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Abstract—This paper presents recent advances in the design of constant-time up/down counters in the general context of fast
counter design. An overview of existing techniques for the design of long and fast counters reveals several methods closely related
to the design of fast adders, as well as some techniques that are only valid for counter design. The main idea behind the novel
up/down counters is to recognize that the only extra difficulty with an up/down (vs. up-only or down-only) counter is when the counter
changes direction from counting up to counting down (and vice-versa). For dealing with this difficulty, the new design uses a
“shadow” register for storing the previous counter state. When counting only up or only down, the counter functions like a standard
up-only or down-only constant time counter, but, when it changes direction instead of trying to compute the new value (which
typically requires carry propagation), it simply uses the contents of the shadow register which contains the exact desired previous
value. An alternative approach for restoring the previous state in constant time is to store the carry bits in a Carry/Borrow register.

Index Terms—Binary counter, constant time counter, serial counter, parallel counter, prescaler, up/down counter.
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1 INTRODUCTION

OUNTING, when viewed as incrementing an integer
number by one, is one of the simplest arithmetic op-

erations, and many design techniques used for speeding up
more complex arithmetic operations, especially addition,
can be applied to counters and exemplified with their help.
Traditionally, counters have been presented as simple state
machine examples in textbooks on digital logic design and
this has prevented the dissemination of more advanced
design techniques which have a more natural place in a
computer arithmetic treatise. This paper attempts to present
the state of the art in fast counter design with special em-
phasis on recent results in the design of constant-time
up/down counters [22], [23]. Previously published results
and patent examples will be analyzed with sometimes sur-
prising conclusions relating to the amount of overlap be-
tween different techniques and the existence of many recent
patents on textbook-type implementations.

The simplest type of counter is the binary modulo-2N N-
bit counter where the value s(t) of the counter is incre-
mented by one in each clock cycle:

s(t + 1) = s(t) mod 2N.

Besides this basic behavior, most counter types have several
other features, the most important ones being illustrated
with the help of a “black-box” model as in Fig. 1a:

•� resettable—the counter value is reset to all zeros when
the RESET input is active,

•� loadable—the counter is loaded with the N-bit value at
the In input lines when the LOAD input is active,

•� reversible—the counter counts “up” (increments) when
the UP DOWN/  input signal is inactive and counts
“down” (decrements) when the UP DOWN/  input
signal is active,

•� count enable—the counter increments every clock cycle
only when the CNT input is active,

•� terminal count—TC output signal active when the
counter reaches the maximum value (all ones) count-
ing up or reaches the minimum value (all zeros) when
counting down,

•� readable on-the-fly—the counter state (Out) can be read
reliably without stopping the clock. Ideally, this
“sampling rate” should be equal to the clock rate.

Some of the above features can be combined in order to
obtain a more complex counter behavior. For example, the
terminal count can be used with a loadable modulo-2N coun-
ter in order to obtain an arbitrary modulo-P counter (with P £
2N) simply by loading the value 2N - P each time TC becomes
active. Alternatively, if the counter has only RESET and no
LOAD, a modulo-P counter can be obtained by decoding state
P and resetting the counter to zero at that moment.

In many cases, counters that are both long and fast are
necessary, but speed and size are conflicting qualities for
counters because of the carry propagation from low-order
to high-order bits. One must be careful with the definition
of “speed” though, especially for asynchronous counters.
For example, the simple asynchronous ripple-carry counter
in Fig. 2a can be considered both very fast, since it can have
a very high frequency clock (just one load on the clock line),
but also very slow, since the delay of the most significant bit
is large and grows linearly with the counter size. For some
applications, like frequency division, the long delay for
carry propagation is not a problem if the clock can still have
a high frequency, the simple asynchronous ripple-carry
counter being widely used and one of the fastest available
[20]. It should be noted that, for historical reasons, asyn-
chronous counters are generally counting down.
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Most counter applications require a synchronous design
and the simple ripple-carry synchronous counter in Fig. 2b
has a very large clock period that increases linearly with the
size of the counter, due to the worst case carry propagation,
through (N - 1) AND gates. For the rest of the paper, we
will assume the “synchronous paradigm” for which the
clock is a perfect broadcast signal, hence, all delays will be
due to combinational logic. It should be clear, though, that,
for “real” designs, the delay of the clock also increases with
the number of loads and also becomes a function of the
number of flip-flops.

The combinational carry-ripple through AND gates rep-
resents the simplest circuit for adding a one to the counter
bits with a carry-ripple adder [11]. The adder structure can
be clearly revealed if we replace the T-flip-flops tradition-
ally used in counter representation with D-flip-flops and
half-adders (HAs) as in Fig. 2c. The rest of this section will
discuss several state-of-the-art techniques and a counter
classification, Section 2 will introduce the idea of prescaled
counters, and Section 3 will present two novel up/down
constant time counter structures.

(a) (b)    (c)

Fig. 1. (a) “Black-box” generic counter model with the most common control signals, (b) counter with the “exposed” adder structure, (c) “black-box”
model for nonloadable counter.

(a)

(b)

(c)

Fig. 2. (a) Asynchronous ripple-carry counter using T-flip-flops, (b) synchronous ripple-carry counter using T-flip-flops, (c) synchronous ripple-carry
counter using D-flip-flops and half-adders.
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1.1 Counters as Arithmetic Circuits
Revealing the adder “inside” the black-box counter as in
Fig. 1b enables the use of all the known techniques for de-
signing fast adders [11] to be applied for fast counter de-
sign. There are many known techniques for speeding up
addition, and most of them can be also applied to the de-
sign of fast counters.

A first observation is that addition can be made faster by
using a tree instead of a CARRY-chain for achieving only a
logarithmic increase in delay. Surprisingly, this idea is pro-
tected by a recent patent [10]. Another observation is that
static CMOS gates can implement only inverting functions
(NAND, NOR, etc.), hence, the delay of a noninverting
function increases due to the delay of a required inverter at
the output. A textbook [18] technique for speeding up
carry-ripple CMOS adders is to eliminate the inverters in
the carry chain by using the “inverting property” of the
binary adder by observing that inverting all the inputs of
the adder results in inverted outputs and alternating “nor-
mal” binary adder cells with “inverted” cells. With this ob-
servation, the standard AND carry chain in Fig. 2b (which,
for a CMOS circuit, has “hidden” inverters for each AND
gate, as in Fig. 3a) can be replaced by a faster alternating
NAND/NOR chain which reduces the number of gate de-
lays by half, as in Fig. 3b. Surprisingly again, there is a re-
cent patent [13] covering exactly this technique for count-
ers. An extensive patent search revealed many other pat-
ents for counters that simply apply well-known adder
structures in the context of counter design. For example,
there is a patent on a counter with a Manchester carry-chain
[19] and several versions of carry-lookahead [10] and bi-
nary tree carry propagation [7] counter structures.

Other traditional approaches for speeding up counters
try to improve the circuit implementation of various gates
and, especially, flip-flops, for example, by using true-single
phase (TSPC) flip-flops [29], [30], [12], [20], but these tech-
niques are not uniquely suited to counters viewed as
arithmetic circuits.

In this section, it was advantageous to view counters as a
collection of an adder and a state register, since it allowed
all the fast adder design techniques to be used for counters,
but this view can soon become a limitation when trying to
further improve counter performance. Lower bounds on
adder delay are well-known [11], [24]; intuitively, the delay
of an N-bit adder is on the order O(log N) based on argu-
ments related to tree function implementation with gates
with limited fan-in, hence, the minimum clock period for
such a counter is also of the order O(log N). It turns out that
going again to the “black-box” model in Fig. 1a and view-
ing counters as state machines can result in a clock period
of order O(1) (constant-time).

1.2 Counters as State Machines
One way of breaking the O(log N) lower bound on the clock
period is to pipeline the carry propagation in a “systolic”
manner [14], [16] as in Fig. 4. This method doubles the
number of required flip-flops and the counter “value” is
now represented in a redundant [11] Carry-Save form [16],
which, for the case of counters (only one operand), is re-
duced to the recently introduced Half-Adder form [14]. For
many applications which need fast synchronous counting
but don’t require a binary sequence (e.g., synchronous fre-
quency dividers), a systolic counter is a simple and fast so-
lution. The minimum clock period for a systolic counter is
equal to the delay through a flip-flop plus the delay
through a logic gate and is independent of the number of
bits.

Another way of breaking the O(log N) lower bound on
the clock period is to relax the definition of a counter to
sequences other than binary increasing numbers even more.
A generalized counter then becomes, by definition, any
state machine with a “circular” state diagram, as in Fig. 5.
An up-counter will correspond to a state diagram where
the states are traversed only in clockwise sequence, a down-
counter will have a counterclockwise sequence, and, for an
up/down counter, the states can be traversed both clockwise

(a)

(b)

Fig. 3. (a) CMOS implementation of AND carry chain using NAND and INV gates, (b) fast (half the delay) alternating NAND/NOR carry chain.
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and counterclockwise. An arbitrary state can be chosen as
the zero state (ideally encoded as all-zeros) so that the RE-
SET signal will bring the state machine into that initial
state. Loading such a generalized counter with meaningful
values may be difficult, depending on the state encoding,
also, comparing two counter values in order to see which
one is “greater” may become impossible.

Generalizing the counter definition in this way opens the
possibility of using radically different designs. In principle,
any state-encoding and minimization tool can be used for
deriving the implementation of such a state machine, but
there are some known structures that implicitly have such a
circular state diagram. For example, the linear-feedback
shift register (LFSR) in Fig. 6a [17] has O(1) (constant) clock
period and O(N) (same as binary counter) space complexity,
but has a nonbinary output sequence. LFSRs have the feed-
back connections corresponding to a polynomial with bi-
nary coefficients and, for a primitive polynomial, the num-
ber of states is 2N - 1, hence, an LFSR has a state diagram
equivalent to a modulo-(2N - 1) counter (all N-bit patterns
except the all-zeros state). There are ways to obtain a
modulo-2N LFSR (with the all-zeros state) but that may af-
fect the clock period. For many applications which need
fast counters but don’t require a binary sequence (e.g., ad-

dress pointers to circular FIFOs [21], frequency dividers
[15]), the LFSR is a good solution, being simple and fast.
The minimum clock period for an LFSR is equal to the de-
lay through a flip-flop plus the delay through an XOR and
is independent of the number of bits.

1.3 Ring Counters
The shortest theoretical delay for a state machine is obtained
when the combinational logic is completely eliminated and
the whole sequential structure becomes a shift-register con-
nected in a ring, as in Fig. 6b. The minimum clock period
for such a ring counter is only limited by the delay through
a flip-flop. If the P-bit ring counter is initialized to the
“00...001” state, then the state diagram will consist of a cir-
cular sequence of P one-hot encoded states. This P-bit one-
hot sequence is the longest possible for a ring counter and
is easy to decode (need to look only at the “hot” bit). Non-
one-hot states are harder to decode and may generate less
than P distinct states. For example, the “0101...0101” initial
state generates a sequence with only two states
(“0101...0101” and “1010...1010”).

A clear disadvantage of ring counters is their exponential
complexity compared with binary counters. In order to
emulate a simple 8-bit binary counter, a long 256-bit ring
counter is needed; furthermore, although the delay of the
ring counter is theoretically independent of size (synchro-
nous paradigm), for such exponential increases, it is likely
that for a real design a 256-bit ring counter may be slower
than the much simpler 8-bit binary counterpart. It follows
then that ring counters should be used only when the num-
ber of states is relatively small. A well-known technique to
reduce the complexity of a ring counter in half is to use a
twisted-tail (also known as Johnson or Moebius) counter as
in Fig. 6c, which also has the advantage that it can be ini-
tialized to the all-zeros state. Decoding any state for a
twisted-tail counter needs two bits, hence, it can also be
done in constant time as with the twice longer “standard”
ring counter.

1.4 Differential Counters
For applications that need even faster counting, it is possi-
ble to derive structures that count differentially with a
structure which has some similarities to a ring counter [8].
When measuring very short time intervals using a “regu-
lar” counter, the accuracy of any time measurement will be
determined by the clock period, hence, when the interval to
be measured is of the same order of magnitude as the clock
period, any measurement becomes meaningless. Counting
differentially allows the accuracy to be determined by the
difference between two different periods. Assuming that weFig. 5. Circular state diagram for generic modulo-P counter.

Fig. 4. Pipelined carry chain for a “systolic” counter.
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can accurately control the two periods, very short intervals
can be measured with high accuracy, even with relatively
slow logic. A “differential counter,” as in Fig. 7 [8], has two
“periods” which are combinational delays, the faster one
through a buffer, the slower one through a transparent
latch. The idea is to measure the short interval between two
events (signal edges) by propagating the first coming signal
through the slower path (transparent latches) and the sec-
ond one through the faster path (buffers). Since the path for
the second signal is faster, there will be a moment when it
will catch up the first signal, and the circuit in Fig. 7 cap-
tures that moment into a one-hot representation. If the two

delays are denoted as d1 and d2 and the second signal
catches up after k stages, then the time interval between the
two events is n = k ◊ (d1 - d2) and it can be seen that very
small intervals can indeed be measured accurately if the
difference (d1 - d2) can be made small enough.

1.5 Counters Classification
As we saw, there are many variations possible on the basic
counter behavior, hence, there is a need for classifying counters
starting from the basic “black-box” model. The following list is
not exhaustive but captures the most commonly found cases.

Depending on whether the counter can be initialized to
one state or to any state counters can be classified as:

(a)

(b)

(c)

Fig. 6. (a) Linear-feedback shift register equivalent to a modulo-7 counter, (b) ring counter equivalent to a modulo-8 counter, (c) Johnson counter
equivalent to a modulo-8 counter.

Fig. 7. “Differential” counter. The flip-flops are transparent latches with reset. The first coming “event” is propagated on the slower (latch) path, the
second “event” is propagated on the faster (buffer) path. The latches are transparent before the second event reaches them. The output will be a
one-hot representation of the moment when the second event has reached the first one.
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•� Noninitializable—The simplest case, it can only be
used for specific applications (e.g., frequency divider).

•� Resettable—Necessary for most applications and also
necessary for testing purposes, without a large pen-
alty in performance or area.

•� Loadable—This is a more general case but typically has
lower performance and higher complexity.

Depending on whether the counter traverses the circular
state diagram in one direction only or in both, counters can be:

•� Up-only—Most common case, easy to understand.
•� Down-only—Equivalent to the up-only case in the

same sense as subtraction is equivalent to addition,
sometimes preferred for convenience (e.g., for a
modulo-P counter it is more “convenient” to decode
zero state and load a down-counter with the value P
than to load an up-counter with the value -P).

•� Up/down—Most versatile but typically at the cost of
lower performance (sometimes called a “reversible”
counter).

Depending on whether all the state registers are clocked
with the same signal counters can be:

•� Asynchronous—Simple structure, cannot be read “on-
the-fly,” can have registers that are clocked by other
signals than the clock (like the ripple-carry counter in
Fig. 2a, sometimes called serial counter [3]) or some
other nonclocked sequential structure [2].

•� Semisynchronous—A “hybrid” attempt of combining
the simplicity of asynchronous designs with a syn-
chronous behavior on only some of the outputs (e.g.,
the terminal count TC [12]).

•� Synchronous—Most robust and can be read on-the-fly,
but the routing and loading of the clock can become a
performance bottleneck.

Sometimes it is possible to use “counters” with a state
diagram that does not return from the last state to the initial
state. Depending on whether this happens or not, counters
can be classified as:

•� Periodic—This is the normal case with a circular state
diagram.

•� Aperiodic—This is the case where the counter does not
return to the initial state, an example being the differ-
ential counter in Section 1.4.

Periodic counters can be classified according to the
number of states:

•� Modulo-2N—Special case of 2N states, typical for an N-
bit binary counter, the counter “wraps-around” from
the last state by itself, the case of the LFSR with 2N - 1
states being similar.

•� Modulo-P—Although apparently a more general case
than the modulo-2N, the modulo-P counter is many
times obtained from a modulo-2N counter, either by
decoding the state P and resetting to zero, or by
loading with P when the counter reaches zero.
Modulo-P ring counters are obtained without a need
to decode states or explicitly load the counter.

Depending on the state encoding, counters can be classi-
fied as:

•� Binary—The most common case in which the se-
quence of states is the ascending or descending binary
sequence.

•� Quasi-binary—The case where the relation between a
state and its binary equivalent can be easily deter-
mined (e.g., for the Half-Adder form of systolic
counters in Section 1.2, the binary value can be ob-
tained by adding the Sum and Carry parts). A Gray-
code encoded counter used for driving decoders
without glitches [26], [1] can be also considered quasi-
binary since the binary state can be easily obtained
with XORs from the Gray-code state.

•� Nonbinary—The state encoding is not related to the
binary sequence, like in the case of LFSRs and ring
counters.

The nonbinary fast counters described until now are
adequate for many applications, but many times it is desir-
able to design binary constant-time counters. Prescaled
counters, which are the focus of the rest of the paper, are
synchronous circuits having the following characteristics:

•� Binary counting sequence.
•� Clock period independent of counter size.
•� Readable on the fly with the sampling rate being

equal to the counting rate.
•� Space complexity linear in the number of bits (i.e.,

O(N)).
•� Count “up,” “down,” or “up/down”.
•� Resettable.

2 CONSTANT-TIME BINARY COUNTERS

Being able to design binary counters with O(1) period is
nonintuitive considering that adders have an O(log N) pe-
riod and incrementing is a special case of addition, as we
saw in Section 1.1. The following observations give a justifi-
cation for why constant time binary counters are feasible:

1)�The binary number system has a special periodicity in
the way the CARRY-in to high order bits is generated,
which makes it both predictable and with a low fre-
quency [25],

2)�The black-box model of a nonloadable counter (Fig. 1c)
has only a limited number of inputs: Clock (CLK),
RESET, and Count Enable (CNT). This explains why
the binary tree logic decomposition which leads to the
O(log N) delay for an adder or loadable counter can
be circumvented for nonloadable counters.

An ascending sequence of binary numbers has many in-
teresting properties, as can be seen in Table 1, which shows
a 4-bit counter divided into two 2-bit blocks. The higher
order bits are stable for long periods of time and the termi-
nal count (TC1) output from the two least significant bits,
which becomes a CARRY-in into the most significant block,
is periodic with a lower frequency than the clock signal. For
an M-bit counter block, the terminal count will have a fre-
quency 2M lower than the clock, with the moment when the
terminal count from low-order bits is active being exactly the
time when higher order bits need to be incremented. This
means that the “virtual” frequency at which high-order bits
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need to operate is much lower than for the low-order bits and
this is exactly the idea behind prescaled counters. This idea has
been in use for a relatively long time, starting with the “old”
74160-163 series 4-bit TTL counters [15], but only recently has
been formalized in academic publications [4], [25].

2.1 Prescaled Counters
Prescaling long counters requires partitioning them into a
series of subblocks of increasing sizes in order to take ad-
vantage of the reduced frequency required by high order
bits. The simplest prescaled counters have only two such
blocks, with a small and fast least-significant module called
the prescaler and a slower large counter for high-order bits
[20], like in Fig. 8. We were again surprised to find a recent
patent [3] covering this basic well-known technique.

What makes a prescaled counter work is the fact that,
due to the characteristics of the binary number system, the
TC from the prescaler to the high order bits (which corre-
sponds to the moments when the high order bits have to be
incremented) has a low frequency. In this way, the “virtual
clock frequency” for the slow high-order block is 2M smaller
than the true clock frequency, and the CARRY propagation
inside the high-order partition can take a long time even
with a fast clock.

A simple reasoning leads to a theoretically unlimited
extension of the counter size, without increasing the clock
period, by adding more partitions [4], [25]. For higher order
blocks, successive terminal count signals from the previous
stages become exponentially farther apart in time, hence,
higher order blocks can have exponentially increasing sizes,

and, for all practical purposes, three or four such partitions
are typically enough [25]. In a correctly designed constant
time counter, the clock period is limited only by the speed
of the least significant block, hence, the first prescaler is
typically very small (one or two bits).

The CARRY propagation inside a partition has to be
faster than the “virtual clock” for that block. Generally, it is
desired that the design be as simple (i.e., small) as possible,
hence, a ripple CARRY propagation is typically chosen in-
side each partition. For such an arrangement, the number of
bits inside a partition is determined by dividing the “virtual
clock” period by the gate delay for one bit of carry propa-
gation. The size of each subblock must be chosen such that
the CARRY propagation inside the block is shorter than the
delay between two successive terminal counts from the
corresponding prescaler. In this way, the CARRY propaga-
tion inside the block is not on the critical path and does not
affect the clock period.

2.2 Terminal Count Generation
The prescaled generation of the TC-in to a partition has to
be synchronous with the true clock. Several different ap-
proaches have been proposed for the prescaled generation
of the TC to high-order partitions. The first proposed solu-
tion, by Ercegovac and Lang [4], uses a (relatively ineffi-
cient) ring/twisted-tail counter, which practically doubles
the overall complexity of the counter. The ring/twisted-tail
counters are regular and their VLSI implementation may
not be very inefficient. A much simpler TC generation, pro-
posed by Vuillemin [25], uses a backward CARRY propa-
gation chain [12] that takes the characteristics of the binary
number system further into account.

2.3 Partitioning
Depending on the choice of the prescaled CARRY-in gen-
eration method, the partition sizes can be determined:

•� In a top-down manner [4] by first determining the size
of the most significant block, which is chosen as large
as possible, and then recursively determining the sizes
of the lower order blocks. By assuming unit delays for
the combinational gates and a unit delay clock, an N-bit
counter is first partitioned into an (N - Èlog2 N˘) most

significant block and into another Èlog2 N˘ block
which is recursively partitioned in the same manner
[4]. For example, in the case of a 64-bit counter, a top-
down partitioning results in the following block sizes:
58, 3, 2, 1 [4]. The top-down procedure reduces the
penalty paid for having ring counter prescalers, but
has the disadvantage that counters of different sizes will
require different partition sizes, hence, design reuse is

TABLE 1
BINARY SEQUENCE COUNTING UP
(< 1 REPRESENTS THE CARRY)

number b3b2 TC1 b1b0

0 00 0 00
1 00 0 01
2 00 0 10
3 00 <1 11
4 01 0 00
5 01 0 01
6 01 0 10
7 01 <1 11
8 10 0 00
9 10 0 01
10 10 0 10
11 10 <1 11
12 11 0 00
13 11 0 01
14 11 0 10
15 11 <1 11

Fig. 8. Counter partitioned into a fast prescaler and a slower high-order partition.
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difficult to implement. For a 128-bit counter, the top-
down partitioning leads to: 121, 4, 2, 1 block sizes.
This scheme has recently been refined in [23] as fol-
lows: An N-bit counter can be partitioned into an (N
- Îlog2 N˚)-bit block and a Îlog2 N˚-bit block, whenever

N N N− ≤log log
2 2 23 8 . When the condition does not

apply, the original partitioning method is used.
•� In a bottom-up manner [25] by first deciding the size of

the least significant block, then choosing the second
block as large as possible without affecting the clock
period, then choosing the third, etc. A bottom-up par-
titioning, which assumes unit delays for the combi-
national gates, and a unit delay clock, which deter-
mines the least significant block with n0 = 1 bit, the

second block with n n
1 2 20= =  bits, the third block

with n n n
2 2 80 1= =+( )  bits, and so on [25]. For the

same example of a 64-bit counter, a bottom-up parti-
tioning results in the following block sizes: 53, 8, 2, 1.
This bottom-up procedure has the advantage of using
a few “standard size” modules as building blocks for
counters of different lengths with only the most sig-
nificant block of a non-standard size. For a 128-bit
counter, the bottom-up partitioning leads to: 117, 8, 2,
1 block sizes. This scheme has been recently refined in
[31], [28].

3 UP/DOWN BINARY COUNTERS

3.1 Down Counters
Each bit of an up counter can be described by the half addi-
tion s(t) + cin = 2cout + s(t + 1), while, for a down counter,
each bit can be described by the half subtraction s(t) - cin =
-2cout + s(t + 1). The truth table of these operations is shown
in Table 2. The CARRY-out (or BORROW-out) of one mod-
ule becomes TC-out, which is connected to the CARRY-in
(or BORROW-in) of the next module in the chain.

As the s output is the same for addition and subtraction,
the function that generates s(t + 1) depends on variables s(t)
and cin, but not on the operation to be performed. It can be
seen that down-counters have very similar characteristics to
up-counters, hence, designing a constant time down-
counter is almost identical to designing an up-counter, the
only difference being the need for a BORROW chain instead
of the CARRY chain of the up-counter (practically, this can
be accomplished by inverting the inputs to the AND gates
that compute the chain [27]).

Unlike up-only and down-only counters, loadable
counters and up/down counters do not exhibit the nice
periodicity and predictability of the TC1 (CARRY-in or
BORROW-in) to high order blocks [27]. After a load, a load-
able counter cannot guarantee enough time for CARRY
propagation inside the subblocks, while an up/down
counter can reverse direction at any moment, as can be seen
in Table 3, which again does not guarantee enough time for
CARRY (or BORROW) propagation. It is interesting to note
that loadable counters have a large number of input lines
(the direct load lines) which grows linearly with the number

of bits, but up/down counters have only a constant number
of inputs (CLK, UP DOWN/ , RESET, and CNT) independ-
ent of the counter size, hence, it seems more likely to be
able to design a constant time up/down counter than a
constant time loadable counter. In spite of this, constant
time up/down counters have only been recently reported
[22], [23], while there have been several reported techniques
(e.g., “pulse swallowing” and “state skipping” [27]) that
enable a loadable counter to have a quasi-constant time
behavior by letting the counter output be out of sequence
for a period of time after loading.

3.2 Constant-Time Up/Down Counters
The main idea behind the technique for designing constant
time up/down counters is to realize that it is easy to have a
configurable counter (configured as an up-counter, it will
have a CARRY chain and, configured as a down-counter, it
will have a BORROW chain) and the only extra difficulty
vs. an up-only or down-only counter is when the counter
changes direction. This change of direction is the only mo-
ment when the CARRY (or BORROW) chain inside a block
may not have enough time to propagate until the next TC
from the corresponding prescaler. The solution proposed
here is to have the desired value prestored and simply load
this value when necessary, instead of trying to compute it.
This can be easily accomplished by using a “shadow” reg-
ister that is always loaded with the previous block value
whenever the block is loaded with a new value.

TABLE 2
ADDITION/SUBTRACTION

s(t) cin s(t) + cin s(t) - cin

cout s(t + 1) cout s(t + 1)

0 0 0 0 0 0
0 1 0 1 1 1
1 0 0 1 0 1
1 1 1 0 0 0

TABLE 3
BINARY SEQUENCE COUNTING UP/DOWN

(< 1 REPRESENTS A CARRY, > 1 REPRESENTS A BORROW)

number b3b2 TC1 b1b0 dir

0 00 0 00 up
1 00 0 01 up
2 00 0 10 up
3 00 < 1 11 up
4 01 0 00 up
5 01 0 01 up
6 01 0 10 up
7 01 < 1 11 up
8 10 > 1 00 down
7 01 < 1 11 up
8 10 0 00 up
9 10 0 01 up
10 10 0 10 up
11 10 < 1 11 up
10 11 0 00 down
13 11 0 01 up
14 11 0 10 up
15 11 < 1 11 up
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The block diagram of the proposed up/down constant
time counter is shown in Fig. 9. The design is synchronous,
with a CLK active on the rising edge, a RESET active HI,
and an UP DOWN/  input, which is LO for counting up
and HI for counting down. If desired, a separate Count En-
able (CNT) can be easily added by gating the CLK, or by
AND-ing CNT with the local signals that enable counting if
clock gating is not desirable. The following issues have de-
termined the structure of the new counter:

•� The prescaled TC generation must itself be up/down,
hence, it can be implemented as an up/down ring
counter similar to the ring counter proposed by Erce-
govac and Lang [4]. This also implies that a top-down
partitioning method [4] is needed in order to mini-
mize the size of the ring counters. Unfortunately, a
combinational chain, as proposed by Vuillemin [25],
does not seem to work for an up/down counter be-
cause the counter has to be able to change direction in
any cycle.

•� Each block needs to be configurable for counting either
up or down. A separate configuration bit for each block
is needed to keep track of the block configuration.

•� Each subblock has a shadow register that stores the
previous block value (i.e., decremented or incremented
by one block-least-significant bit depending on the
configuration). When the block configuration is “up,”
the shadow stores the present value minus one LSB
and, when the configuration is “down,” it stores the
present value plus one LSB.

The subblocks in this design function practically independ-
ently of each other, the ring counter inside each block effec-
tively replacing the need for receiving the TC from lower-
order blocks. The complexity of the up/down counter is ap-
proximately twice as large as that for an up-only counter, as in
[4], and four times as large as that in [25], because of the extra
shadow register and the configurable CARRY chain.

3.3 Least-Significant Bit Counter
A 1-bit counter counts in the same sequence, no matter if it
is up-only, down-only, or up/down, hence, the first block
(see Fig. 10) can be a simple 1-bit counter which acts both as
the 1-bit least significant bit and as a ring counter for the
second block. There is no need for a shadow register or con-
figuration bit for the first block.

Fig. 9. Block diagram of the constant time up/down counter.
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Fig. 10. The least-significant bit block.

3.4 Configuration Bit
A configuration bit for each higher-order block keeps track of
how the block is configured (up or down). A CARRY-in can
occur only if the UP DOWN/  input signal is 0 (UP), while a
BORROW-in can occur only if the UP DOWN/  input signal
is 1 (DOWN). There are four possible situations:

•� The block is configured “up” and a CARRY-in comes
from the ring counter. The configuration remains the
same (“up”) and the block behaves like a normal up-
only constant time counter. The shadow register gets
loaded with the present block value, while the block
gets loaded with its next (incremented) value. Since
the present configuration is “up,” this means that the
previous “event” was also a CARRY-in, hence,
enough time has passed for CARRY propagation in-
side the Incrementer/Decrementer (which is config-
ured as an incrementer).

•� The block is configured “down” and a BORROW-in
comes from the ring counter. The configuration re-
mains the same (“down”) and the block behaves like a
normal down-only constant time counter. The shadow
register gets loaded with the present block value, while
the block gets loaded with its next (decremented)
value. Since the present configuration is “down,” this
means that the previous “event” was also a BORROW-
in, hence, enough time has passed for BORROW
propagation inside the Incrementer/Decrementer
(which is configured as an decrementer).

•� The block is configured “up” and a BORROW-in comes
from the ring counter. The block changes configuration
to “down” and it swaps the present value with the
shadow register. The Incrementer/Decrementer output
is disabled in this case, hence, there is no need in this
case to wait for BORROW propagation.

•� The block is configured “down” and a CARRY-in
comes from the ring counter. The block changes con-
figuration to “up” and it swaps the present value with
the shadow register. The Incrementer/Decrementer
output is disabled in this case, hence, there is no need
in this case to wait for CARRY propagation.

There is a somewhat subtle point in realizing that the
configuration bits for different blocks can be different at
times. This happens, for example, when, after counting up
for a number of cycles, the counter changes “direction” by
only changing lower order bits. In such a case, the high-
order blocks will still remain configured “up” and will only
change configuration when a BORROW-in comes from the

corresponding ring counter. If the counter changes direction
again, before a BORROW-in, the higher order block will
never “know” that the lower order blocks were in a differ-
ent configuration for a period of time.

The configuration register is implemented as a simple D
edge-triggered flip-flop (Fig. 11). The configuration of each
block can only change when a CARRY-in (or BORROW-in) is
received from the ring counter. When the configuration
changes (the present configuration is “up” and the next one
is “down,” or vice-versa), the SWAP signal becomes active,
which enables swapping the value of the block with the
shadow register. When the configuration stays the same, the
block register is loaded from the Incrementer/Decrementer
and the shadow register is updated with the previous block
value.

The main block register and the shadow register are im-
plemented with the same D-type edge-triggered registers as
the configuration bit.

3.5 Clock Period
For simplicity, we will assume unit delays for all the com-
binational gates in the circuit (including multiplexers and
XOR gates). There are several critical paths in the circuit
that determine the minimum clock cycle to be larger than
one unit delay, as in the case of the up-only counter:

•� The least significant bit block has a unit delay, so it
does not represent the critical path.

•� Incrementing/decrementing the ring counter requires
two unit delays, since the ring counter is a bidirec-
tional shift register.

•� Loading (actually “swapping”) the value of the block
with the value of the shadow register requires a unit
delay through a multiplexer and, in parallel, the mul-
tiplexer control signal requires two unit delays (see
Fig. 9). The timing of the UP DOWN/  signal is on the
critical path and the signal needs to be synchronized
with the clock.

•� By choosing a proper size for each block, the delay of
Incrementer/Decrementer which takes care of CARRY
(or BORROW) propagation inside the block can be
masked, and this delay should not be on the critical
path.

The clock frequency is independent of counter size but is
lower (by a constant) than for an up-only counter because
of the extra complexity. Instead of being limited only by the
low order prescaler, the speed is also limited by the extra
logic needed for swapping with the shadow register. In a

Fig. 11. The configuration bit inside each block.
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real design, the clock period can be larger than two unit
delays due to particular implementation details and fan-out
effects on long lines.

3.6 Up/Down Ring Counter
A 2k-bit twisted-tail ring counter (see Section 1.3) has 2(k+1)

distinct states and clock period independent of size, hence,
it can function as a (k + 1)-bit counter prescaler [4] (see
Fig. 12a for an up-only counter). In the case of the proposed
up/down counter, an up/down ring counter is needed, and
this can be easily obtained, as in Fig. 6b. The ring counter
inside each block is used in order to generate, in constant
time, the TC-in (CARRY-in or BORROW-in) for the block.
The TC signal is obtained from different conditions de-
pending if the counter is counting up or down. When
counting up, TC = 1 when the state of the enable counter is
s(t) = (100...00) (one state before the counter goes back to
state 0) and CNT = 1. When counting down, TC = 1 when
s(t) = (000...00) and CNT = 1. The state bits in the twisted-
tail counter are such that the s(t) = (100...00) state can be
detected by testing the two most significant bits and the s(t)
= (000...00) state can be detected by testing the most and
least significant bits (see Fig. 13).

3.7 Partitioning
Determining the partition sizes for the proposed up/down
counter proceeds top-down, similarly to [4], the only differ-

ence being that the minimum clock period (Tclk) is larger

than the combinational unit delay due to the extra com-

plexity. If we consider Tclk = p ◊ d, where d is the unit delay,
the partitioning first divides the N-bit counter into a most

significant N N
p− �  "##log24 9 block and into another log2

N
p4 9�  "##

block which is recursively divided in the same manner until
the smaller block is a 1-bit counter. For p = 2 and N = 64, the
partitioning leads to the sizes: 59, 3, 1, 1. For p = 4 and N =
64, the partitioning leads to the sizes: 60, 3, 1.

3.8 Incrementer/Decrementer
The Incrementer/Decrementer can be easily implemented
as a ripple chain, as in Fig. 14. Surprisingly again, this
straightforward textbook design is protected by a patent
[5]. For an n-bit block, the delay through the ripple chain
will be n times the unit logic delay, and, if this delay is less
than the time between two consecutive CARRY-ins (or
BORROW-ins) from the ring counter (which should always
be true by partitioning), the Incrementer/Decrementer is
not on the critical path. The configuration is controlled by
the configuration bit for each block.

3.9 Initializing the Counter
For a “regular” N-bit counter which has 2N possible states,
all the states are legal and a RESET signal may not even be
needed for some applications (although desirable, at least
for testing [9]). In the case of the proposed constant time
up/down counter, which has many extra state flip-flops
(the configuration bits, the ring counters, the shadow reg-
isters), it is very important to initialize the counter to a legal
state. A RESET signal is needed to initialize all the configu-
ration bits to 0 (counting “up”), the counter block values to
all-zeros, the shadow registers to all-ones (block value mi-
nus 1), and the ring counters to all-zeros. It would be hard
to load the counter with an arbitrary legal value as required
by a loadable counter.

3.10  Alternative Design
As explained earlier, for an up/down counter, there is no
time to wait for the carries or borrows to propagate when
the direction of counting changes. To solve the problem, we
have proposed the use of a “shadow” register to store the
previous counter state [22]. An alternative solution is to
store the bit-wise XOR between the previous state and the

   

(a) (b)

Fig. 12. Four-bit (eight states) twisted-tail ring counters (Johnson or Moebius): (a) up-counter, (b)up/down counter.

Fig. 13. Up/down twisted-tail TC circuit.
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current state in a Carry/Borrow Register (CBReg) [23]. With
this information available, it is possible to restore the de-
sired previous state in one gate delay. For comparison, both
solutions are presented in Fig. 16. In Fig. 16a, the carry bit
that was used in the last transition is stored in CBReg and is
used in the place of the carry computed by the incre-
menter/decrementer chain [23]. In Fig. 16b, the value of the
previous state is stored in a “shadow” register and can re-
place the next state that is being computed by the incre-
menter/decrementer [22].

3.11  Experimental Results
The up/down counter was implemented for both designs
shown in the previous sections in two different technologies.
The first design (using the Shadow Register [22]) was imple-
mented in an Atmel AT6000 FPGA, while the second design
(using the Carry/Borrow Register [23]) was implemented in
an Xilinx XC4000 FPGA. The synthesis results were obtained
without imposition of constraints on the synthesis tools. No
manual placements or routings were performed, which leaves
some space for optimizations and better performance. The
counter [23] was also tested in the EVC board with low oper-
ating frequency, only to verify the counter operation.

Both designs implement a 64-bit up/down counter par-
titioned into three modules with 60, 3, 1 bits that runs at
40MHz in the Atmel FPGA and at 47.2MHz in the Xilinx
FPGA. The partitioning has resulted from the minimum
clock period which is p = 4 times the minimum combina-
tional delay.

A functional simulation at 40MHz of the 64-bit up/down
counter using the Atmel part is shown in Fig. 15. As can be
seen, the counter counts up and down and can change di-
rection each cycle.

4 CONCLUSIONS

We have presented the methodology behind designing syn-
chronous up/down counters of arbitrary length with pe-
riod independent of counter size, which was an open
problem until recently [25], [22], [23]. The main idea is to
store the previous state of the counter for use when the
counter reverses direction [22], [23]. A somewhat related
idea was proposed by Hendry for storing one bit per state
to speed-up counting [6].

The experimental results for the up/down counters were
obtained using simulation for a 64-bit design and estimates
of the area and delay for other cases. It should be relatively
easy to migrate this design to a different architecture or
counter size. Since logic synthesis tools are not going to
“discover” such a design, it is best to put it in a module
library which can be parameterized by the counter length.
Such a design only makes sense when relatively long (more
than 24 bits) up/down counters are needed. For short
counters, better (faster or simpler) results can be probably
obtained with other approaches which asymptotically are
worse but are better for small numbers.

The proposed up/down counters are not loadable, hence,
designing a constant-time loadable binary counter is still an

(a)

(b)

(c)

Fig. 14. Ripple chain: (a) incrementer (CARRY chain), (b) decrementer (BORROW chain), (c) incrementer/Decrementer.
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open problem. In the context of constant-time state ma-
chines (counters being just an example), it would be inter-
esting to be able to determine when a state machine can
have period O(1) just by looking at the state transition
graph and the state encoding. Even more interesting would
be to determine a state encoding that enables a O(1) period
for a given state transition graph (STG) if such an encoding
exists.
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