ≠

(X + Y) mod me, since gcd(M,me) = 1 and M mod me ≠ 0. �

Lemma 5. If Z = X − Y mod M, where 0 ≤ X, Y < M, then
the subtraction operation under-flowed (X − Y < 0) if and only
if Z mod me ≠ (X − Y) mod me for an extra modulus me with
gcd(M,me) = 1.

Proof. If the subtraction operationdidnot underflow, thenX−Y ≥
0 and Z = X − Y . Therefore, Z mod me = (X − Y) mod me.
Conversely, if the subtraction operation did underflow, then X −
Y < 0 and Z = X − Y + M. Therefore, Z mod me = (X −
Y + M) mod me ≠ (X − Y) mod me, since gcd(M,me) = 1
and M mod me ≠ 0. �

D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95 87
Consequently, the algorithm focuses on calculating Z mod me,
for extra modulus me with gcd(M,me) = 1. The actual value of
(Z mod me) can then be compared to an in-channel extra-modulus
value: (x+y) mod me or (x−y) mod me. If the values are the same,
then no underflow/overflow occurred.

6.1. Sign detection algorithm specification

Algorithm 4 gives an efficient sign detection method using
Lemmas 4 and 5 and the partial reconstruction algorithms
presented in the previous sections.

Algorithm 4: RNS Sign Detection

Input : An integer Z in RNS form: Z = [z1, z2, . . . , zn], ze;
extra modulus residue ze may be invalid (due to
underflow/overflow)

Output: A binary flag OverUnder; if OverUnder= 1, there
was an overflow or underflow ; otherwise,
OverUnder= 0

1 begin
/* Call either of the partial-reconstruction

algorithms (such as RPPR) to determine the exact

value of RC */

2 RC ← RPPR(Z) or MRPR(Z);
3 Se ← (


ρrMr modme −RCM mod me)mod me

/* Precomputed memory stores ρrMr mod me */

4 if Se == ze then
5 return 0
6 else
7 return 1

6.2. The extra modulus me

Both RPPR_base and RPPR; as well as the sign detection algo-
rithm, require extra information in the formof residues/remainders
w.r.t. an additionalmodulusme.We therefore propose a redundant
channel, or extra modulusme, be added to the original moduli set.
All simple operations in the RNS (addition, subtraction, multiplica-
tion) should be carried out in the redundant channel in addition to
the original channels.

The restrictions onme are
gcd(M,me) = 1 and; for RPPR,

(Φ mod me) ≡ 2 mod me. (51)
To satisfy all requirements, we propose using
ODDmr , (52)
me = 2, and (53)
EVEN Φ > 2 (54)
so that the iterative RPPR multiplication factor (Φ − 1) ≠ 1 and
Φ mod me ≡ 2. By choosing me = 2 and odd mr , the extra
modulus precomputations and summations for Algorithms 2 and
4 are only one bit per entry.

7. Moduli selection

For each of the partial reconstruction algorithms presented, a
channel with modulus mr needs a look-up table with (mr − 1)
entries (one entry per value of zr) for several of the precomputed
variables. This is used, for example, to look up the values of
αr = ⌊2wρr/mr⌋, in Algorithm RPPR_BASE,
and
⟨t(r,k)⟩ = MixedRadix(ρrMr), in Algo. MRPR.
For each of these tables, the total number of memory locations
required by all moduli is

, TM =

n
r=1

(mr − 1) ≈
n

r=1

mr . (55)

This implies that in order to minimize the memory needed, each
componentmodulus should be as small as it can be; subject to the
constraint that their product must exceed the maximum value in
the required range.

Therefore, in order to cover a range [0, R)we select the smallest
consecutive n prime numbers starting with 3 (see Section 6.2 for
why 2 is excluded), such that their product exceeds R:

M = {m1,m2, . . . ,mn}

= {3, 5, 7, . . . , (n+ 1)st prime number},

where
n

r=1

mr = M ≥ R. (56)

For example, to cover the range [0, 21024), wewill need 131 regular
channels with m1 = 3 to m131 = 743, with an extra channel for
me = 2. Likewise, to cover the range [0, 22048), we will use 233
regular channels withm1 = 3 tom233 = 1481. Finally, to cover the
range [0, 24096), we will need 418 regular channels withm1 = 3 to
m418 = 2897. Thus, we can easily cover large cryptographic word
lengths in under 500 channels, very common inmodernmany-core
systems such as GPUs.

The selection of moduli suggested leads to the following two
highly desirable attributes that can be analytically derived as
follows:

1. The nth prime number and its index n are related by the well-
known prime-counting function [31] defined as

π(x) = the number of prime numbers ≤ x

≈
x

ln x
(57)

and therefore:

n ≈ π(mn) ≈


mn

lnmn


. (58)

It was confirmed experimentally, if 3 ≤ n ≤ 1000, covering the
modulus sets of interest up to a range of [0, 211282

− 1), then

0.83


mn

lnmn


< n < 1.22


mn

lnmn


. (59)

2. The overall modulus M becomes the well known primorial
function [32], which for any positive integer Q is typically
denoted as ‘‘Q#’’ and denotes the product of all prime numbers
≤Q . In this paper, however, we use the symbol P (Q) to denote
the primorial function which is defined as P (1) = 1 if Q = 1
and as the product of all prime numbers≤Q if Q > 1.

The primorial function satisfies well-known identities
[32,10]

2Q < P (Q) < 4Q
= 22Q and (60)

P (Q) ≈ eQ for large Q . (61)

As a result, to be able to represent N bit numbers, i.e. the range
[0, 2N

−1), in the residuedomainusing all available primenumbers
(starting with 3), the total modulus satisfies

2N
≈ M = P (mn)/2 ≈ exp(mn)/2 (62)

and therefore

mn ≈ ln(2M) ≈ ⌈N · (ln 2)⌉ . (63)

88 D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95
Substituting this value ofmn in Eq. (58), the number ofmoduli n
required to cover all N-bit long numbers can be approximated as:

n ≈
N ln 2

ln(N ln 2)
≈

N
lgN

≈
lgM

lg lgM
. (64)

It was again confirmed experimentally, if 3 ≤ n ≤ 1000, then

0.82


N
lgN


< n < 1.01


N

lgN


(65)

0.82


lgM
lg lgM


< n < 0.99


lgM

lg lgM


(66)

1.9


N
lgN


< mn < 6.6


N

lgN


(67)

1.9


lgM
lg lgM


< mn < 6.6


lgM

lg lgM


. (68)

These analytic expressions are extremely important because
they imply:

1. n < mn ≪ M, which follows from relations (58), (63) and (64).
2. Moreover, both the maximum-modulus mn as well as the

number of moduli n grow logarithmically with respect toM.

These attributes make it possible to deploy exhaustive pre-
computation and lookups (formany canonical operations) because
they guarantee that the total amount of memory required grows
as a low degree polynomial of the logarithm of M (see Section 8.5 for
further details).

In closing this section, we would like to point out some
additional benefits of our moduli selection:

1. This selection works in general, since for any value of the range
R, multiple moduli sets always exist.

2. The moduli are relatively easy to find, because prime numbers
are sufficiently densely abundant, irrespective of the value of R.

3. It fully leverages the parallelism inherent in the RNS.
4. Exhaustive pre-computation and lookup is feasible (in most

operations of interest) even at cryptographic word-lengths, as
demonstrated above.

5. Limitingmn and n to small values makes it more likely to fit the
entire RNS processing in a single hardware module.

6. Many-core processors are common today, and each core can
easily perform the integer operations on small length operands
(note that the in-channel word-length≤ lgmn ≈ lg lgM).

8. Theoretical latency, communications, and memory require-
ments

8.1. Assumptions about implementation

The main goal of the architecture is to fully leverage the
parallelism inherent in the RNS. Accordingly, we assume a fully-
dedicated custom VLSI design. However, most of the assumptions
below can be approximated in a commodity many-core system
such as a GPU (each channel is a small core), as shown by the
experimental results in Section 10. A schematic diagram of the
architecture to execute the RPPR algorithm is illustrated in Fig. 4.
An ideal schematic diagramof the architecture to execute theMRPR
algorithm is illustrated in Fig. 5.

Since mn is the largest component-modulus, Eq. (68) gives the
maximum channel word-length as:

wCH(n) = lgmn ≈ lg lgM. (69)
Fig. 4. A schematic of generic RPPR h/w architecture.

Note that this is drastically smaller than the wordlength wconv
required for conventional binary representation, which is roughly
O(N) ≈ the number of bits required to represent M. For instance,
for N = 4096 bits, the maximum size of operands in any channel,
viz., wCH is only 12 bits.

We therefore assume each channel is capable of performing
all basic arithmetic operations, viz., {±,×,÷, shifts, powers,
equality-check, comparison} (without anymodulo or remain-
dering operation) as well as the operations {±,×}modulomr , the
channel modulus. We further assume each channel is capable of
accessing its own look-up-table(s) independent of other channels.

8.2. Delay assumptions, and estimation of total delay

In accordance with the literature, we make the following
assumptions about delays of hardware modules:

1. A carry-look-ahead adder can add/subtract two operands
within a delay that is logarithmic w.r.t. thewordlength(s) of the
operands.

2. More generally, a fast-multi-operand addition of n numbers
each of which is w-bits long requires a delay of

O(lg n)+ O(lg(w + lg n)) ≈ O(lgw + lg n). (70)

3. Assuming that the address-decoder is implemented in the form
of a ‘‘tree-decoder’’, a look-up table with L entries requires
≈ O(lgL) delay to access any of its entries.

4. Each channel has a dedicated shifter (e.g., a multi-stage-shifter
also known as a ‘‘barrel’’ shifter [19,36]) to quickly implement
shifts of variable number of bit/digit positions.

5. The routing is hard-wired to the extent possible in order to
minimize wire-delays.

6. For MRPR, the availability of a hardware block that fills the
rows of an n by n matrix in parallel and then adds all the
columns in parallel. Each entry in the matrix is at most lgmn
bits. We abbreviate this ‘‘Fill Rows in Parallel’’ followed by
‘‘Sum Columns in Parallel’’ block as a FRiP–SCiP block. Each
channel has precomputed mixed-radix digits of ρrMr for every
possible zr value. In a custom VLSI design (such as the one
illustrated in Fig. 5), once this value is available, each channel
sends the vector of n elements to the block, filling special
purpose registers (denoted Rk1, Rk2, . . . , Rkn for row k). Thus,
all the rows of the ‘‘matrix’’ can be filled in parallel. A dedicated
fast adder-tree in each column can then sum the entries of each
column (in parallel with the other columns) with a delay of
O(lg n).

8.3. Delay estimation

The overall delay estimation for RPPR_base is summarized in
Table 1. The dominant delay is in Step 3, the accumulation of

D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95 89
Fig. 5. Schematic of h/w architecture forMRPR algorithm, including the FRiP–SCiP h/w block; and the carry-look-ahead block which can be distributed across and spans all
channels.
Table 1
Total delay of RPPR_base.

Step Delay Justification

1 lg n In parallel
2 lg n Assumption 2
3 lg n Assumption 2
4 ≪ lg n One small addition
5 ≪ lg n One small shift (can be hard-wired)
6 ≪ lg n One small shift
7 ≪ lg n One small comparison

Total delay ≈ O(lg n)

estimate valuesfr , read from the tables. Likewise, the total critical
path delay ofMRPR is summarized in Table 2.

The performance (total number of operations at run-timewhich
is related to total power consumption; and number of operations
in the critical path, which determines the critical path delay) of the
RPPR and MRPR algorithms is summarized in Table 3.

8.4. Communication requirements

Since the channels are realized as distributed nodes in a many-
core architecture, it is crucial for the inter-node communications
to be tightly bounded. The partial reconstruction algorithms take
full advantage of parallel and independent per-channel hardware
and therefore have limited inter-channel communications.

For the RPPR iterative algorithm, we assume that a master node
controls all the channels. In the first call to RPPR_base , the master
node transfers the appropriate input RNS integer residue, aswell as
Φ , to each node (one communication per channel). The nodes then
transfer the pre-computed approximation αr back to the master
node for a small accumulation (one communication per channel).

If the RC requires disambiguation, the master node sends a
small message to each node to multiply the current residue value
by the small constant (Φ − 1) and return the updated approxima-
tionαr for accumulation, aswell as (ρr,YMr modme) value required
for disambiguation.

In summary, there are 2n communications required per call to
RPPR_base . Therefore, RPPR requires Θ(n logΦ M) communica-
tions in the worst-case and Θ(n) communications on average.

In the MRPR algorithm, we again assume that a master
node controls all the channels. The master node first transfers
the appropriate input RNS integer residues to each node (one
communicationper channel). Eachnode can then in parallel lookup
the mixed-radix digits for ρrMr , with channel r sending the digits
tr,k to the FRiP–SCiP block. Since tr,k = 0 for r > k and channel r
will make use of digit tr,r , it only sends the digits with k > r . This
is one communication per channel, although channel r sends n− r
digits.

Next, channel k receives the summation of the digits tr,k, with
k > r , from the FRiP–SCiP block. This is also one communication
per channel. Each channel can then compute Tr and cr , in parallel.
The carry-propagationwill require n/(2(λ−1))−1 communications
at theλth level, totaling less than 2n communications for the carry-
propagation. Therefore,MRPR requiresΘ(n) communications in all
cases.

This demonstrates that the number of communication required
in a distributed architecture grows as a low (first) degree polyno-
mial in the number of channels n.

8.5. Storage requirements

The partial reconstructions algorithms utilize a significant
space–time trade-off by taking advantage of exhaustive pre-
computations. By choosing the moduli in the optimal manner
discussed above, the pre-computation storage requirements are
shown in Fig. 6(a). The specific calculations assume (in a non-
optimized fashion), that each individual storage location requires
an integer multiple of bytes. As can be seen, the storage require-
ments grow as a low order polynomial of the overall bit-length N .
Table 2
Total delay ofMRPR.

Step Delay Justification

2 lg n In parallel and assumption 3
3 lg n In parallel and assumption 2, 5 and 6
4 ≪ lg n Two shifts and one small multiplication (Barrett reduction) in parallel
5 ≪ lg n One small subtraction and multiplication (Barrett reduction) in parallel
6 ≪ lg n One small add per channel, in parallel

7–15 ≪ lg n Small ops in each channel in parallel

16–22 lg n ⋆⋆ Carry-look-ahead-tree across all channels few (O(1)) bits used from each channel

Total delay ≈ O(lg n)

90 D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95
Table 3
Operation counts of all partial reconstruction algorithms.

Algorithm Small O(lgmn) Small O(lgmn) # calls to its base function
Multiplications Additions
Total Critical path Total Critical path

RPPR_BASE (in each call) 0 0 Θ(n) Θ(lg n) –
RPPR (counts per call) Θ(n) Θ(1) Θ(n) Θ(lg n) –
RPPR (worst case) Θ(n logΦ M) Θ(logΦ M) Θ(n logΦ M) Θ((lg n)(logΦ M)) Θ(logΦ M)

RPPR (average) Θ(n) Θ(1) Θ(n) Θ(lg n) Θ(1)
MRPR(all cases need identical operations) 2(n) 2(1) 2(n2) 2(lgn) 0
(a) Total storage needed for the look-up tables. (b) Zoomed-in view of previous sub-figure on the left.

Fig. 6. Comparison of total storage needed by RPPR and MRPR vs. existing methods (plot labeled full precision in sub-figure (a)). Note that this plot and MRPR are out of
scale and therefore do not appear in (the next) sub-figure (b).
Fig. 6(a) clearly illustrates that all versions of RPPR require
substantially smaller amount of storage for the precomputed look-
up tables compared to storing the full precision fractions, while
MRPR requires approximately half that of full precision. Fig. 6(b)
is a zoomed-in version of the previous sub-figure, showing the
differences among different Φ values for RPPR. The plots for the
full-precisionmethod andMRPR are out of scale and therefore does
not appear in the zoomed-in figure.

For instance, the total number of memory locations needed by
RPPR is

loc =


n

r=1

(mr − 1)


. O


n(n+ 1)

2


≈ O(n2)

≈ O


N2

ln2 N


(71)

where the value of n is substituted from Relation (64).
ForMRPR each location stores the value of (ρr ·Mr) in a mixed-

radix format. Therefore, the number of bits required per location
is

Nbits/per loc =
n−1
r=1

⌈lgmr⌉ ≈ lgM ≈ O(N).

Therefore,

total storage (in bits) = O


N2

lg2 N


× O(N)

≈ O


N3

lg2 N


. (72)
However, this can be optimized, since tr,k = 0 for r > k. By not
storing the digits when r > k, we reduce the storage requirements
of MRPR by approximately half.

As a further optimization, we use residue values zr directly as
indexes for look-up. Note that in each channel k, the ρk values
are obtained from zk value by modular multiplication with the
constant hk (i.e., the inner weight in each channel k, these are
constants once the set of moduli is selected). Therefore a simple
permutation of the rows (of the table which is indexed by ρr)
allows the residues zk to be directly used as indexes into the
look-up tables. We call such a table the Residue Addressed Table
(abbreviated as RAT).

In closing this section, we point out that the storage require-
ments are far less onerous than they appear for the following rea-
sons.

1. At run time, the storage is for look-up only. In other words,
the memory required is read-only. Read-only memory cells can
be much smaller, faster and power efficient than read/write
memory cells.

2. The memory is not one large monolithic block wherein any
location is accessible at random. Rather the memory can be
distributed among all channels and ‘‘random-access’’ is limited
to the set of (mr−1) entries in each channel. In fact, forΦ ≤ 42
and n ≤ 500, RPPR requires less than 25 kB of precomputed
memory in the largest channel mn. The implication is that the
address decoders need to deal with small numbers and are
therefore small in size and consume substantially lower power.

3. All the accesses to per-channel tables within each channel are
independent of accesses in other channels and therefore all of
them can be done in parallel. The implication is that the access
times are likely to be a lot better than a single large block of
RAM.

D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95 91
Table 4
Comparisons of RNS Sign Detection based on different algorithms.

Method Attribute
Exhaustive look-up at
cryptographic bit-lengths
considered?

All operands small? Max operand
length?

Extra modulus
needed?

Sign/overflow
detect?

Comments

[33] No No lg(M · n) ≡
full-precision
bit-length

No No From Eqn (14) & Step 3 in [33]

[8,20] No No lg(M · n) No Yes Eqn (9) & following para
in [20]

[11] No No lg(
n

r=1 Mr) Sections IV, V in [11]
[35] No No O(lg

√
M) No Yes Table 1 in [35]

[29] No No O(lg M
4) No Yes From Eqn (1) & Table 1 in [29]

[1] No No O(
n

r=1 Mr) No Yes Eqn (2) & Algorithm 3.1 in [1]
RPPR Yes Yes lg(n · Φ) Yes Yes
MRPR Yes Yes lg(n ·mn) No Yes
9. Comparison with other fast sign-detection methods

A high-level comparison of our sign detection algorithms with
other sign detection methods in the literature is given in Table 4.
Brief explanatory notes about each of these other methods are as
follows.

In [33,8,20], full precision lookup tables are utilized, requiring
substantially more pre-computed storage. We experimentally
show in Section 10, that the average run-time of RPPR is also
substantially faster than these methods.

In [11], a pre-computed lookup table is required with


Mr
entries. Thiswould require exponential storage, i.e.Θ(2N)memory
locations, not practical at cryptographic bit lengths.

Both [35] and [1] do not allow for general modulus sets, one
of our requirements. Furthermore, they also require operations
on very long operand lengths of approximately N/2 and N bits,
respectively, which does not take full advantage of the parallelism
inherent in RNS.

In [1], specific parameters of core functions must be pre-
computed by exhaustively searching the RNS space, which will
not scale. Additionally, this method cannot be used for magnitude
comparison or overflow/underflow detection, as the parity of Z is
assumed to be available as an input to the algorithm. As previously
shown in Section 3.1, an overflow/underflow can corrupt the value
of (Z mod 2) (and therefore the exact value of (Z mod 2) must be
computed, it cannot be assumed to be available).

In prior literature, the best known method to convert a RNS
value into the corresponding mixed-radix format using operations
only on small (channel-length) operands is iterative (see chapter
11, section 11.3 in [19]). The iterations are completely sequential
and do not make use of a sparse space of mixed-radix digits; it
therefore requires O(n2) operations which results in O(n2) delay,
substantially higher thanMRPR.

10. Experimental results from a GPU implementation

The delay and area estimates in Section 8 assume a dedicated
full-custom VLSI implementation.

An intermediate step before committing to a full custom VLSI
design is to run the algorithms onmodern GPUs with thousands of
cores. Ideally, with sufficient number of cores available, each core
can be dedicated to realize one RNS channel.

Another advantage of an implementation is that it can
independently corroborate the correctness of the algorithms. This
is true irrespective of whether the implementation is done on a
many-core GPU; or using FPGAs; or in the form of a dedicated
full-custom VLSI chip. This fact together with the other fact that
a GPU implementation is the easiest to realize (as compared with
synthesis on FPGAs or custom-VLSI design and fabrication) clearly
indicated that the best way to test the algorithms was to run them
on many-core GPU hardware.

Therefore, we tested our algorithms by running them on
a recently introduced top of the line GPU: the Nvidia 980 TI
which has 2800+ of FP32-CUDA-Cores/GPU [22] (i.e., each core
has the capability to perform 32-bit floating point operations
independently). The total on-chip memory available in various
shared configurations is more than 6 GB. The vendor (Nvidia)
has designed a software development tool named ‘‘CUDA’’ that
parallelizes the code execution across all available cores as
optimally as it can. We therefore implemented our algorithms as
well as full-precision (conventional)methods in CUDAand ran it on
the GPU. The results are summarized in the figures in this section.

In all the figures (in which they appear), plots labeled
‘‘full precision’’ correspond to the delay of existing/conventional
methods (such as [33,34] in Table 4), all of which require
full precision computations. The full-precision delay plot is
consistently drawn in bright red color and the points on the plot
are indicated by the downward-pointing-triangle symbol (▽).

For the RPPR algorithm, since the delay depends on the
precision parameter Φ , we show distinct plots for each value of
Φ . Out of this cluster of plots, the one of main interest corresponds
to the largest value of Φ (which in the simulations was 42). That
plot is also consistently drawn in the same (purple) color across
all figures; with the points on the plot indicated by the diamond
symbol (�).

Fig. 7(a) compares the average run-time (delay) required to
determine the exact value ofRC using the iterative RPPR algorithm
(i.e., Algorithm 2 unveiled in this paper); with the delay required
to do the same computation using existing methods (all of these
require full precision computations). The plots demonstrate the
following main points:

1: The average delay of RPPR algorithm is substantially lower
than the delay of existing methods for all cryptographic word-
lengths in a wide range from 512 bits all the way up through
5000+ bits.

2: In the large vertical scale needed to accommodate the plot
showing the delay of other (full precision) methods; delays of
RPPRmethods (with different values of the precision parameter
Φ) are so close to each other that they appear to coincide into a
single plot (a flat line near the x-axis).

3: The fact that this cluster-plot is almost flat (horizontal)
corroborates Theorem 7 (in Appendix A) which states that the
expected (or average) number of iterations of RPPR is Θ(1) and
independent of N .

Fig. 7(b) shows a zoomed-in view that separates all the clustered
RPPR plots. Note that the full-precision plot is out of scale and
therefore does not appear in this figure.

92 D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95
(a) Execution delays of RPPR vs. existing methods. (b) Zoomed in view of previous sub-figure on the left.

Fig. 7. Comparison of average delays of RPPR vs. existing methods (all existing methods need full precision and are therefore represented by the plot labeled full-precision
in sub-figure (a) above). Note that this plot is out of scale and therefore does not appear in (the next) sub-figure (b).
Fig. 8. Comparison of worst case delays of RPPR vs. other existing methods (plot
lebeled full precision).

Fig. 8 compares the delay of the iterative version of RPPR in the
worst case which happens to be at Z = 1. In this case, the delay
of full-precision methods is comparable to the delay of RPPR with
Φ = 42.

However, it turns out that the probability of encountering
this and/or other worst cases in real-life RSA encryptions and
decryptions is vanishingly small. This is the case because of the
following reasons:

1. Let N = P × Q be the publicly known modulus of the RSA
system. For high security, the primes P and Q are carefully
chosen as described in [14].

2. Even if the actual plain-text has specific values (such as 0 or 1
etc.). There are padding procedures (ex: see [26]) which ensure
that the padded value, which is the input to the encryption
method is sufficiently large and appears randomly distributed.

3. From the above two constraints it can be shown that the proba-
bility of landing upon intermediate remainder Z = 1 (which is
the worst case for RPPR); is negligible (the probability= 0 in a
measure theoretic sense as well as a practical sense). More gen-
erally the probabilities of encountering very small positive or
negative values of intermediate remainders (these are the bad
Fig. 9. Comparison of the delay of full-precision methods vs. the mixed-radix or
M RPPR.

cases for RPPR since these values lie deep/far outside the No-
Ambiguity-Zone) are vanishingly small.

The observation that bad cases for RPPR are extremely rare is
consistent with the fact that the average number of iterations of
RPPR is Θ(1) (see Theorem 7 in Appendix A).

In summary the experimental data demonstrates that the iter-
ative RPPR algorithm provides a better performance, i.e., smaller
execution delay while simultaneously needing a substantially
smaller storage.

The last figure in this section (i.e. Fig. 9) illustrates the results
from our implementation of MRPR (Algorithm 3 in Section 5) in
CUDA.

The implementation confirmed that the algorithm and the
carry-lookahead method compute the correct results. Further,
because of the upper triangular nature of the matrix (of operands,
wherein all elements in each column need to added); the storage
needed byMRPR turns out to about half of what is required by Full-
Precision methods.

On the down-side, the plots appear to indicate that MRPR ran a
bit slower than full-precision methods in CUDA.

This is an artifact caused by the limitations of shared-memory
modules in many-core GPUs. These limitations require that the

D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95 93
O(n2) bit/digit operations needed to ‘‘fill’’ the n× n matrix cannot
be done entirely in parallel. A serialization must be introduced in
the filling of one of the two dimensions (either the rows or the
columns). This serialization in turn causes the delay of the matrix-
filling operation to be O(n). The overall delay is therefore O(n) as
opposed to O(lg n) as claimed in Table 4.

This fact does not contradict the claim in Table 4. It does,
however, clearly bring out the distinction between the capabilities
of a many-core implementation vs. a full-custom VLSI realization.
A full custom hardware implementation can easily afford all
the blocks shown in Fig. 5. The delay of each block including
the FRiP–SCiP block as well as the carry-look-ahead logic was
estimated to be no bigger than O(lg n) in Section 8.2. In other
words, a many-core implementation cannot achieve what the
cascade of FRiP–SCiP block followed by the carry-look-ahead
logic can in a full custom VLSI implementation (or in an FPGA
realization).

11. Conclusion

We have identified that computing the exact value of the
reconstruction-coefficient (RC) is the main bottleneck that makes
it hard to implement fast sign (or overflow/underflow) detection.
We showed two different highly-parallel methods to efficiently
evaluate theRC , using limited inter-channel communications, and
also illustrating a wide range of possibilities/trade-offs between
memory (to store precomputed results and look those up at
runtime) vs. performing the computations at run-time.

In effect, we have shown that all of the following problems:

1. Exact determination of RC
2. Overflow/underflow detection
3. Sign detection
4. Magnitude comparison
5. Determining (Z mod 2) when gcd(M, 2) = 1

are equivalent in RNS in the sense that if any one of the above
problems can be solved efficiently, then all other problems can also
be solved efficiently.

Thus, we have cleared away an entire log-jam of RNS operations
(listed immediately above) that were hitherto considered difficult to
expedite; by

(i) identifying their equivalence and
(ii) solving the first problem in that equivalence-class (viz., ultra-fast

determination of RC).

Another independent contribution of this work is the fact that
(for many canonical arithmetic operations of interest, including all
the operations considered in this paper); ourmethods showhow to
exhaustively cover all possible input cases, even at asymptotically
large operand bit-lengths; without incurring a super-polynomial
growth in the size of the storage required.

Follow-on work includes the incorporation of the partial
reconstruction algorithms and exploration of the FRiP–SCiP block
in other operations including base change, scaling, modular
reduction and modular exponentiation and evaluation of their
performance.

Acknowledgments

The authors would like to thank their colleague Prof. Ryan
Robucci for making available GPU hardware and the associ-
ated CUDA software on high end graphics machine(s) in the
Eclipse Lab cluster (which he co-directs with other faculty mem-
bers in the CSEE Dept. at UMBC, for more info please visit
http://eclipse.umbc.edu).

We would also like to acknowledge the constructive comments
and suggestions from the anonymous reviewers of themanuscript.
Appendix A. Additional proofs

Theorem 6. If λ is the final value of Iter in Algorithm 2 (RPPR), then
λ ≤


log(Φ−1) M


.

Proof. Let Wi denote the RNS number with residues wr after the
ith iteration of thewhile loop, whereWi = (Φ−1)i Z mod M . Due
to Theorem 2, when M

Φ
≤ Wi ≤

M(Φ−1)
Φ

, the while loop will stop
with λ = i + 1. Otherwise, there are two cases: (a) Wi = X or (b)
Wi = M − X , where 0 < X < M

Φ
. LetWi+1 = (Φ − 1)Wi mod M .

For case (a), Wi+1 = (Φ − 1)X , with 0 < Wi+1 < M(Φ−1)
Φ

. In
other words, multiplying by Φ − 1 bringsWi closer to the NDZ (by
a factor of Φ − 1), but does not overshoot the NDZ. In the worst
case, when Z = 1, (Φ − 1)i ≥ M

Φ
when i =


logM−logΦ

log(Φ−1)


.

For case (b),Wi+1 = (Φ−1)(M−X) mod M = M− (Φ−1)X ,
with M

Φ
≤ Wi+1 < M . Similarly, multiplying by Φ − 1 brings Wi

closer to the NDZ (by a factor of Φ−1), but does not overshoot the
NDZ. In theworst case,when Z = M−1, (Φ−1)i(M−1) mod M ≤
M(Φ−1)

Φ
, or−(Φ − 1)i ≤ −M

Φ
, when i =


logM−logΦ

log(Φ−1)


.

In all cases, λ = imax + 1 ≤


logM−logΦ

log(Φ−1)


+ 1 ≤

log(Φ−1) M

. �

Theorem 7. For Z randomly chosen uniformly in 0 < Z < M, if λ is
the final value of Iter in Algorithm 2 (RPPR), then the expected value
of λ is Θ(1). Specifically, E[λ] < Φ

Φ−2 .

Proof. Let Wi denote the RNS number with residues wr after the
ith iteration of the while loop, where Wi = (Φ − 1)i Z mod M .
Following the proof of Theorem 6, there are two cases when Wi is
not in the NDZ: (a)Wi = X or (b)Wi = M − X , where 0 < X < M

Φ
.

For case (a), Wi+1 = (Φ − 1)X , with Wi+1 guaranteed to lie in
the NDZ whenWi+1 ≥

M
Φ
. This happens if X ≥ M

Φ(Φ−1) ; thus, for at
least Φ−2

Φ−1 of the uniformly chosen X , Wi+1 will lie in the NDZ.
For case (b),Wi+1 = (Φ−1)(M−X) mod M = M− (Φ−1)X ,

with Wi+1 guaranteed to lie in the NDZ when Wi+1 ≤ M − M
Φ
.

Similarly, this happens if X ≥ M
Φ(Φ−1) , and for at least Φ−2

Φ−1 of the
uniformly chosen X ,Wi+1 will lie in the NDZ.

Note that Algorithm 2 is guaranteed to not enter the while loop
(λ = 1)when Φ

M ≤ Z ≤ M(Φ−1)
Φ

. Thus, at least Φ−2
Φ

of the uniformly
chosen Z will have λ = 1.

Putting this all together,

the expected value of λ is at most

=
Φ − 2

Φ
+ 2


2
Φ


Φ − 2
Φ − 1


+ 3


2
Φ


Φ − 2

(Φ − 1)2


+ · · ·

+ λmax


2
Φ


Φ − 2

(Φ − 1)(λmax−1)


= 2


Φ − 2

Φ


1
2
+

2
(Φ − 1)

+
3

(Φ − 1)2

+ · · · +
λmax

(Φ − 1)(λmax−1)


. (73)

Now the infinite series
∞
i=1


i

(Φ − 1)i−1


=


Φ − 1
Φ − 2

 ∞
i=1


1

(Φ − 1)i−1



=


Φ − 1
Φ − 2

2

when Φ > 2.

Therefore, E[λ] < 2


Φ−2
Φ

 
Φ−1
Φ−2

2
−


Φ−2
Φ


=

Φ2
−2

Φ2−2Φ
< Φ

Φ−2
when Φ > 2. �

http://eclipse.umbc.edu

94 D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95
Table 5
The Residue Addressed Table (RAT) for the RPPR algorithm (2048 bit operands).
Lemma 6. Let r = 2λ−1. In the MRPR method, if gj = 0, then
g(j+r) = g0

[j,j+r]. Otherwise, if gj = 1, then g(j+r) = g1
[j,j+r].

Proof. Assume the lemma is true for λ = λ0. We will show it is
then true for λ = λ0 + 1. Let r0 = 2λ0−1.

By our assumption, if gj = 0, then g(j+r0) = g0
[j,j+r0]

, and if
gj = 1, then g(j+r0) = g1

[j,j+r0]
. Further, if g(j+r0) = 0, then g(j+2r0)

= g0
[j+r0,j+2r0]

, and if g(j+r0) = 1, then g(j+2r0) = g1
[j+r0,j+2r0]

. We
have four possibilities to consider.

First, if gj = 0 and g(j+r0) = 0, then g0
[j,j+r0]

= 0 and g0
[j+r0,j+2r0]

= g(j+2r0). Using the first relation in Eq. (50), g0
[j,j+2r0]

= g(j+2r0).
Second, if gj = 0 and g(j+r0) = 1, then g0

[j,j+r0]
= 1 and

g1
[j+r0,j+2r0]

= g(j+2r0). Using the second relation in Eq. (50), g0
[j,j+2r0]

= g(j+2r0).
Third, if gj = 1 and g(j+r0) = 0, then g1

[j,j+r0]
= 0 and g0

[j+r0,j+2r0]

= g(j+2r0). Using the third relation in Eq. (50), g1
[j,j+2r0]

= g(j+2r0).
Fourth, if gj = 1 and g(j+r0) = 1, then g1

[j,j+r0]
= 1 and

g1
[j+r0,j+2r0]

= g(j+2r0). Using the fourth relation in Eq. (50), g1
[j,j+2r0]

= g(j+2r0).
Therefore, if gj = 0, then g(j+2r0) = g0

[j,j+2r0]
, and if gj = 1, then

g(j+2r0) = g1
[j,j+2r0]

. Thus, the lemma is true for λ0 + 1.
Finally, for the inductive base case, λ = 1 and r = 1, and the

lemma is true based on the definition of g0
[k−1,k] and g1

[k−1,k] given
in Eq. (48). �

Appendix B. Sample Residue Addressed Table (RAT)

Since exhaustive pre-computation and look-up is at the core of
the RPPR methods, we show a sample Residue-Addressed-Table.
Before we do that, we outline the moduli selection procedure.

B.1. Moduli selection

Throughout this manuscript we have considered a RNS to
implement a 1024 bit RSA cryptosystem. We select the extra-
modulus me = 2 as stated required by conditions (51) at the very
end of Section 6.

(a) Single Precision calculations⇒1024bit operands, RangeRS =

(2(1024)
− 1): MS = {3, 5, 7, 11, 13, 17, 19, . . . , 743}; nS =

|MS | = 131; and MS = 3× 5× 7× · · · × 743.
(b) Double Precision calculations⇒ 2048 bit operands (produced
for example by squaring a 1024 bit integer), Range RD =

(2(2048)
− 1): MD = {3, 5, 7, 11, 13, 17, . . . , 1481}; nD =

|MD| = 233; and MD = 3× 5× 7× · · · × 1481.

B.2. Selection of precision parameter Φ

For the ease of illustration we pick the smallest allowable value
that satisfies conditions (51)⇒ Φ = 4.

Then using Theorem 2, we find the required number of
fractional decimal digits of precision for the RAT table: wF =

⌈log10(4× 233)⌉ = 3 ⇒ the scaling-factor (for integer-only
realization) is Cs = 103

= 1000.

B.3. The Residue Addressed Table (RAT) for RPPR

This appendix shows the RAT used by the RPPR algorithm.
First, note that each rowof Table 5 is a (sub) table corresponding

to one modulus.
For example, the 130th modulus = m 130 = 739. Accordingly,

the row corresponding to 739 is the table that is included in the
130th channel. For this channel, 0 ≤ z130 ≤ 738, and therefore that
row/sub-table has 738 entries corresponding to each of the non-
zero values that the residue z130 can assume for the 130th channel
(one listed under each column). As explained above, each entry
is an ordered pair, wherein, the first element is the approximate
fractional estimate that is pre-computed, truncated to 3 decimal
places and multiplied by a scaling factor 103 to convert it into an
integer. As a result the first element of the ordered pair needs at
most 3 decimal digits.

The second element is a modulo-2 value, which is sent to the
extra channel for accumulation modulo-2. This computation is
necessary if iterative disambiguation is required.

To conclude the table description we explain how some of the
entries are calculated. Let us consider the modulus 130th channel
withmodulusm130 = 739 again. In this case, it can be verified that
the inner-weight (defined in Eq. (8)) for this channel is h130 = 643;
and (M130 mod 2) = 1.

As a result, for z130 = [1, 2, . . . , 738]; the corresponding
reconstruction remainders are ρ130 = [643, 547, . . . , 96]; the
fractions are

fr =

643
739

,
547
739

, . . . ,
96
739


.

D.S. Phatak, S.D. Houston / J. Parallel Distrib. Comput. 97 (2016) 78–95 95
The approximate values truncated to 3 digits are [0.870, 0.740,
. . . , 0.129].

Multiplying each by the scaling factor 103 yields the first
elements of the ordered pairs shown in the table.

As explained in the heading of Table 5, the second element in
each ordered pair is the value of [(ρrMr) mod me].

Sinceme = 2 and gcd(mk,me) = 1 for all k, thenMr mod me =

1 ∀r ⇒ (ρrMr) mod 2 = (ρr mod 2), which is a single bit.
In closing we would like to point out the following:

1. We deliberately chose the radix of the computations to be 10
only for the ease of illustration: it is a lot easier to understand how
the RAT is created if the entries are decimal numbers (as opposed
to binary numbers).

In all the real implementations of the RAT tables (including the
RAT tables we created for the GPU experiments) the radix is 2 and
the entries in the table are unsigned scaled integers of small word-
length (up to approximately 12 bits for a 2048-bit RN system).
2. Note that existing (full-precision)methodswould require a huge
amount of storage as compared with the RAT above; because each
entry of the table would be a long integer with at least 617 decimal
digits. Hence, the size of the table (which equivalent to the above
RAT) for full precision computations would be approximately
617
3 ≈ 216 times larger.

References

[1] M. Abtahi, P. Siy, The Factor-2 sign detection algorithm using a core
function for RNS, Comput. Math. Appl. 53 (2007) 1455–1463. URL =
www.elsiver.com/locate/camwa.

[2] J.-C. Bajard, L.-S. Didier, P. Kornerup, An RNS montgomery modular
multiplication algorithm, IEEE Trans. Comput. 46 (1998) 766–776.

[3] J.-C. Bajard, L.-S. Didier, P. Kornerup, Modular multiplication and base
extensions in residue number systems, in: In Proceedings of the 15th IEEE
Symposium on Computer Arithmetic, IEEE, 2001, pp. 59–65.

[4] J. Bajard, S. Duquesne, M. Ercegovac, N. Meloni, Residue systems efficiency for
modular products summation: Application to Elliptic Curves Cryptography, in:
Proc. of SPIE, vol. 6313, 2006, pp. 631304–631316.

[5] J. Bajard, M. Kaihara, T. Plantard, Selected RNS bases for modular multiplica-
tion, in: Proc. of the 19th IEEE International Symposium on Computer Arith-
metic, Portland, Oregon, 2009, pp. 25–32.

[6] D. Banerji, J. Brzozowski, Sign detection in residue number systems, IEEE Trans.
Comput. 100 (1969) 313–320.

[7] H. Brönnimann, I. Emiris, V. Pan, S. Pion, Sign determination in residue number
systems, Theoret. Comput. Sci. 210 (1999) 173–197.

[8] J. Chiang, M. Lu, A general division algorithm for residue number systems, in:
Proc. of the 10th IEEE Symposium on Computer Arithmetic, 1991, pp. 76–83.

[9] R. Conway, J. Nelson, New CRT-based RNS converter using restricted moduli
set, IEEE Trans. Comput. 52 (2003) 572–578.

[10] R. Crandall, C. Pomerance, Prime Numbers: A Computational Perspective,
Springer, 2005.

[11] G.Dimauro, S. Impedovo, G. Pirlo, A new technique for fast number comparison
in residue number system, IEEE Trans. Comput. 42 (1993) 608–612.

[12] Milos D. Ercegovac, Tomas Lang, Digital Arithmetic, Morgan Kaufmann, 2004.
[13] F. Gandino, F. Lamberti, G. Paravati, J. Bajard, P. Montuschi, An algorithmic

and architectural study on montgomery exponentiation in RNS, IEEE Trans.
Comput. 61 (2012) 1071–1083.

[14] N. Heninger, Z. Durumeric, E. Wustrow, J.A. Halderman, Mining your Ps and
Q s: Detection of widespread weak keys in network devices, in: USENIX
Security Symposium, 2012, pp. 205–220.

[15] C. Huang, A fully parallel mixed-radix conversion algorithm for residue
number applications, IEEE Trans. Comput. C-32 (1983) 398–402.

[16] C. Hung, B. Parhami, An approximate sign detection method for residue
numbers and its application to RNS division, in: Computers & Mathematics
with Applications, vol. 27, Elsevier, 1994, pp. 23–35.
[17] S. Kawamura, K. Hirano, A fast modular arithmetic algorithm using a residue
table, in: Proc. of EUROCRYPT, vol. 88, Springer, 1988, pp. 245–250.

[18] S. Kawamura, M. Koike, F. Sano, A. Shimbo, Cox-rower architecture for fast
parallel montgomery multiplication, Lecture Notes in Comput. Sci. (2000)
523–538.

[19] I. Koren, Computer Arithmetic Algorithms, second ed., A K Peters Publishers,
Natic, Massachusetts, 2002.

[20] M. Lu, J. Chiang, A novel division algorithm for the residue number system,
IEEE Trans. Comput. (1992) 1026–1032.

[21] D.Miller, R. Altschul, J. King, J. Polky, Analysis of the residue class core function
of Akushskii, Burcev, and Pak, in: Residue Number SystemArithmetic:Modern
Applications in Digital Signal Processing, IEEE Press, 1986, pp. 390–401.

[22] Nvidia Pascal Architecture Detailed, last updated in 2016.
http://wccftech.com/nvidia-pascal-specs.

[23] B. Parhami, Computer Arithmetic Algorithms and Hardware Designs, Oxford
University Press, 2000.

[24] S.J. Piestrak, A high-speed realization of a residue to binary number system
converter, IEEE Trans. Circuits Syst. II 42 (1995) 661–663.

[25] K. Posch, R. Posch, Modulo reduction in residue number systems, IEEE Trans.
Parallel Distrib. Syst. 6 (1995) 449–454.

[26] Optimal Asymmetric Encryption Padding, last updated in 2015.
http://en.wikipedia.org/wiki/optimal_asymmetric_encryption_padding.

[27] A. Shenoy, R. Kumaresan, Fast base extension using a redundant modulus in
RNS, IEEE Trans. Comput. (1989) 292–297.

[28] M. Soderstrand, C. Vernia, J.-H. Chang, An improved residue number system
digital-to-analog converter, IEEE Trans. Circuits Syst. 30 (1983) 903–907.

[29] L. Sousa, L. Tulisbon, Efficient method for magnitude comparison in rns based
on two pairs of conjugate moduli, in: Proc. of the 18th IEEE Symposium on
Computer Arithmetic, 2007, ARITH’07, 2007, pp. 240–250.

[30] N. Szabo, R. Tanaka, Residue Arithmetic and its Applications to Computer
Technology, McGraw-Hill, 1967.

[31] The ‘‘prime-counting function’’, explained in wikipedia, last updated in 2016.
http://en.wikipedia.org/wiki/prime_counting_function.

[32] ‘‘The Primorial function’’ explained in wikipedia, last updated in 2016.
http://en.wikipedia.org/wiki/primorial.

[33] T. Van Vu, Efficient implementations of the Chinese remainder theorem for
sign detection and residue decoding, IEEE Trans. Comput. 100 (1985) 646–651.

[34] T. Van Vu, The use of residue arithmetic for fault detection in a digital flight
control system, NAECON (1984) 634–638.

[35] Y. Wang, X. Song, M. Aboulhamid, A new algorithm for RNS magnitude
comparison based on new Chinese remainder theorem II, in: Great Lakes
Symposium on VLSI, IEEE Computer Society, 1999, pp. 362–365.

[36] N. Weste, K. Eshraghian, Principles of CMOS VLSI Design, A Systems
Perspective, second ed., Addison Wesley, 1993.

[37] D. Younes, P. Steffan, Universal approaches for overflow and sign detection in
residue number system based on {2n

− 1, 2n, 2n
+ 1}, in: ICONS 2013, The

Eighth International Conference on Systems, 2013, pp. 77–81.

Dhananjay S. Phatak received his B.Tech. degree from
IIT Bombay (Mumbai) in Electrical Engineering; MSEE
in Microwave Engineering from Univ of Massachusetts
(UMASS) at Amherst; and his Ph.D. in Computer Systems
Engineering also from the ECE Dept. at UMASS Amherst in
1994.

He was an Assistant Professor in the ECE Dept. at the
StateUniversity ofNewYork at Binghamton fromFall 1994
through Spring 2000. Since the fall of 2000, he has been an
Associate Professor of Computer Engineering in the CSEE
Dept. at UMBC. His research has been supported by NSF,

NSA as well as local companies (Aether Systems Inc., Northrup Grumman). He
was awarded the NSF CAREER award in 1999. His current Research interests are
in Computer Arithmetic Algorithms and their h/w realizations and all aspects of
cyber/information/data/computing/network/systems security.

Steven D. Houston received a B.S. in Computer Engineering from Texas A&M
University and an M.S. in Computer Science from the University of California,
Berkeley.

He is currently a Ph.D. candidate in the CSEE Dept. at University of Maryland,
Baltimore County. His research interests span multiple topics, including computer
arithmetic, data mining, and security.

http://www.elsiver.com/locate/camwa
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref2
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref3
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref6
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref7
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref9
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref10
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref11
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref12
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref13
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref15
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref16
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref17
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref18
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref19
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref20
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref21
http://wccftech.com/nvidia-pascal-specs
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref23
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref24
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref25
http://en.wikipedia.org/wiki/optimal_asymmetric_encryption_padding
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref27
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref28
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref30
http://en.wikipedia.org/wiki/prime_counting_function
http://en.wikipedia.org/wiki/primorial
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref33
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref34
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref35
http://refhub.elsevier.com/S0743-7315(16)30070-3/sbref36

	New distributed algorithms for fast sign detection in residue number systems (RNS)
	Notation and definitions
	Introduction
	Advantages of RN systems and why they are ideal for cryptographic hardware
	Full vs. partial-reconstruction

	Brief overview of prior and related work
	The well-known ``extra-modulus'' (integer domain only) method to evaluate RC by itself is not sufficient for sign-detection
	A small numerical example to demonstrate the insufficiency of the ``extra modulus'' method by itself for sign detection

	Drawbacks of known Fractional Domain Method(s) to evaluate RC
	Additional methods that do not scale

	The novel reduced-precision partial reconstruction algorithm: RPPR
	Narrowing the estimate of RC with limited precision
	No-Ambiguity Zone
	Specification of the RPPR algorithm
	Small numerical example illustrating the steps in RPPR

	The mixed-radix partial reconstruction algorithm: MRPR
	A carry-look-ahead framework
	MRPR algorithm specification
	Small numerical example to illustrate MRPR

	Sign detection
	Sign detection algorithm specification
	The extra modulus me

	Moduli selection
	Theoretical latency, communications, and memory requirements
	Assumptions about implementation
	Delay assumptions, and estimation of total delay
	Delay estimation
	Communication requirements
	Storage requirements

	Comparison with other fast sign-detection methods
	Experimental results from a GPU implementation
	Conclusion
	Acknowledgments
	Additional proofs
	Sample Residue Addressed Table (RAT)
	Moduli selection
	Selection of precision parameter Φ
	The Residue Addressed Table (RAT) for RPPR

	References

