
Leading Zero Anticipation and Detection -- A Comparison of Methods

Martin S. Schmooklerl and Kevin J. Nowka2

'IBM Server Development and 21BM Austin Research Laboratory
Austin, Texas USA

martins@ austin.ibm.com, nowka@ austin.ibm.com

Abstract
Design of the leading zero anticipator (L a) or

detector (LZD) is pivotal to the normalization of results
for addition and fused multiplication-addition in high-
perjormance floating point processors. This paper for-
malizes the analysis and describes some alternative
organizations and implementations from the known art. It
shows how choices made in the design are o fen depen-
dent on the overall design of the addition unit, on how
subtraction is handled when the exponents are the same,
and on how it detects and corrects for the possible one-bit
error of the 15%.

1. Introduction

Leading zero anticipators predict the location of the
most significant bit location of the result of a floating-
point addition directly from the inputs to the adder. This
determination of the leading digit position is performed in
parallel with the addition step so as to enable the normal-
ization shift to start as soon as the addition compleles.
Many different solutions to the problem of designing an
LZA have appeared in publications and patents. They
have varying degrees of complexity, and some operate
only on restricted cases. This paper describes what appear
to be the simplest solutions for both the gencral and the
restricted cases. It also includes a design that has not been
previously published except in a patent [l], but which is
used in several commercial processors.

The typical LZA consists of the generation of a string
of bits having approximately the same number of leading
zeros as the sum output. An LZD is then employed to
encode the result. Several methods of designing the LZD
are available, and the best choice oftcn depends on the
adder design and on how the string of bits is created.

LZDs are frequently used in fixed point arithmetic

units also. A Count Leading Zeros (CLZ) instruction is
often part of the fixed point instruction set, and the count-
ing of leading digits of the divisor may be needed for some
fixed point divide algorithms. Techniques that are known
for speeding up LZDs can also be used for the encoding of
an LZA. Therefore, this paper includes brief descriptions
of two methods for efficiently obtaining a leading zero
count.

The LZA can also detect the cases when the result of
addition is all zeros. This too is a function which is useful
in both fixed point and floating point units. Therefore,
some discussion of zero result predictors is included as
well.

The earliest description of an LZA known to the
authors is by Kershaw, et a1 [2][3] which shows a
Manchester carry adder circuit with a second precharged
circuit used for the detection of the leftmost significant
digit. It works for both leading zeros when the rcsult of a
subtraction is positive, and for leading ones when the
result is negative. This basic algorithm is also used in the
T9000 Transputer described by Knowles [4].

An LZA described by Hvkenek and Montoye [5] also
handles the general case of leading ones or zeros. Because
this method is more complex and slower than efficient
implementations of the Kershaw method, wc do not
describe this design in detail in this paper,

Since then, Britton et al [6] and Suzuki et a1 [7] have
shown that a much simpler circuit can bc used when one
can m u m e that the subtraction result will bc positive.
Further simplification is obtained when one also assumes
that the exponents differ by one, as shown by [81 and 191.

Most of the LZAs which are described are inexact.
They only examine the inputs from left to right, ignoring a
possible carry from the right for each bit that it predicts to
be part of the leading string of zeros. Several papers [lo]
[l l l 1121 have also been published describing exact LZAs
which do take into account carries from the right, but they
gcncrally result in excessive complexity and delay. How-
ever, one exact LZA [13] is described briefly because it is
simple, and has delay comparablc to that of lhe adder.

7
0-7695-1 150-3/01 $10.00 0 2001 IEEE

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 4, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

http://austin.ibm.com
http://austin.ibm.com

An alternative to the exact LZA is to an error indicator
in parallel with the LZA computation. The Kershaw LZA
includes a circuit which uses the carries from the right to
generate a single error signal for the LZA which can be
used to adjust the controls to the last stage of a multistage
normalizing shifter. The circuit is relatively simple, and
the error signal can be developed in parallel with the ear-
lier stages of the normalizer. Thus, when one includes the
circuits for the error signal and adjustment of the shift con-
trols, the result is an exact LZA.The principal concepts for
calculating this error signal are also included in this paper.

The remainder of this paper describes the methods for
dctecting leading digits, encoding a count of the leading
digits, detecting a zero-value result, and correcting the
error in the inexact LZAs. We describe generalized lead-
ing digit detection and detail optimizations possible for
restricted cases.

2. General leading digit detection and antici-
pation

For an arbitrary binary number, k-bits of leading zero
can be represented as the string of digits Oklx* , where the
superscript represents k instances of the digit 0, x is either
zero or one, and * indicates zero or more instances of the
digit x. Likewise, k-bits of leading one can be represented
as lkOx* . Leading zero detection thus involves a determi-
nation of the position of the first non-zero digit, or equiva-
lently the first transition from a zero digit i to a one digit
i+l. Leading one detection involves the location of the first
transition from a one digit to an adjacent zero digit.

In most of the literature, thc term Zeading zeros refers
to a starting string of zeros prior to the first one, while
Zeading ones refers to a starting string of ones prior to the
first zero. However, there may be some confusion since
several papers also use the term leading one predictor for
determining the first one after a starting string of zeros.
Therefore, in this paper, we avoid use of that term.

Leading zeros occur when the result of a subtraction
is positive, and leading ones occur when the result is nega-
tive. LZAs make use of the propagate (T), generate (G),
and kill (2) functions for each bit position of the adder
inputs A and B after swapping, alignment, and inversion
have taken place. These functions are defined as:

T = A O B , G = A B , Z =

Leading zeros occur when the starting sequence has
the pattem T*GZ*. If there are n bit positions before the
first mismatch, then the sum will have either (n-1) or n
leading zeros. Similarly, thc number of leading ones can
be found when the starting sequence is T*ZG*.

For addition or subtraction with 2’s complement

signed numbers, leading zeros may also occur with a start-
ing sequence of Z*, and leading ones may occur with a
starting sequence of G*.

A starting sequence of Z* may also occur in effective
addition of floating point denormalized operands. If an
LZA is to be used for both effective addition and subtrac-
tion, then it would be useful to prefix the sequence with a
T for subtraction and a Z for addition. Also, we can
append a low order Z for an input carry of zero, and a low
order G for an input carry of one, as sometimes needed for
subtraction.

2.1. Detection of first leading digit -- general case

Kershaw, et a1 [21[31 recognized that each digit can be
evaluated to determine if this digit can possibly be the first
leading digit by examination of this digit and its two
neighbors, one to the left and one to the right. Knowles 141
formalized the solution by providing a truth table for set-
ting an indicator 6. If the bits are numbered such that bit 0
is the most significant, then, the indicator is equal lo one
when:

If the indicator is set in position i and no other digit of
greater significance has its indicator set, then the leading
digit is cither i or i+l.

Essentially the same result appears in a recent paper
by Bruguera and Lang [141.

2.2. Separate detection of leading zeros and ones

If the detection of leading zeros and ones are done
separately, then the indicators only need to examine bits i
and i+l. For the leading zeros case, the indicator, f f e r o S is
equal to one, when

f e r o s = ~ ~ O z i . 1 , i > O (2)

If the indicator is set in position i and no other digit of
greater significance has its indicator set, then the leading
digit is either i or i+l.

Likewise for the leading ones case, the indica-
tor, f p n r s is equal to one, when

fpnes = T i 0 Gi+ , i 2 0 (3)

If the indicator is set in position i and no other digit of
greater significance has its indicator set, then the leading

8

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 4, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

digit is either i or i+l.

The indicators defined in equ. (2) and (3) are used in
the LZA by Schmookler and Mikan [l]. In that design, the
indicators are ORed from the left to create two monotonic
strings of zeros followed by ones. The two strings are then
ANDed together bit-wise to create a single monotonic
string whose first one predicts the bit position of the most
significant bit.

2.3. Detection of first leading digit -- restricted
cases

The indicators defined in equ. (2) and (3) can be sim-
plified further when the detection is restricted to only lead-
ing zeros or leading ones. For example, when the circuit
for detection of leading zeros does not need to consider
cases where leading ones might result, then the leading
zero indicator can be simplified to

(4)

a? shown by Suzuki et al 171. In that paper, a comparison
of the operands is performed to ensure that only the
smaller operand is complemented during subtraction.
Other designs where this could be applied would be where
separate adders are provided for use when the exponents
are equal. One adder calculates A-B and the other calcu-
lates B-A, and the result from the adder producing a carry
out is selected. Each adder then needs only a leading zero
detector using indicators of the form shown above.

An LZA based on equ. (4) is used in another recent
paper by Bruguera and Lang 1151.

Another variation appears in a patent by Britton et al
[6]. In this design, separate leading zero and leading one
detectors are used, and the adder output carry selects
between them. The leading zero detector uses indicators
defined as in equ. (41, and the leading one detector uses
indicators as defined in cqu. (5) shown below:

Further simplification results for a case which is even
more restricted, as described in [8J and [SI. Some floating
point adders provide separate dataflow paths for "far" and
"near" cases. The far path is used for either effective addi-
tion or for subtraction of operands whose exponents differ
by more than one. No LZA is needed for the far path. In
the near path, separate LZAs are used for subtraction of
operands whose exponents are equal and for subtraction of
operands whose exponents differ by one. This allows the
detection of the number of leading zeros to start in parallel
with swapping, aligning and inverting the operands. When

the exponents differ by one, the presumed smaller operand
is shifted right one place and then inverted. Since the
operands must be normalized, the function in the first bit
must be G, and therefore the number of leading zeros is
determined by the number of following bit positions that
are Zs. Therefore, the leading zero indicator in each fol-
lowing bit position is f:e'o" = Zi + I .

2.4. An exact LZA

A conceptually simple exact LZA described in [131 is
integrated with the adder. To handle both positive and
negative results, two separate adders are used, one assum-
ing the first operand is larger, the other assuming the sec-
ond operand is larger. The output carry from the first
adder is uscd to select the result which is positive. Each
adder includes its own LZA which is also selected.

Since each adder may assume that its result is posi-
tive, its LZA only needs to consider leading zeros. The
adder design uses carry select, so that for each group of
bits, two sets of conditional sums are generated, one set
assuming input carry of zero, the other assuming input
carry of one. The intemal carries then select the appropri-
ate sums as they are evaluated. With each group of condi-
tional sums, a conditional count of leading zcros is
determined for the group. These conditional counts are
then also selected by the internal carries. This description
is a simplification of the actual design, which must also
take into account the hierarchy of the adder and also gen-
erate the high order bits of the leading zero count from
larger groups of bits.

2.5. Comparing cost and delay

In this section, the LZA described by equ. (1) is
referred to as Kershaw, (the earliest reference), the LZA
described by equ. (2) and (3) is referred to as Schmookler,
and the LZA described by equ. (4) and (5) is referred to as
Britton.

Only Kershaw and Schmookler cover both leading
zeros and ones, without using any carry signals from the
adder. From the equations, it is apparent that Kershaw
would have one or two more gate levels of delay for just
the indicators, and a few more total gates as well. How-
ever, Schmookler then requires separate ORing of signals
from the left for leading zeros and for leading ones, so the
costs are more comparable. Then, Schmookler also
requires the resulting strings to be ANDed, so the total
delays may also be about the same.

Now comparing Kershaw with Britton, although the

9

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 4, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

indicator circuits are much smaller and faster with Britton,
both the ORing and encoding of the shift signals must be
duplicated for the two cases, before the adder carry signal
is available for selection. Therefore, the cost of Britton
may actually be slightly greater, and its delay is dependent
on the speed of the adder. In the actual circuit implementa-
tions that are shown, Britton shows several enhancements
for reducing the delay. Both use precharged chains of
NFET pass gates for propagating the leading zero signal
from the high order bits to the lower order bits, to accom-
plish the ORing. However, Britton uses a regcnerative
feedback circuit in each bit position to help pull the chain
low. Britton also illustrates how a wide word can be bro-
ken up into smaller chains which operate in parallel to pro-
vide some lookahead.

When one only needs to consider leading zeros, it is
apparent that the LZA used by Suzuki would provide
lower cost and less delay than Kershaw.

3. Encoding count of leading digits

There are two basically distinct methods of obtaining
an encoded count of the leading digits. One method
includes the creation of a monotonic string of zeros fol-
lowed by ones. The other method uses a hierarchical tree
structure.

3.1. Leading digit counting through monotonic
string production

The restriction that no other digit of greater signifi-
cance with an active indicator imposes a priority encoding
function on the anticipator. The priority encoding involves
the generation of the ORing of all indicator bits of greater
significance. The Boolean inverse of this value is ANDed
with the indicator to signify that the position i contains the
first leading digit:

i

Fi = Cfj

This ORing function creates a monotonic string in
which the digit i represents the ORing of all less signifi-
cant indicators. Once this string is created, the indicator fi
is ANDed with the inverse of the monotonic string in posi-
tion i-1 to determine the position which is within one digit
of the most significant digit of the result.

The creation of the monotonic string can be accom-
plished through the use of Manchester carry techniques[2]

[31 or through hierarchical or look-ahead techniques [41.
The monotonic string method is used in several LZAs.

The Power and Power2 processors employ the well-known
LZA designed by Hokenek and Montoye [5]. Five separate
monotonic strings are generated, including strings for
leading ones, leading zeros and the case where all bit posi-
tions are Ts. These strings are ones followed by zeros,
where the first zero indicates the location of the most sig-
nificant bit position. Therefore, they are bit-wise ORed
together to obtain a single string. The Power3 processor,
and also several PowerPC processors such as some which
are used in the Power Macintosh, use the LZA by
Schmookler [11, which creates two monotonic strings as
we previously described in section 2.2. Thus, the creation
of monotonic strings in both of these designs is essential to
combining the several strings into a single string.

In Kersaw [2][3], generating the count from a mono-
tonic string is dictated by the use of precharged chains.
One small circuit integrates the adder and LZA functions
together. It uses a boot-strappcd Manchester carry chain
for the adder, which propagates the carries from right to
left, and it uses a similar precharged chain to propagate the
Fi signal from left to right under control of the local propa-
gate signals to generate the monotonic Fi string and the 1-
of-32 coded string L. The carry signals and the Li are also
used to create an error signal at each position, ei. The OR
of these ei signals indicates that a 1-bit correction is
needed in both the shifter and the exponent. The creation
of an error signal in this way also required generation of
the monotonic string.

In the 'I9000 described by Knowles [4], the LZA is
logically similar to that of Kershaw, but with more stan-
dard lookahead techniques similar to the cany skip tech-
niques used in their adder, The use of ORing to create the
monotonic strings is due to its simplicity.

In order to get the leading zero count, either simple
AND-OR functions of the F, signals or simple ORing of
particular Li signals from equ. (6) and (7) permit easy and
fast encoding of the count. For example, for an eight-bit
sum, the shift amount which is determined by the binary
encoding of the location of the leading significant digit can
be formed by:

SAo = F3F,

= L4 v L, v L, v L,

S A , = F ~ F ~ v F ~ F ,

= L , v L 3 v L , v L , (8)

10

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 4, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

= L , v L, v L, v L,

3.2. Leading digit counting with tree structure

The other well-known method for LZC design consists of
a tree structure. For example, the string of n inputs may
first be partitioned into nl2 pairs of adjacent bits. For each
pair, a 2-bit leading zero count is generated, and the high
order bit also indicates when both bits are zeros. At the
next level, adjacent pairs are combined, a mux circuit
selects the count from one of the pairs, and a new high
order bit is appended to the count which also indicates that
both pairs are all zeros. This scheme is continued for
log2(n) levels. Some speedup can be obtained by detecting
larger groups of all zeros and using larger multi-way
muxes. This type of binary tree structures is described
more fully for a leading zero detector by Oklobdzija
[16][171 and for the LZA by Suzuki [7]. The similarity of
the two implementations is shown in a short corrcspon-
dence by Oklobdzija [IS].

The first method that was described using monotonic
strings can be significantly faster than the hierarchical tree
structure if one uses a circuit topology which permits fast
wide ORs (or ANDs with negative polarity signals).
Manchester carry circuits at one time provided such bene-
fits, but long chains are less attractive with low-voltage
technology. More conventional dynamic circuits, however,
are well suited to use of wide OR?.

On the other hand, with dynamic circuits, the tree
structure method can also be sped up by using 4-bit or
even 8-bit groups to reduce the hierarchy by a factor of
two or three. The wide ORs can also be used in a hybrid
structure to reduce the number of levels.

4. Early zero result detection

Early detection of a zero result is most important for
fixed point arithmetic units, which must set condition bits
indicating if a result is greater than, less than, or equal to
zero. The detection must be done in parallel with the addi-
tion or subtraction, to enable fast conditional branching. A
solution by Weinberger [19] describes a rather compli-
cated expression which uses the T, G and Z functions for
each bit position, but which is faster than the adder itself.
A simpler solution is presented in Vassiliades [20][21]
which is equivalent to the solution described here for lead-
ing zero detection in which all fyrosindicator bits are
zeros. Thus, a simple ORing of these bits, or equivalently,
the value of would detect a non-zero result for an n-
bit adder. We noted earlier that for addition, Z,=l, so the
general T* G Z* sequence can produce a zero result with
2's complement signed numbers as used in fixed point

arithmetic. For subtraction, however, since G,=l, the only
sequence that can produce a zero result is T", which corre-
sponds to both inputs being identical prior to inverting one
of them. Both of these cases are handled properly by the
use of FrLYs. It should also be pointed out that although
the Vassiliades method also lends itself to leading zero
detection, the Weinberger method does not. Nevertheless,
it was the only known solution for many years.

provides an attractive way to determine a zero result. Oth-
crwise, since the T* G Z* sequence cannot produce lead-
ing zeros for effective addition, a simpler circuit may be
chosen. For effective addition, a zero rcsult can only occur
when both operands are zeros, therefore, ORing the zi
signals would detect a non-zero result. For effective sub-
traction, both operands must be identical, so ORing the Ti
signals would detect a non-zero result.

For floating point, if a full LZA is used, then

5. Handling the error in anticipators

LZAs as described are inexact; they may have up to
one bit of error in the count. This can be detected at the
end of the normalization shift, and if there remains a lead-
ing zero, the result can be shifted one more bit position in
a 2-to-1 multiplexor. A slightly faster method is to do this
extra shift in the last stage of the normalization shifter. The
shifter usually contains one or more stages of coarse shift-
ing, and the last stage does the fine shifting. For example,
if the coarse shifters do all shifts which are multiples of
four bits, thcn the fine shifter would normally only shift
from zero to three bit positions. However, to allow for the
LZA error, the fine shifter would be modified to shift up to
four bit positions. The high order four bits from the coarse
shifter would be examined to determine the correct shift
amount. A fast circuit for doing this uses the predicted
control signals. For example, if the LZA predicts a fine
shift of two, then it would select a shift of two if bit 2 is a
one, otherwise it selects a shift of three.

A similar method is to avoid the calculation of the
least significant digits of the leading digit count. This
eliminates a large amount of complexity in the anticipator.
The circuit described above for selecting the fine shift con-
trols would be replaced by a four-bit LZD. Since that
essentially has the delay of a 4-way NAND, it is not much
slower. However, one now needs only an LZA which com-
putes the number of leading digits modulo-4. The indica-
tors 8, Fi, and Li only need to be generated for each block
of four bits, resulting in savings in both circuits and delay.
This method is used in the early IBM RSf6000 processors
described by Montoye and Hokenek [22] [SI.

The error can also be detected at each bit position
[2][3] through an examination of the carry-in to that posi-
tion. For a leading position i the error indicator is:

11

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 4, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

where Ai is the addend digit and Ci+l is the carry-in to the
(i+l)th digit.

The global error correction signal, e, indicates when
an additional leading digit must be removed, where,

e = C e i .
i

Quach [23] has shown that an equivalent error indica-
tor can be formed by

where, Ci is the carry-in to the ith digit.

6. Summary

Use of leading zero anticipators or detectors is an
established method of reducing the delay of floating-point
addition. We have presented several algorithms and
implementations which have proven to be fast and effi-
cient, and we have shown how other choices made in the
design of the adder, including circuit technology consider-
ations, can guide in the selection of the best method for a
particular floating-point processor. We have included
both algorithms which assume that the result of an effec-
tive subtraction must be positive and those which cover
the general cage of floating-point addition. Because they
are closely related to leading zero anticipation, we have
described altemative design for leading zero detectors and
count leading zero implementations. We have described
altemative methods with dealing with the one-bit position
error inherent in leading zero anticipators.

References

[l] M. Schmookler and D. Mikan, “Two-state Leading Zero/One
Anticipator (LZA), US Patent #5493520, Feb. 1996.
[2] R. Kershaw, L. Bays, R. Freyman, J. Klinikowski, C. Miller,
K. Mondal, H. Moscovitz, W. Stocker, L. Tran, “A Programma-
ble Digital Signal Processor with 32-bit Floating-point Arith-
metic”, IEEE Solid State Circuits Conference, Digest of Papers,

[3] W. Hays, R. Kershaw, L. Bays, J. Bodie, E. Fields, R. Frey-
man, C. Garen, J. Hartung, J. Klinikowski, C. Miller, K. Mondal,
H. Moscovitz, Y. Rotblum, W. Stocker, L. Tran, “A 32-bit VLSI
Digital Signal Processor”, IEEE Joumal of Solid State Circuits,
October 1985, pp. 998-1004.
[4] S. Knowles, “Arithmetic Processor Design for the T9000
Transputer”, SPIE, v. 1566, 1991, pp.230-243.
[5] E. Hokenek and R. Montoye, “Leading-Zero Anticipator
(LZA) in the IBM RISC Systetd6WO Floating Point Execution

1985, pp. 92-93.

Unit”, TBM Joumal of Research and Development, Jan. 1990, pp.
71-77.
[6] S . Britton, R. Allmon, S. Samudrala, “Leading One/Zero Bit
Detector for Floating Point Operation”, US Patent #53 17527,
May 1994.
[7] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase, K. Mashiko,
T. Sumi, “Leading-zero Anticipatory Logic for High-speed
Floating Point Addition”, IEEE Journal of Solid State Circuits,
August 1996, pp. 1157-1 164.
[8] H.P. Sit, et. al., “Prenormalization for a floating-point adder”,
US Patent #5010508, April 1991.
[9] S. Oberman and M. Roberts, “Leading one prediction unit fo
normalizing close path subtraction results within a floating point
arithmetic unit”, US Patent #6085208, July 2000.
[lo] R. Maher III, “Circuit for Simultaneous Arithmetic Calcula-
tion and Normalization Estimation”, US Patent #5040138,
August 1991.
[l l] K. Ng, “Exact Leading Zero Predictor for a Floating Point
Adder”, US Patent #5204825, February 1993.
[121 G. Inoue, “Leading one anticipator and floating point addi-
tion/subtraction apparatus,” US Patent #5343413, August 1994.
[131 G. Gerwig and M. Kroener, “Floating Point Unit in standard
cell design with 116 bit wide dataflow”, IEEE Symposium on
Computer Arithmetic. 1999. pp 266-273.
[141 J. Bruguera and ‘E Lang “Leading-One Prediction with Con-
current Position Correction” IEEE Transactions on Computers, v.
48, No. 10, October 1999, pp. 298-305.
[151 J. Bruguera and T. Lang “Leading-One Prediction Scheme
for Latency Improvement in Single Datapath Floating-point
Adders” Proceedings Intemational Conference on Computer
Design, October 1998, pp. 298-305.
[161 V. Oklobdzija, “An Implementation Algorithm and Design
of a Novel Leading Zero Detector Circuit”, 26th IEEE Asilomar
Conference on Signals, Systems, and Computers, 1992, pp. 391-
395.
[17i V. Oklobdzija, “An Algorithmic and Novel Design of a
Leading Zero Detector Circuit: Comparison with Logic Synthe-
sis”, IEEE Transactions on VLSI Systems, v. 2, no. 1, 1993, pp.

[181 V. Oklobdzija, “Comments on Lcading-zero Anticipatory
Logic for High-speed Floating Point Addition”, IEEE Journal of
Solid State Circuits, February 1997, pp. 292-293.
[19] A. Weinberger, “IIigh-speed Zero Sum Detection”, 4th
Symposium on Computer Arithmetic, 1975.
[20] S . Vassiliadis and M. Putrino, “Condition Code Prediction
for Fixed-point Arithmetic Units”, International Journal of Elec-
tronics, June 1989, pp. 887-890.
[21] S. Vassiliadis, M. Putrino, A. Huffman, B. Feal, G.
Pechanek., “Apparatus and Method for Prediction of Zero Arith-
meticLogic Rcsults”, US Patent #4947359, August 1990.
[22] E. Hokenek and R. Montoye, “Second Generation RISC
Floating Point with Multiply-Add Fused”, IEEE Joumal of Solid
State Circuits, v. 25, no. 5, October 1990, pp. 1207-1212.
[23] N. Quach and M. Flynn, “Leading One Prediction -- Imple-
mentation, Generalization, and Application”, Technical Report
CSL-TR-9 1-463, Stanford University, March 1991.

124- 128.

12

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 4, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

