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Abstract 
Design of the leading zero anticipator ( L a )  or 

detector (LZD) is pivotal to the normalization of results 
for addition and fused multiplication-addition in high- 
perjormance floating point processors. This paper for- 
malizes the analysis and describes some alternative 
organizations and implementations from the known art. It 
shows how choices made in the design are o fen  depen- 
dent on the overall design of the addition unit, on how 
subtraction is handled when the exponents are the same, 
and on how it detects and corrects for the possible one-bit 
error of the 15%. 

1. Introduction 

Leading zero anticipators predict the location of the 
most significant bit location of the result of a floating- 
point addition directly from the inputs to the adder. This 
determination of the leading digit position is performed in 
parallel with the addition step so as to enable the normal- 
ization shift to start as soon as the addition compleles. 
Many different solutions to the problem of designing an 
LZA have appeared in publications and patents. They 
have varying degrees of complexity, and some operate 
only on restricted cases. This paper describes what appear 
to be the simplest solutions for both the gencral and the 
restricted cases. It also includes a design that has not been 
previously published except in a patent [l], but which is 
used in several commercial processors. 

The typical LZA consists of the generation of a string 
of bits having approximately the same number of leading 
zeros as the sum output. An LZD is then employed to 
encode the result. Several methods of designing the LZD 
are available, and the best choice oftcn depends on the 
adder design and on how the string of bits is created. 

LZDs are frequently used in fixed point arithmetic 

units also. A Count Leading Zeros (CLZ) instruction is 
often part of the fixed point instruction set, and the count- 
ing of leading digits of the divisor may be needed for some 
fixed point divide algorithms. Techniques that are known 
for speeding up LZDs can also be used for the encoding of 
an LZA. Therefore, this paper includes brief descriptions 
of two methods for efficiently obtaining a leading zero 
count. 

The LZA can also detect the cases when the result of 
addition is all zeros. This too is a function which is useful 
in both fixed point and floating point units. Therefore, 
some discussion of zero result predictors is included as 
well. 

The earliest description of an LZA known to the 
authors is by Kershaw, et a1 [2][3] which shows a 
Manchester carry adder circuit with a second precharged 
circuit used for the detection of the leftmost significant 
digit. It works for both leading zeros when the rcsult of a 
subtraction is positive, and for leading ones when the 
result is negative. This basic algorithm is also used in the 
T9000 Transputer described by Knowles [4]. 

An LZA described by Hvkenek and Montoye [5] also 
handles the general case of leading ones or zeros. Because 
this method is more complex and slower than efficient 
implementations of the Kershaw method, wc do not 
describe this design in detail in this paper, 

Since then, Britton et al [6] and Suzuki et a1 [7] have 
shown that a much simpler circuit can bc used when one 
can m u m e  that the subtraction result will bc positive. 
Further simplification is obtained when one also assumes 
that the exponents differ by one, as shown by [81 and 191. 

Most of the LZAs which are described are inexact. 
They only examine the inputs from left to right, ignoring a 
possible carry from the right for each bit that it predicts to 
be part of the leading string of zeros. Several papers [lo] 
[l l l  1121 have also been published describing exact LZAs 
which do take into account carries from the right, but they 
gcncrally result in excessive complexity and delay. How- 
ever, one exact LZA [13] is described briefly because it is 
simple, and has delay comparablc to that of lhe adder. 
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An alternative to the exact LZA is to an error indicator 
in parallel with the LZA computation. The Kershaw LZA 
includes a circuit which uses the carries from the right to 
generate a single error signal for the LZA which can be 
used to adjust the controls to the last stage of a multistage 
normalizing shifter. The circuit is relatively simple, and 
the error signal can be developed in parallel with the ear- 
lier stages of the normalizer. Thus, when one includes the 
circuits for the error signal and adjustment of the shift con- 
trols, the result is an exact LZA.The principal concepts for 
calculating this error signal are also included in this paper. 

The remainder of this paper describes the methods for 
dctecting leading digits, encoding a count of the leading 
digits, detecting a zero-value result, and correcting the 
error in the inexact LZAs. We describe generalized lead- 
ing digit detection and detail optimizations possible for 
restricted cases. 

2. General leading digit detection and antici- 
pation 

For an arbitrary binary number, k-bits of leading zero 
can be represented as the string of digits Oklx* , where the 
superscript represents k instances of the digit 0, x is either 
zero or one, and * indicates zero or more instances of the 
digit x. Likewise, k-bits of leading one can be represented 
as lkOx* . Leading zero detection thus involves a determi- 
nation of the position of the first non-zero digit, or equiva- 
lently the first transition from a zero digit i to a one digit 
i+l. Leading one detection involves the location of the first 
transition from a one digit to an adjacent zero digit. 

In most of the literature, thc term Zeading zeros refers 
to a starting string of zeros prior to the first one, while 
Zeading ones refers to a starting string of ones prior to the 
first zero. However, there may be some confusion since 
several papers also use the term leading one predictor for 
determining the first one after a starting string of zeros. 
Therefore, in this paper, we avoid use of that term. 

Leading zeros occur when the result of a subtraction 
is positive, and leading ones occur when the result is nega- 
tive. LZAs make use of the propagate (T), generate (G), 
and kill (2) functions for each bit position of the adder 
inputs A and B after swapping, alignment, and inversion 
have taken place. These functions are defined as: 

T = A O B ,  G = A B ,  Z = 

Leading zeros occur when the starting sequence has 
the pattem T*GZ*. If there are n bit positions before the 
first mismatch, then the sum will have either (n-1) or n 
leading zeros. Similarly, thc number of leading ones can 
be found when the starting sequence is T*ZG*. 

For addition or subtraction with 2’s complement 

signed numbers, leading zeros may also occur with a start- 
ing sequence of Z*, and leading ones may occur with a 
starting sequence of G*. 

A starting sequence of Z* may also occur in effective 
addition of floating point denormalized operands. If an 
LZA is to be used for both effective addition and subtrac- 
tion, then it would be useful to prefix the sequence with a 
T for subtraction and a Z for addition. Also, we can 
append a low order Z for an input carry of zero, and a low 
order G for an input carry of one, as sometimes needed for 
subtraction. 

2.1. Detection of first leading digit -- general case 

Kershaw, et a1 [21[31 recognized that each digit can be 
evaluated to determine if this digit can possibly be the first 
leading digit by examination of this digit and its two 
neighbors, one to the left and one to the right. Knowles 141 
formalized the solution by providing a truth table for set- 
ting an indicator 6. If the bits are numbered such that bit 0 
is the most significant, then, the indicator is equal lo one 
when: 

If the indicator is set in position i and no other digit of 
greater significance has its indicator set, then the leading 
digit is cither i or i+l. 

Essentially the same result appears in a recent paper 
by Bruguera and Lang [ 141. 

2.2. Separate detection of leading zeros and ones 

If the detection of leading zeros and ones are done 
separately, then the indicators only need to examine bits i 
and i+l. For the leading zeros case, the indicator, f f e r o S  is 
equal to one, when 

f e r o s  = ~ ~ O z i . 1 ,  i > O  (2) 

If the indicator is set in position i and no other digit of 
greater significance has its indicator set, then the leading 
digit is either i or i+l. 

Likewise for the leading ones case, the indica- 
tor, f p n r s  is equal to one, when 

fpnes = T i  0 Gi+ , i 2 0 (3) 

If the indicator is set in position i and no other digit of 
greater significance has its indicator set, then the leading 
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digit is either i or i+l. 

The indicators defined in equ. (2) and (3) are used in 
the LZA by Schmookler and Mikan [l]. In that design, the 
indicators are ORed from the left to create two monotonic 
strings of zeros followed by ones. The two strings are then 
ANDed together bit-wise to create a single monotonic 
string whose first one predicts the bit position of the most 
significant bit. 

2.3. Detection of first leading digit -- restricted 
cases 

The indicators defined in equ. (2) and (3) can be sim- 
plified further when the detection is restricted to only lead- 
ing zeros or leading ones. For example, when the circuit 
for detection of leading zeros does not need to consider 
cases where leading ones might result, then the leading 
zero indicator can be simplified to 

(4) 

a? shown by Suzuki et al 171. In that paper, a comparison 
of the operands is performed to ensure that only the 
smaller operand is complemented during subtraction. 
Other designs where this could be applied would be where 
separate adders are provided for use when the exponents 
are equal. One adder calculates A-B and the other calcu- 
lates B-A, and the result from the adder producing a carry 
out is selected. Each adder then needs only a leading zero 
detector using indicators of the form shown above. 

An LZA based on equ. (4) is used in another recent 
paper by Bruguera and Lang 1151. 

Another variation appears in a patent by Britton et al 
[6]. In this design, separate leading zero and leading one 
detectors are used, and the adder output carry selects 
between them. The leading zero detector uses indicators 
defined as in equ. (41, and the leading one detector uses 
indicators as defined in cqu. ( 5 )  shown below: 

Further simplification results for a case which is even 
more restricted, as described in [8J and [SI. Some floating 
point adders provide separate dataflow paths for "far" and 
"near" cases. The far path is used for either effective addi- 
tion or for subtraction of operands whose exponents differ 
by more than one. No LZA is needed for the far path. In 
the near path, separate LZAs are used for subtraction of 
operands whose exponents are equal and for subtraction of 
operands whose exponents differ by one. This allows the 
detection of the number of leading zeros to start in parallel 
with swapping, aligning and inverting the operands. When 

the exponents differ by one, the presumed smaller operand 
is shifted right one place and then inverted. Since the 
operands must be normalized, the function in the first bit 
must be G, and therefore the number of leading zeros is 
determined by the number of following bit positions that 
are Zs. Therefore, the leading zero indicator in each fol- 
lowing bit position is f:e'o" = Zi + I . 

2.4. An exact LZA 

A conceptually simple exact LZA described in [131 is 
integrated with the adder. To handle both positive and 
negative results, two separate adders are used, one assum- 
ing the first operand is larger, the other assuming the sec- 
ond operand is larger. The output carry from the first 
adder is uscd to select the result which is positive. Each 
adder includes its own LZA which is also selected. 

Since each adder may assume that its result is posi- 
tive, its LZA only needs to consider leading zeros. The 
adder design uses carry select, so that for each group of 
bits, two sets of conditional sums are generated, one set 
assuming input carry of zero, the other assuming input 
carry of one. The intemal carries then select the appropri- 
ate sums as they are evaluated. With each group of condi- 
tional sums, a conditional count of leading zcros is 
determined for the group. These conditional counts are 
then also selected by the internal carries. This description 
is a simplification of the actual design, which must also 
take into account the hierarchy of the adder and also gen- 
erate the high order bits of the leading zero count from 
larger groups of bits. 

2.5. Comparing cost and delay 

In this section, the LZA described by equ. (1) is 
referred to as Kershaw, (the earliest reference), the LZA 
described by equ. (2) and (3) is referred to as Schmookler, 
and the LZA described by equ. (4) and (5) is referred to as 
Britton. 

Only Kershaw and Schmookler cover both leading 
zeros and ones, without using any carry signals from the 
adder. From the equations, it is apparent that Kershaw 
would have one or two more gate levels of delay for just 
the indicators, and a few more total gates as well. How- 
ever, Schmookler then requires separate ORing of signals 
from the left for leading zeros and for leading ones, so the 
costs are more comparable. Then, Schmookler also 
requires the resulting strings to be ANDed, so the total 
delays may also be about the same. 

Now comparing Kershaw with Britton, although the 
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indicator circuits are much smaller and faster with Britton, 
both the ORing and encoding of the shift signals must be 
duplicated for the two cases, before the adder carry signal 
is available for selection. Therefore, the cost of Britton 
may actually be slightly greater, and its delay is dependent 
on the speed of the adder. In the actual circuit implementa- 
tions that are shown, Britton shows several enhancements 
for reducing the delay. Both use precharged chains of 
NFET pass gates for propagating the leading zero signal 
from the high order bits to the lower order bits, to accom- 
plish the ORing. However, Britton uses a regcnerative 
feedback circuit in each bit position to help pull the chain 
low. Britton also illustrates how a wide word can be bro- 
ken up into smaller chains which operate in parallel to pro- 
vide some lookahead. 

When one only needs to consider leading zeros, it is 
apparent that the LZA used by Suzuki would provide 
lower cost and less delay than Kershaw. 

3. Encoding count of leading digits 

There are two basically distinct methods of obtaining 
an encoded count of the leading digits. One method 
includes the creation of a monotonic string of zeros fol- 
lowed by ones. The other method uses a hierarchical tree 
structure. 

3.1. Leading digit counting through monotonic 
string production 

The restriction that no other digit of greater signifi- 
cance with an active indicator imposes a priority encoding 
function on the anticipator. The priority encoding involves 
the generation of the ORing of all indicator bits of greater 
significance. The Boolean inverse of this value is ANDed 
with the indicator to signify that the position i contains the 
first leading digit: 

i 

Fi  = Cfj 

This ORing function creates a monotonic string in 
which the digit i represents the ORing of all less signifi- 
cant indicators. Once this string is created, the indicator fi 
is ANDed with the inverse of the monotonic string in posi- 
tion i-1 to determine the position which is within one digit 
of the most significant digit of the result. 

The creation of the monotonic string can be accom- 
plished through the use of Manchester carry techniques[2] 

[31 or through hierarchical or look-ahead techniques [41. 
The monotonic string method is used in several LZAs. 

The Power and Power2 processors employ the well-known 
LZA designed by Hokenek and Montoye [5]. Five separate 
monotonic strings are generated, including strings for 
leading ones, leading zeros and the case where all bit posi- 
tions are Ts. These strings are ones followed by zeros, 
where the first zero indicates the location of the most sig- 
nificant bit position. Therefore, they are bit-wise ORed 
together to obtain a single string. The Power3 processor, 
and also several PowerPC processors such as some which 
are used in the Power Macintosh, use the LZA by 
Schmookler [ 11, which creates two monotonic strings as 
we previously described in section 2.2. Thus, the creation 
of monotonic strings in both of these designs is essential to 
combining the several strings into a single string. 

In Kersaw [2][3], generating the count from a mono- 
tonic string is dictated by the use of precharged chains. 
One small circuit integrates the adder and LZA functions 
together. It uses a boot-strappcd Manchester carry chain 
for the adder, which propagates the carries from right to 
left, and it uses a similar precharged chain to propagate the 
Fi signal from left to right under control of the local propa- 
gate signals to generate the monotonic Fi string and the 1- 
of-32 coded string L. The carry signals and the Li are also 
used to create an error signal at each position, ei. The OR 
of these ei signals indicates that a 1-bit correction is 
needed in both the shifter and the exponent. The creation 
of an error signal in this way also required generation of 
the monotonic string. 

In the 'I9000 described by Knowles [4], the LZA is 
logically similar to that of Kershaw, but with more stan- 
dard lookahead techniques similar to the cany skip tech- 
niques used in their adder, The use of ORing to create the 
monotonic strings is due to its simplicity. 

In order to get the leading zero count, either simple 
AND-OR functions of the F, signals or simple ORing of 
particular Li signals from equ. (6) and (7) permit easy and 
fast encoding of the count. For example, for an eight-bit 
sum, the shift amount which is determined by the binary 
encoding of the location of the leading significant digit can 
be formed by: 

SAo = F3F, 

= L4 v L,  v L, v L,  

S A ,  = F ~ F ~ v F ~ F ,  

= L , v L 3 v L , v L ,  (8) 
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= L ,  v L, v L, v L, 

3.2. Leading digit counting with tree structure 

The other well-known method for LZC design consists of 
a tree structure. For example, the string of n inputs may 
first be partitioned into nl2 pairs of adjacent bits. For each 
pair, a 2-bit leading zero count is generated, and the high 
order bit also indicates when both bits are zeros. At the 
next level, adjacent pairs are combined, a mux circuit 
selects the count from one of the pairs, and a new high 
order bit is appended to the count which also indicates that 
both pairs are all zeros. This scheme is continued for 
log2(n) levels. Some speedup can be obtained by detecting 
larger groups of all zeros and using larger multi-way 
muxes. This type of binary tree structures is described 
more fully for a leading zero detector by Oklobdzija 
[ 16][ 171 and for the LZA by Suzuki [7]. The similarity of 
the two implementations is shown in a short corrcspon- 
dence by Oklobdzija [IS]. 

The first method that was described using monotonic 
strings can be significantly faster than the hierarchical tree 
structure if one uses a circuit topology which permits fast 
wide ORs (or ANDs with negative polarity signals). 
Manchester carry circuits at one time provided such bene- 
fits, but long chains are less attractive with low-voltage 
technology. More conventional dynamic circuits, however, 
are well suited to use of wide OR?. 

On the other hand, with dynamic circuits, the tree 
structure method can also be sped up by using 4-bit or 
even 8-bit groups to reduce the hierarchy by a factor of 
two or three. The wide ORs can also be used in a hybrid 
structure to reduce the number of levels. 

4. Early zero result detection 

Early detection of a zero result is most important for 
fixed point arithmetic units, which must set condition bits 
indicating if a result is greater than, less than, or equal to 
zero. The detection must be done in parallel with the addi- 
tion or subtraction, to enable fast conditional branching. A 
solution by Weinberger [19] describes a rather compli- 
cated expression which uses the T, G and Z functions for 
each bit position, but which is faster than the adder itself. 
A simpler solution is presented in Vassiliades [20][21] 
which is equivalent to the solution described here for lead- 
ing zero detection in which all fyrosindicator bits are 
zeros. Thus, a simple ORing of these bits, or equivalently, 
the value of would detect a non-zero result for an n- 
bit adder. We noted earlier that for addition, Z,=l, so the 
general T* G Z* sequence can produce a zero result with 
2's complement signed numbers as used in fixed point 

arithmetic. For subtraction, however, since G,=l, the only 
sequence that can produce a zero result is T", which corre- 
sponds to both inputs being identical prior to inverting one 
of them. Both of these cases are handled properly by the 
use of FrLYs.  It should also be pointed out that although 
the Vassiliades method also lends itself to leading zero 
detection, the Weinberger method does not. Nevertheless, 
it was the only known solution for many years. 

provides an attractive way to determine a zero result. Oth- 
crwise, since the T* G Z* sequence cannot produce lead- 
ing zeros for effective addition, a simpler circuit may be 
chosen. For effective addition, a zero rcsult can only occur 
when both operands are zeros, therefore, ORing the zi 
signals would detect a non-zero result. For effective sub- 
traction, both operands must be identical, so ORing the Ti 
signals would detect a non-zero result. 

For floating point, if a full LZA is used, then 

5. Handling the error in anticipators 

LZAs as described are inexact; they may have up to 
one bit of error in the count. This can be detected at the 
end of the normalization shift, and if there remains a lead- 
ing zero, the result can be shifted one more bit position in 
a 2-to-1 multiplexor. A slightly faster method is to do this 
extra shift in the last stage of the normalization shifter. The 
shifter usually contains one or more stages of coarse shift- 
ing, and the last stage does the fine shifting. For example, 
if the coarse shifters do all shifts which are multiples of 
four bits, thcn the fine shifter would normally only shift 
from zero to three bit positions. However, to allow for the 
LZA error, the fine shifter would be modified to shift up to 
four bit positions. The high order four bits from the coarse 
shifter would be examined to determine the correct shift 
amount. A fast circuit for doing this uses the predicted 
control signals. For example, if the LZA predicts a fine 
shift of two, then it would select a shift of two if bit 2 is a 
one, otherwise it selects a shift of three. 

A similar method is to avoid the calculation of the 
least significant digits of the leading digit count. This 
eliminates a large amount of complexity in the anticipator. 
The circuit described above for selecting the fine shift con- 
trols would be replaced by a four-bit LZD. Since that 
essentially has the delay of a 4-way NAND, it is not much 
slower. However, one now needs only an LZA which com- 
putes the number of leading digits modulo-4. The indica- 
tors 8, Fi, and Li only need to be generated for each block 
of four bits, resulting in savings in both circuits and delay. 
This method is used in the early IBM RSf6000 processors 
described by Montoye and Hokenek [22] [SI. 

The error can also be detected at each bit position 
[2][3] through an examination of the carry-in to that posi- 
tion. For a leading position i the error indicator is: 
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where Ai is the addend digit and Ci+l is the carry-in to the 
(i+l)th digit. 

The global error correction signal, e, indicates when 
an additional leading digit must be removed, where, 

e = C e i .  
i 

Quach [23] has shown that an equivalent error indica- 
tor can be formed by 

where, Ci is the carry-in to the ith digit. 

6. Summary 

Use of leading zero anticipators or detectors is an 
established method of reducing the delay of floating-point 
addition. We have presented several algorithms and 
implementations which have proven to be fast and effi- 
cient, and we have shown how other choices made in the 
design of the adder, including circuit technology consider- 
ations, can guide in the selection of the best method for a 
particular floating-point processor. We have included 
both algorithms which assume that the result of an effec- 
tive subtraction must be positive and those which cover 
the general cage of floating-point addition. Because they 
are closely related to leading zero anticipation, we have 
described altemative design for leading zero detectors and 
count leading zero implementations. We have described 
altemative methods with dealing with the one-bit position 
error inherent in leading zero anticipators. 
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