Signed-Digit vs. Conventional Intermediate Representations in Two
Operand Adders

D. S. Phatak

Electrical Engineering Department
State University of New York, Binghamton, NY 13902-6000

I. Koren

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

ABSTRACT

In [1] Srinivas and Parhi presented a fast adder based on an intermediate signed-digit
representation. In this paper we derive an improved design by (i) utilizing a differ-
ent procedure to generate the intermediate signed digit result and (ii) optimizing the
encoding used to represent the intermediate result.

The analysis leads to a unified framework which reveals a one-to-one correspondence
between adders based on intermediate signed-digit representations and conventional

ones, i.e., those that do not use interim signed digit results.

I Introduction

A redundant signed-digit (SD) number representation makes it possible to perform addi-
tion with carry propagation chains that are limited to a single digit position, and has been
used to speed up most arithmetic operations [2, 3, 4]. The SD representation also renders
most-significant-digit-first schemes feasible and has been used in on-line arithmetic [3] and
digit-pipelined schemes [5]. In the binary signed-digit number system, each digit can assume
any one of the three values {—1, 0, 1}. As a result, redundancy is introduced in the number
system, i.e., a number can be represented in more than one way. For example, 1 can be rep-
resented by either 01 or 11, where 1 = —1. This redundancy can be exploited to limit the
length of carry propagation chains to only one digit position [6], making it possible to add
two numbers in fixed time, irrespective of the word length. This can be of great advantage
in multi-operand addition (such as partial product accumulation in a multiplication) or iter-
ative add/subtract operations (like those encountered in division, square root extraction and
elementary function evaluation using the CORDIC method). Utilizing an SD representation is



analogous to solving the problem in the transform domain. Once in the transform domain, the
addition is carry—free and consequently, the time per addition is fixed and independent of the
word length. Furthermore, since a bit is just a special case of a signed digit, the conversion
from two’s complement to SD format is trivial and can be performed in a (small) fixed time
irrespective of the word length. The final step, upon the completion of all the operations, is
to convert the result back to two’s complement format (analogous to an inverse transforma-
tion). There has been a resurgence of activity in this area in the recent past, and using the SD
representation has been shown to lead to faster implementations for almost all operations.

What is not so obvious is whether going through an intermediate SD representation can
be advantageous for the basic two operand addition. Here, it appears that the overhead of
converting the signed digit result back to two’s complement format is likely to make the im-
plementation at least as slow as (if not slower than) a direct addition. The conversion of a
signed—digit number to two’s complement format requires a “borrow” propagation across the
entire word length. In principle, therefore, both the operations (direct addition of two operands
and conversion of a SD number into two’s complement) have the same complexity.

In [1] Srinivas and Parhi presented a fast adder based on an intermediate signed-digit repre-
sentation. What makes this adder have a delay comparable to that of a conventional one is the
fact that the carry (or borrow) propagation in both methods is across the entire word length
and hence can be expected to be executed in similar time delays. Furthermore, the bit-wise P
and G signals required by the conventional adder and the S and Z signals representing inter-
mediate signed digit results require comparable delays to be generated once the operand bits
are available.

In this paper we derive an improved adder architecture (based on intermediate signed-digit
representation) by
(i) utilizing a different procedure to generate the intermediate signed digit result, and
(i) optimizing the encoding used to represent the intermediate result.

The analysis shows that no matter how the addition operation is interpreted (as a con-
ventional addition or via an intermediate signed-digit representation), the basic complexity is
identical. Thus the signed-digit representation turns out to be just an encoding of the inter-
mediate bit-wise result, as much as the conventional P and G signals constitute an encoding
of the intermediate bit-wise sum. We then show a one-to-one correspondence between adders
based on signed-digit representations and conventional ones that do not use intermediate signed
digits, which demonstrates that the two methods have the same complexity in principle.

The rest of the paper is organized as follows. The next section briefly describes the conver-
sion algorithm which was independently proposed in [7] and [8] and the “sign-select” implemen-
tation of that algorithm originally proposed in [7]. Section III describes our addition algorithm
using intermediate signed digits and derives optimal encodings for the intermediate representa-
tion. Section IV illustrates a 32 bit adder based on one of the optimal encodings and compares



it with that of [1]. Section V establishes the one-to-one correspondence between adders based
on intermediate signed-digit representations and conventional ones. The last section presents
conclusions.

I1 Conversion of Signed-Digit Numbers into Two’s Complement
Format

In many commonly used conversion algorithms [7, 8, 9] the binary signed digits are examined
from right to left, i.e., from the least significant digit (LSD) to the most significant digit (MSD)
one at a time. Basically there is a need to remove all the occurrences of —1 and “forward” the
negative signs all the way to the MSD, which is the only position with negative weight in the
two’s complement representation. The rightmost —1 is replaced by a 1 and a carry of weight —1
or a “borrow” is forwarded to the next (adjacent left) digit position. This essentially amounts
to representing a —1 with 11 = —2 + 1, where 1 denotes a —1. The process of forwarding the
borrow is continued, replacing 0’s by 1’s (since 0---01 = 1---11). If a 1 is encountered, it
“consumes the borrow”, since 1+ (—1) = 0. Finally, if a 1 is encountered during the forwarding
of the borrow, it is replaced by 0 and the forwarding continues, or in other words, a (1 + 1) is
replaced by 10 = —2 as required. Table 1 below summarizes the algorithm converting the binary
SD number y,_1yn_o---yo to its equivalent two’s complement representation d,_id,_s - - - dg.
The variables ¢; and ¢;;1 denote the incoming and outgoing borrows, respectively. Note that
the borrows always have a negative weight.

Yi G | di ci
0 01]0 0
0 1|1 1
1 0|1 0
1 110 0
1 011 1
1 110 1

Table 1: Rules for selecting the next borrow ¢;; and output bit d; based on the digit y; and
incoming borrow c;.

It is easy to verify that the rows of the table satisfy the arithmetic relation

Yi — ¢ = d; — 2¢iq1 (1)
In effect, this algorithm can be viewed as the inverse of the canonical recoding algorithm [9],
wherein a given two’s complement number is recoded so as to have the minimum number of

non zero digits. Canonical recoding can be important in a multiply operation where minimizing
the number of non zero digits in the multiplier results in the minimum number of add/subtract



operations. The canonical recoding algorithm satisfies [9]
di + ¢ = yi + 2¢i41 (2)

which is obtained simply by a rearrangement of equation (1) above.

Next, we briefly outline a fast implementation of the outgoing borrow signal ¢;; used in the
above algorithm [1]. Note that each binary signed digit y; can have 3 possible values {—1,0,1}
and therefore needs 2 bits to represent. Suppose that the two bits are denoted T; and R;, we
encode the digit y; in the following manner:

(i) R; equals 1 if the digit y; is 0, and is 0 otherwise,

(ii) 7; indicates the “sign” (or polarity) of the digit y;: it is 0 if the digit y; is non—negative
(i.e., 0 or 1) and 1 when y; equals —1. Then, the truth table for ¢;;; in terms of the input bits
¢i, T; and R; is as shown in Table 2.

T, R; ¢ |ci
0O 1 0 0
0 1 1 1
0 0 O 0
0 0 1 0
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

Table 2: Truth table for the outgoing borrow ¢;,; in terms
of the inputs 7;, R; and ¢;. “X” indicates a “don’t care”.

If both the don’t cares in the above table are assigned the value “1” (as is usually done in
minimizing logic functions with Karnaugh maps), one obtains the Boolean equation

Cit1 = E + RiCz’ (3)

where “+” indicates logical OR and “” (or a product term) indicates logical AND. Comparing
the above equation with the conventional fundamental carry propagation Boolean equation

Cit1 = G, + PZ'CZ' where Gz = a; - bz and Pz € {(az + bz), (ai D bz)} (4)

indicates that 7} is analogous to the G; or the carry generate signal in conventional addition
while R; is analogous to the P; or the carry propagate signal. This can be better understood
by noting that the information forwarded by the carry (borrow) signal in this case is essentially

the negative sign. A borrow is generated when a 1 is encountered and is propagated as long



as the current digit (y;) is zero (in which case R; is 1). Thus R; is equivalent to the carry
propagate signal in ordinary addition. We therefore refer to R; as the sign-propagate signal
and 7; as the sign-generate signal.

Next, we illustrate a multiplexor based implementation [1] of equation (3). In Table 2 above,
notice that if the digit y; is zero, then the borrow-out (c;+1) equals the borrow-in (¢;). If the
digit is non-zero, then the sign of the digit “dominates”, i.e., if y; is positive then ¢;;1 is 0 and
if y; is negative then ¢;;; is 1. Thus the borrow-out equals the “sign” of y; when the digit is
non-zero. This immediately suggests a MUX based implementation:

Civ1 = (G if Rz:1
— T if Ri=0 (%)

Another way of arriving at this implementation is to assign the Boolean values 0 and 1 to
the don’t cares in rows 7 and 8, respectively, of Table 2. The resultant Boolean equation is

cipn=Ri-Ti+R; - ¢ (6)

which can be implemented by a multiplexor (illustrated in Figure 1) which selects the incoming
sign or the sign of the current digit depending on whether the digit value is zero or not.
Hence the name “sign—select” circuit [1]. It can be seen that the “sign-selection” technique
is analogous to the idea of “carry skips” which is utilized in a conventional Manchester adder
[9]: if the conventional carry propagate signal P; is restricted to be the bit-wise exclusive OR
(a; ® b;) then the basic carry-propagation equation (4) can also be written as

ciy1 = Pi-ci+ Pi- G (7)

Since equations (3) and (4) are identical in form, it follows that unrolling the recursion in
(3) also leads to equations identical in form to the fundamental carry operation [9, 10, 11],
denoted by “®”, and defined by

(P,G)® (P,G)=(P-P,G+P-G) (8)

Let T;.; and R;,; denote the sign-generate and sign-propagate signals for the group of bits in
positions 4,7 — 1,---,7 where ¢ > j. Then, the same fundamental carry operation in equation
(8) can be used to generate the group R and T signals for a group of bits [i : j] (with i > j)
from the R and T signals of two adjacent or overlapping subgroups of bits [i : m]| and [v : j]
withi>m>j7 ; 1>v>j and v>m—1 as follows:

(Ri:j: 71i:j) = (RzmaT;m) ®© (Rv:jaTv:j) where 4 2 m and v 2 m—1 (9)
¢ = (Riciy, Tim1y) © (1,¢9) (10)



Equations (9) and (10) are not the only way to express the group R and 7 signals in terms of
those of subgroups. For instance, from equation (6) it is possible to derive different expressions
for the group R;.; and T;.; signals in terms of the R and 7" signals of two adjacent or overlapping
subgroups by defining:

(R,T)® (R,T) = (R-R,T-R+T-R) (11)
(Ri:jaﬂzj) = (Rz’:maT%:m) 02 (Rv:jaTv:j) where 4 2 m and v 2 m—1 (12)
¢ = (Ri-1y,Tio15) ® (1,¢5) (13)

In other words, the sign-select operation can be extended to a group of digits. For example,
assume that two signals Ry.; and T}.; are available for a group of (k—j+1) digits, k,k—1,---, j.
Group signal Ry.; is 1 if each of the digits in the group is zero and is 0 otherwise, while the
variable T}.; represents the sign of the most significant non zero digit in the group. The same
sign—select circuit shown in Figure 1 can be used to select the outgoing borrow cx,; from the
three signals Ry.;, Tj.; and the borrow into the group, i.e., ¢;. If all the digits in the group are
zero, then the incoming borrow simply propagates. If not, then the sign of the most significant
non zero digit in the group (which is the same as the sign of the whole group) dominates over
the incoming borrow. This implies that one can construct a tree of multiplexors for a fast
propagation of the borrow. Such a tree based on the efficient sign—select conversion technique
was at the heart of the architecture proposed in [1]. The maximum size of a group depends on
how many transmission gates can be cascaded in series, in a given technology.

If the conventional bit-wise carry-propagate variable P; is restricted to be the EXOR of the
operand bits (P = a; @ b;), then it can be shown that the pair of variables (P®, Q;) where

n

Q: € {Q,Q;,Q/} and (14)
Q = ai-b (15)
Q = u (16)
i = b (17)

also lends itself to a multiplexor-based implementation:

(P55, Qi) = (PH,,Qim) ® (Pgj; Quy) where i>m and v>m—1 (18)
¢ = (P21 Qi) ® (1,¢) (19)

Relation (18) shows that the P® and @ signals for a group of bits [i : j] (with ¢ > j) can be
synthesized from the P® and @ signals of overlapping or adjacent subgroups of bits [i : m] and
[v : j] by using a multiplexor-based selection circuit.

We conclude this section with a brief description of the method used in [1] to arrive at the



intermediate signed-digit result; the encoding used to represent it; and the CMOS cell which
is replicated to generate it. Note that the algorithm in Table 1 is independent of the encoding
used to represent the signed digits. In [1] the encoding used for a signed digit is y = y* — y**,
where y*, y** € {0,1}. A signed digit is in effect expressed as a difference of two bits. With this
encoding, “00” and “11” represent the digit value 0, “10” represents +1 and “01” represents a
—1. To generate such a number from the input operands bits a; and b;, the arithmetic equation

ai +bi =2y, —y;” (20)
is used, where

All the variables in equations (20) and (21) are ordinary bits (i.e., assume one of the two values

{0,1}).

Note that the above equation implicitly indicates signal propagation between the neighbor-
ing digit positions since the signal y;,, for digit position (i 4+ 1) comes from the ith position.
Recall that the sign select conversion basically needs the R (zero indicator signal), its comple-
ment R, and T (sign information) bits for each digit (the subscripts in R; and T; are omitted
whenever a reference to the digit position is not important). The information as coded by digits
yiy:* must therefore be used to generate the signals R;, R; and T;. The resulting cell that gen-
erates the R and T signals is shown in Figure 2. The circuit which generates the intermediate
signed digit result is synthesized by abutting the cells shown in Figure 2, with y§ = 1. Once
the R and 7T signals are generated, the sign—select conversion begins with an incoming borrow

co = 0, which corresponds to setting y§ equal to one [1].

IIT Improved Procedure to Generate an Intermediate Signed-Digit
Result and Derivation of Optimal Encodings

We next demonstrate that adopting a different method to generate the intermediate signed-
digit representation and employing different encodings for a signed digit leads to substantial
savings in the number of transistors and the critical path delay.

(A) Addition Algorithm : We re-write (A + B) as
A+ B=(A—-B-1) modulo 2 (22)
where B is the one’s complement of B:

B=2"-1-—B , where n is the word-length (23)



Note that the one’s complement B is obtained simply by inverting all the bits of B. The —1
in equation (22) can be taken care of by forcing a carry (borrow)-in ¢g = —1. The modulo
operation simply amounts to discarding the outgoing borrow, except when there is an overflow,
which can be detected as in conventional addition. Assuming

(i) ¢, and ¢,_; represent the borrow-in and borrow-out of the MSB position, and

(ii) a logical “1” is used to represent a borrow of algebraic value —1 (which implies a logical
“0” indicates no borrow or a borrow of value 0);

it can be shown that

overflow = ¢, @ ¢,—1  as in conventional addition. (24)

One is then left with the generation of the signed-digit intermediate result (A — B), which
can be done very fast and in parallel as follows. Note that each of the bits of A and B is in the
range {0,1}. Hence a bit—wise subtraction directly leads to a signed-digit output representing
(A—B), where each digit is in the range {—1, 0, 1}. The bit-wise subtraction can be carried out
simultaneously (i.e., in parallel) for all the digit positions because there is no need to propagate
signals from one digit position to the next.

For the purpose of illustrating our method, consider the case where the two’s complement
encoding is used to represent a signed digit (we derive optimal encodings a bit later in the
section). In this encoding, a signed digit y is represented by two bits y*y®, where y°y® = 00
represents the value 0, the bit combination “01” represents the value 1, and “11” represents the
value —1. In other words, y = —2y® + y*, which is a two’s complement representation where y*
is the sign bit with negative weight. The pattern “10” is not used at all in this encoding. The
advantage of such an encoding is obvious: y® can be utilized in place of the signal R, and T is
simply the bit y°.

Given two numbers A = (a,_1---by) and B = (b,_1---bg) in two’s complement format, it
is very easy to generate the intermediate signed-digit representation for (A — B). A cell that
accepts bits a;, b; and generates a signed-digit output corresponding to the bit—wise subtraction
a; — b; is shown in Figure 3. Note that all the digit positions are independent of each other and
there is no signal propagation whatsoever from one digit position to the next. Since both R
and R are required for the sign—select multiplexing, the cell in Figure 3 shows an XOR-XNOR
pair instead of only an XOR gate.

From Figures 2 and 3, the savings in critical path delay as well as transistors are obvious.
The cell in Figure 2 needs 26 transistors, while our cell requires only 14 transistors. Note that
the cells shown in Figures 2 and 3 are the leaf nodes in the look-ahead tree. This, combined
with the fact that the number of leaf nodes in a tree equals (1 + the number of internal nodes)
implies that any saving in the transistor count in the leaf cells leads to a substantial saving in
the overall transistor count of the adder.



While the two’s complement encoding in conjunction with the intermediate signed result
generation proposed above leads to a substantial improvement in the delay and transistor count,

it is still not optimal, as shown next.

(B) Derivation of Optimal Encodings : Note that the sign selection operation basically
needs the “zero” indicator signal R (and its complement R), and the “sign” indicator 7. The
actual encoding used to represent a signed digit is of secondary importance, so long as the R
and T signals can be generated as fast as possible. In fact, since exactly two bits are required
to encode the 3 values {—1,0,1} that a signed digit can assume, the encoding selected to
represent signals R; and T; can itself be deemed to be the encoding used to represent a signed
digit. Thus, we turn the problem around and select an encoding for R and 7" which enables their
generation in the shortest possible time (and possibly simultaneously with minimum number
of transistors). The selected encoding for R and T defines the encoding used to represent a
signed digit in the intermediate result.

First, note that the “R;” signal must be completely specified for all possible input com-
binations for the MUX implementation of Figure 1 to work properly. In other words, there
are no “don’t—cares” in the specification of R;. It has, therefore, only the following two trivial
encodings:

(i) R; = 0 when the digit y; = a; — b; = 0 and R; = 1 otherwise (i.e., when y; = +1).
(ii) R; =1 when y; = 0 and R; = 0 otherwise.
The truth table for the Boolean variable R; for each of these two encodings is as shown below.

a; by b |yi=a;—b Ril Riz
0 0 1 -1 0 1
0 1 0 1 0
1 0 1 0 1 0
1 1 0 +1 0 1

Table 3: Truth table for two possible encodings R} and R? as functions of the input operand
bits a; and bz

The two encodings are actually equivalent: each requires an XOR-XNOR pair to implement
the R, R signals and either of them leads to the same critical path delay.

Next we consider encodings for 7;. Note that whenever the digit y; is zero, the value assigned
to sign bit T; is immaterial because 7T; is simply shunted out by the MUX (or in other words,
the input sign propagates). This introduces “don’t—cares” in the truth table for 7;. The value
of T; matters only when the signed digit y; is non zero. Once again, there are two possible
encodings for T,

(i) T; =1 when y; = a; — b; = 1; T; = 0 when y; = —1 and T} = X, i.e., a “don’t-care” when
y; = 0.



(ii) T; = 0 when y; =a; —b; = 1; T; = 1 when y; = —1 and T; = x when y; = 0.
The truth table for these encodings is shown below in Table 4.

a; bz [_)z Y; = a5 — Bz Til Ti2
0 0 1 —1 0 1
0 1 0 X X
1 0 1 X X
1 1 0 +1 1 0

Table 4: Truth table for two possible encodings T} and T? as functions of the input operand
bits a; and b;

Each of the don’t cares in the 5th column of the above table can take one of the two values (0
or 1). Thus there are 4 different sub encodings corresponding to the 4 possible assignments of
binary values to the don’t cares in column 5 (these will be denoted as T'° T, T'? and T3,
corresponding to the don’t care assignments 00, 01, 10 and 11, respectively). Similarly, there
are 4 possible sub-encodings generated by column 6 (which will be denoted by T2, T% T%
and T?%). Table 5 below shows the logical equation for 7} as a function of a; and b; for each of
these 8 distinct encodings. The transistor count associated with each of the encodings is also
listed in the table.

Encoding | Logical Function | Transistor Comments
for T; Count (Gates required)
T10 a; - b 6 NAND + inverter
T a; 0 a; itself serves as signal T;
T2 b; 0 b; itself serves as signal T;
T3 a; + b; 6 NOR + inverter
720 a; + b; 4 NOR
T2 b; 2 inverter
T2? a; 2 inverter
723 a; - b; 4 NAND

Table 5: The logical functions and corresponding critical path delay and transistor count for
each of the eight distinct encodings for signal 7;.

From the table it is evident that encodings T*! and T'? are the best since these do not
require any additional processing: one of the two inputs a; or b; itself serves as the “sign” bit
of the corresponding signed digit (in the intermediate signed-digit representation). Why can
T; be simplified to this extent ? The answer can be found from Tables 3 and 4. The key is to
realize that R;, being an XOR (or XNOR) of a; and b; already has the information on whether
a; and b; have the same values or different values. Also, from the 4th column of Table 3 (and
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Table 4), it is clear that the digit y; is zero only when a; and b; have different values and 1
when a; and b; have the same value. Putting these two facts together, each of the two pairs
(R;, a;) and (R;,b;) contains all the information necessary. Thus 7; can be replaced by either
a; or b;. We would like to point out that an exhaustive listing of all possible encodings for 7' is
done here only for the sake of clarity. The fact that 7'' and 72 are optimal can be directly
determined from a Karnaugh map for the 5th and 6th columns in Table 4.

Finally, note that each of the two encodings for R listed in Table 3 can be utilized with
each of the two “best” encodings for 7, yielding 4 distinct encodings. Each of these encodings
leads to the same critical path delay, and the minimum transistor count associated with the
XOR-XNOR pair required to generate (R, R) bits. The encodings are listed in Table 6.

Encoding | Digit values and the (73, R;) pairs used to represent them

)
(T, RY) —1+4(0,0) 0+ (0,1) or (1,1) +1+ (1,0)
(T, R?) —14(0,1) 0+ (0,0) or (1,00 +1+ (1,1)
(T'2, RY) —14(1,0) 0+ (0,1) or (1,1) +1 < (0,0)
(T'2, R?) -1+ (1,1) 0+ (0,0) or (1,00 +1+ (0,1)

Table 6: The four optimal encodings which lead to the minimal transistor count.

Table 6 above indicates that the optimal encodings no longer have a unique representation
for the digit value y; = 0. In fact it can be easily verified that out of the eight possible encodings
for T, the 4 encodings T'°, T3, T?% and T? lead to a unique representation for the digit value
0. The remaining four encodings, i.e., T'',T*2,T?! and T?? lead to two different bit pairs to
represent the digit value 0.

When two different bit pairs are used to represent the same digit value, we have transcended
the notion of “intermediate signed-digit representation”. In fact it is not discernible that we uti-
lized an intermediate signed-digit representation, because this implies a unique representation
for each digit value. What we have done is completely bypassed the “intermediate-signed—
digit” notion in its strict sense and directly synthesized the 7; and R; signals that are required
for the carry propagation.

Table 6 shows that in encoding T!' a digit with value —1 is represented by a “sign” bit
with a value 0. This bit is one of the inputs to the MUX in the sign-selection circuit (as seen
in Figure 1). Hence, in the case when the sign “dominates” and gets selected by a multiplexor,
a logical (Boolean) value of 0 will appear at the output of the MUX, but the correct algebraic
value to be forwarded is —1. In other words, for the simple MUX selection circuit to work
along with encoding T'!, ¢; = 0 must represent a borrow of —1 while ¢; = 1 should correspond
to a borrow of value 0 (i.e., no borrow). This means that the encoding for the borrows is the
complement of that used in Table 1. Such an encoding of the borrows c; poses no problem: the
borrow propagation operation defined by equation (6) does not impose any particular encoding
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on variables c;11, ¢; and T;, as long as the same encoding is used to represent all of them. In
other words, if 7; = 0 corresponds to a sign of —1 then ¢; = 0 must also represent a borrow
of value —1, in which case T; = 1 and ¢; = 1 represent no borrow or a borrow of value 0.
The only other choice is to let T; = 0 and ¢; = 0 represent an algebraic value of 0 in which
case T; = 1 and ¢; = 1 represent algebraic value —1 (this representation is implied by selection
encoding 7'%). Thus selection of an encoding for the “sign-bit” also determines the encoding
of the “borrow” signals.

In contrast, the fundamental carry operation implies that a carry (borrow) of weight +1
(—1) is represented or encoded by a 1, 1i.e., it presupposes a fixed encoding.

Since all the four encodings listed in Table 6 are equivalent, we arbitrarily select 72 in order
to illustrate our adder architecture. Henceforth, all the cell and block diagrams are based on
encoding (7', R!) in row 3 of Table 6 (For the sake of illustration, we arbitrarily select encoding
R! for variable R. Thus, the R encoding is implied and need not be stated explicitly while
referring to an overall encoding. A cell that implements the R; and 7T; signals is illustrated in
Figure 4. Compared to the cell in Figure 2, our cell has a smaller critical path delay, and needs
only 10 transistors to implement the XOR-XNOR pair. To reduce the delay, the XOR and
XNOR gates are implemented separately, each with a 4 transistor transmission structure [12].
The inversion of one of the signals needs 2 more transistors, for a total of 10 transistors. IV
Illustrative Architecture and Comparison

(A) Architecture The overall architecture of a 32 bit adder based on the T'? encoding is
shown in Figure 5. It is modular and can be easily extended to word lengths of 64 bits or
longer. A 32 bit word length has been selected merely for the convenience of illustration.

As shown in sections II and III, there are several different ways to express the basic carry
(borrow) propagation equation. Consequently, several different architectures are possible: for
instance, architectures that utilize a combination of two or more of carry (borrow)-skip; carry
(borrow)-look-ahead; carry (borrow)-select and a variety of other well-known techniques. We
have selected a combination of carry-look-ahead and carry-select techniques for the ease of
illustration and comparison with the design proposed in [1], which also employed a combination
of the carry look-ahead and carry-select techniques.

The input bits are grouped into blocks, and a ripple-carry addition (RCA in Figure 5) is
performed twice for each block, with the incoming carry assuming the values 0 and 1. When
the actual carry input to a block is generated by the look-ahead tree, it is used to drive a block
multiplexor (BM in Figure 5) which then selects the correct output.

The larger the block size, the fewer the number of carries to be generated, but the larger
the time delay incurred by the ripple-carry addition through the block. The size of the block
should therefore be selected in such a way that the delay of the ripple-carry addition through
the most significant block and the delay associated with the generation of the carry input to
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that block are equal or as balanced as possible, so that all the inputs to the block multiplexor
arrive at approximately the same time. Table 7 shows the optimal block size b as a function
of operand word length, under the assumptions that the block sizes of all bit blocks are equal,
and fan-out loads and wire delays are negligible.

Word Length | Ripple-carry block size b
8 2

16

32

64

128

256

o B R RN

Table 7: Optimal ripple-carry block size b as a function of word length of the input operands,
ignoring fanout loads, wire delays, etc.

Selection of the fan-in factor of the look-ahead tree is totally independent of the choice of
the block size b for the ripple-carry addition. For instance, the optimal block size changes along
with the word length, as shown in Table 1. The fan-in factor of the look-ahead tree, on the
other hand, remains two for all these word lengths.

Note that the group of the four least significant bits employs a different circuit labeled
CG (Carry Generator) in place of the SSC circuit. This is done in order to accommodate a
variable external carry-in signal, with a negligible or no increase in the total critical path delay.
A variable carry-in may be required when the same hardware is used to perform an algebraic
subtraction A — B, or in a multi-operand addition.

To understand the operation of the CG block, note that in Figure 6 if the signal T} is
replaced by the actual carry ¢; then multiplexor M1 generates

R_l . T1 + R101 = Co (25)
i.e., the true carry co. This, in turn, causes multiplexor M3 to generate
Rz - T30+ R3p-co =cy (26)

i.e., the true carry ¢, as required. Note that the bit-wise propagate signals R; and R; are the
XOR/XNOR functions. The propagation of signals in the look-ahead tree begins after these
signals become available. Therefore, if the carry ¢; (or its complement) can be generated within
a delay smaller than that required to realize the XOR/XNOR function pair, the total critical
path delay remains unaffected. It turns out that ¢; can be implemented with a delay comparable
to that required to generate the XOR/XNOR pair by employing the inverting majority gate (a
complex gate) illustrated in Figure 9 at the top.
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(B) Comparison

This subsection compares the proposed architecture with that of [1]. Table 8 shows the

transistor counts for different word lengths.

Word Our Adder Adder
Length (W) Allowing up to 4 Allowing up to 6 in [1]
series transmission gates | series transmission gates
8 350 258 284
16 796 588 756
32 1636 1276 1772
64 3476 2732 3620

Table 8: Transistor counts for different word lengths. The counts for designs in [1] are
reproduced from Table III therein for the sake of comparison. The design in [1] has up to 11
transmission gates in series.

Note that our adder needs a smaller number of transistors than that required by the adder
in [1] for word lengths above 32 bits. While the proposed design limits the number of trans-
mission gates in series to 4, the adder in [1] has up to 11 transmission gates cascaded in series,
which would make the cascaded chain far slower (than a linear increase). Even when we limit
the number of series transmission gates to 4, our 32 and 64 bit adders use fewer transistors.

If we limit the number of series transmission gates to 6 (which is reasonable, especially as
the feature size continues to shrink) the improvements in transistor savings are substantial:
28% and 25% respectively, for 32 and 64 bit adders. Thus our adders require considerably
fewer transistors. The reduction comes about mainly because of the simplification of the cell
that generates the bit-wise 7; and R;, R; signals. As mentioned before, these cells are the leaf
nodes of the look-ahead tree. Since the number of leaf nodes of a tree is (1 + number of internal
nodes), transistor savings in the leaf cell lead to substantial reduction in the transistors required
in the overall adder.

The addition times for different word lengths are shown in Table 9.

For the sake of consistency the same delay model used in [1] is adopted to estimate the
delays of our adders. This model assumes that the delay of XOR/XNOR and two input gates
is 1 unit, and ignores fanout loads, wire delays etc. This delay model is not accurate and is
used here only for the sake of consistent comparison with the design in [1].

It is clear that our adder is faster than that in [1] for all word lengths. For 32 and 64 bit
operands, the speed improvements are 33% and 31%, respectively.

Our adder is always faster than that in [1] because
(i) Our method of intermediate signed digit generation is more straightforward and faster,
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Parameters Addition Time Delays
Word Our Block | Our Adder
Length (W) size b Adder in [1]
8 4 6
16 4 7
32 8 8 12
64 8 9 13

Table 9: Comparison of addition times (gate delays) as functions of word length. Delays for

the adders in [1] are reproduced from Table II in that paper for the purpose of comparison.

Encoding S} in Table 6 is used in our designs. For the sake of consistency, the same delay
model used in [1] is adopted here.

(ii) We have optimized the encoding used to represent the intermediate signed-digit result, and
(iii) Our tree design is faster: in [1], the block size used is 8. A ripple through 8 bits is too slow
compared with the propagation of carry signals in our tree which leads us to use a block size
of 4. In their design for 32 bit word length, the block ripple is slower than the borrow signal
generation and it determines the critical path which indicates unbalanced paths.

In summary our design is significantly better than that of [1] in terms of both speed and
area. However, the main focus of this paper is not simply a comparison with the design in [1],
but to show an equivalence between designs based on intermediate signed digit results and
conventional designs which is established in the next section. Given this equivalence, it is clear
that going to an intermediate signed digit representation does not yield any advantage over
conventional designs that do not go through intermediate signed digits. Thus, it is feasible
(and likely) that recent adder designs published in the literature (for instance [13, 14, 15, 16])
are significantly better than designs based on intermediate signed-digit representations.

V  Correspondence between Adders Based on Intermediate Signed
Digit Representations and Conventional Ones

In the following we demonstrate a one-to-one correspondence between adders employing
intermediate signed-digit representations and those based on conventional schemes. This in turn
implies that there is no advantage gained by using intermediate signed-digit representation. Let
A = (ap-1---ag) and B = (b,—1---by) be the two operands in two’s complement format that
are to be added to generate a result in two’s complement. Next, we use a two-column format to
illustrate a side-by-side comparison of the two addition schemes (one based on intermediate SD
representation versus conventional addition). This comparison helps bring out the equivalence
between the two schemes.
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Adders based on intermediate
Signed-Digit interpretation

A + B is implemented as

A—B=A+B+ulp—2"
B =2"—ulp— B is the one’s complement
of B, obtained by inverting each bit b;. The
extra 1 can be removed by forcing a carry-

; where

in of —1 while the —2" term manifests itself
as a borrow-out that can be discarded (or
handled properly to detect overflow, etc.)

Intermediate bit-wise subtraction output
y; = a; — bi € {—1,0,1}.

The bit-wise difference y; needs at least two
variables to “encode”. Let the variable pair
used to encode y; be (T}, R;).

A “borrow” ¢; is propagated from LSB to
MSB. The algebraic value of ¢ is -1.
Borrow c¢; into position ¢ has a negative
weight, i.e., ¢; € {—1,0} for i >0

Final operation is w; = y; — ¢; which can
result in any of four values {—2,—1,0,1}.

w; is recoded with two bits:

(1) ¢iy1 representing the “outgoing borrow”,
and

(2) the final output bit d;

that satisfy the relation

W; =Y; — C = dz - 2Ci_|_1 (27)

Conventional Addition

No special interpretation is used.

The bit-wise algebraic sum output
yi = a; + b; € {0,1,2}.

Even in conventional addition the bit-wise
sum y; needs two bits to encode. Tradition-
ally, two-variable pairs such as (G;, P;) where
P, = a; N b; or P, = a; ® b;, have been used
to encode y;. (Gj, P;) can be replaced by

(Qzapz®)

A “carry” ¢; is propagated from LSB to MSB.
The algebraic value of ¢y is 0

Carry ¢; into position ¢ has a positive weight,
ie., ¢;€{0,1} fori >0

Final operation is w; = y; + ¢; which can
result in any of four values {0, 1,2, 3}.

w; is recoded with two bits:

(1) ¢;41 representing the ”outgoing carry”,
and

(2) the final output bit d;

that satisfy the relation

W; =Y; +¢ = dz + 2Ci_|_1 (28)

The encoding of bits d; is fixed because the final sum output must be in two’s complement

format. Note that the above equations (27) and (28) uniquely determine the algebraic values

of ci+1 and d; for each possible value of w; (abbreviated w; <+ (¢;41,d;)) as indicated below:
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—26 (=1,0) —1¢(-1,1) 04 (0,0) 1+ (0,1)
0+ (0,0) 1<« (0,1) 24 (1,0) 3+ (1,1)

The only difference that can arise between the two schemes is therefore due to the encoding
used to represent intermediate bit-wise result y; and the resultant Boolean recursion equations.

There are 24 possible encodings to represent There are 24 possible encodings to represent
yi € {—1,0,1} with 2 bits (4 x 3 x 2) y; € {0,1,2} with 2 bits (4 x 3 x 2)

For every encoding (and consequently for every recursion) in one scheme, there is a corre-
sponding encoding (and a corresponding recursion) in the other scheme. This correspondence

is summarized in Table 10.
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Encodings for bit-wise difference Yi

(bits Ti, Ri) in a method

based on intermecgate SD +r1ep. Next carry/borrow Ci+1 Sum output di Correspondence
~_~10 m(0, 4, 5) +d(3, 7) m(0, 2,5)+d(3,7) |E0<---->G14
0111 m(0, 4, 5) +d(2, 6) m(0, 3,5) +d(2,6) |E1l<---->G20
00w 10—"01 m(0, 4, 6) + d(3, 7) m(0, 1,6) +d(3,7) |E2<---->G8
11 m(0, 4, 6) + d(1, 5) m(0, 3,6) +d(1,5) |E3<---->G22
11— 01 m(0, 4, 7) + d(2, 6) m(0, 1,7) +d(2,6) |E4 <---->G10
10 m(0, 4, 7) + d(1, 5) m(0, 2,7) +d(1,5) |E5<---->Gl16
10 m(1, 4, 5) + d(3, 7) m(1, 2,4) +d(3,7) |E6<---->G12
00——11 m(1, 4, 5) +d(2, 6) m(1, 3,4) +d(2,6) |E7<---->G18
01 10— 00 m(1, 5, 6) +d(3, 7) m(0, 1, 6) +d(3,7) |E8<---->G2
11 m(1, 5, 6) +d(0, 4) m(L, 3, 6) + d(0, 4) |E9 <---->G23
11— 00 m(1, 5, 7) + d(2, 6) m(0, 1,7) +d(2,6) |E10<---->G4
10 m(1, 5, 7) +d(0, 4) m(1,2,7)+d(0,4) |E1l<--->G17
01 m(2, 4, 6) +d(3,7) m(1,2,4)+d3,7) |El2<--->G6
00——11 m(2, 4, 6) + d(1, 5) m(2, 3,4) +d(1,5) |E13<--->G19
100~ 0g1—00 m(2, 5, 6) +d(3, 7) m(0,2,5) +d(3,7) |E14<--->GO
11 m(2, 5, 6) + d(0, 4) m(2, 3,5) + d(0, 4) |E15 <> G21
11— 00 m(2, 6, 7) + d(1, 5) m(0, 2, 7) +d(1,5) |E16<---->G5
01 m(2, 6, 7) +d(0, 4) m(L, 2, 7) +d(0, 4) |E17 <---->G11
01 m(3, 4, 7) + d(2, 6) m(1,3,4) +d(2,6) |E18<---->G7
00~ .10 m(3, 4, 7) +d(1, 5) m(2,3,4) +d(1,5) |E19<--->G13
117 = 01—"00 m(3, 5, 7) +d(2, 6) m(0, 3, 5) + d(2,6) |E20<---->G1
™10 m(3, 5, 7) +d(0, 4) m(2, 3,5) +d(0, 4) |E21<---->G15
10— 00 m(3, 6, 7) +d(1, 5) m(0, 3,6) +d(1,5) |E22 <---->G3
01 m(3, 6, 7) + d(0, 4) m(1, 3, 6) + d(0, 4) |E23 <----> G9
0 1 2

Encodings for bit-wise sum Yi

in norma addition

Table 10 : One-to-one correspondence between adders based on intermediate signed digits and
conventional ones. Refer to the text for further explanation of the table.
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The first column in Table 10 indicates the 24 possible encodings that can be used to represent
the 3 intermediate digit-wise results, i.e., {—1,0,1} in adders based on intermediate signed
digits; and {0,1,2} in conventional adders. The 3 sub-columns in the first column list the
bit values of the ordered pair (T}, R;) for y; equal to —1, 0 and +1, respectively, in a scheme
based on intermediate signed digits. The same 3 sub columns represent the bit values of the
pair (T3, R;) for y; equal to 0, 1 and 2, respectively, in a conventional addition. For instance,
the first row corresponds to an encoding where bits (7;, R;) = (0,0) represents an intermediate
result y; = —1, the pair (0,1) represents y; = 0 and the pair (1,0) represents y; = +1. The
same row also shows an encoding for conventional addition where the bit pair 00 represents the
algebraic value 0, the pair 01 represents the value 1 and 10 represents the value 2.

Encodings for adders based on signed digits have labels beginning with “E”, while encodings
for conventional adders have labels beginning with “G”. Thus the first row and first column of
the table specifies encoding E0 for adders based on signed digits and encoding GO for conven-
tional adders.

The second column shows the Sum-of-Products (SOP) Boolean expression for the outgoing
borrow c;;1 in terms of the bits encoding y; and the borrow-in ¢; for adders based on intermediate
signed digits, i.e., for the “E” encoding under consideration. (i.e., this column gives ¢;;; =
f(ci, T;, R;) in the standard SOP notation including the minterms and the don’t cares. Here,
T;, R; are the bits encoding the digit-wise intermediate result y; € {—1,0,+1}, and ¢; is the
borrow-in).

Likewise, the third column gives SOP expressions for the final sum output digit d; for the
“E” encoding under consideration. The don’t cares (in columns 2 and 3) arise because only 3
out of the 4 combinations of two bits are needed to encode all possible values of y;. The last
column indicates the one-to-one correspondence between the two schemes.

The first correspondence indicates that EO and G14 are equivalent. Encoding G14 corre-
sponds to the 15th row of the table (the rows are labeled starting 0 for convenience), showing
that in this encoding, the intermediate bit-wise sum value y; = 0 is encoded by (T3, R;) = (1,0);
y; = 1 is encoded by “01” while y; = 2 is encoded by “00”.

The equivalence holds in the following sense: under encoding G14 for conventional addition,

Giar = [m(0,4,5) + d(3,7)] (29)
In other words,

(i) the SOP expression for ¢;,1 is identical under encoding EO for adders based on signed digits
and encoding G14 for conventional adders; while

(ii) the expression for d; under encoding EO is the complement of the expression for d; under
G14.
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The encodings turn out to be symmetric in the sense that Ei «+— Gj and Ej <— G4 for
0<4,j<23.

In the notation of Table 10 the encoding T*2 underlying the architecture illustrated in Figure
5 can be shown to correspond to either E14 or E16 (along with the implicit assignments to the

don’t cares which can make either E14 or E16 equivalent to T'?).

It can be verified that several of the encodings in Table 10 lead to look-ahead recursions
which can be implemented via multiplexors, so that fast, MUX-based look-ahead trees or
carry /borrow-skip circuits can be implemented.

A\Y Conclusion

We have analyzed the design of adders based on intermediate signed-digit representation.
The analysis reveals a one-to-one correspondence between these adders (based on intermediate
signed digit results) and conventional adders. This implies that the complexity of the two
designs (those based on intermediate signed digit results and conventional ones) is identical,
which is intuitive: as long the underlying operation is a two-operand addition, whichever way we
approach it, the fundamental complexity should remain the same. Thus, there is no advantage
gained by adopting an intermediate signed-digit representation (over and above a conventional
adder design). Because of this equivalence, Doran’s framework for lookahead recursions [17],
originally developed for conventional adders, is also applicable to adders based on intermediate
signed digits.
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Figure 1: Transmission gate based multiplexor implementation of the sign-selection operation
in equation 6
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Figure 2 : Cell used in [1] to generate the intermediate signed digit result. A binary signed digit
y € {—1,0,+1} is expressed as a difference of two bits: y = y* — y**, where y*,y** € {0,1}.
For each digit position 7 (where 0 < i < (wordlength — 1)); signals y; and y;* are generated as
per equations (20) and (21). Note that there is implicit signal propagation between adjacent
digits: yf (which is the complement of y}) is generated from operands in the (¢ — 1)th position.
The two gates at the bottom encode the result of subtraction y; — y;* with S; and Z; signals.

bi

Figure 3 : Cell required to generate the intermediate signed digit result in our method, if straight
two’s complement encoding (i.e., “00” represents 0, “01” represents +1 and “11” represents —1)
is used to represent the intermediate signed digit result. Note that there is no signal propagation
between adjacent digit positions. The signals for each position are generated using only the
input operand bits in that position. This cell can be further simplified to that shown in Figure
4 by employing the optimal encodings derived in Section III.
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R; i
Figure 4: Cell based on encoding (7%, R') in Table 6. Note that operand bit b; itself serves as
the “sign-bit” 7;. The simplification over the cell shown in Figure 3 is the result of adopting
encoding T2 for the sign-bit (instead of the straight two’s complement representation on which
the cell in Figure 3 is based). This cell has a significantly smaller number of transistors as well
as a smaller critical path delay compared to the cell in Figure 2, which was used in [1].
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Figure 5 : Overall architecture of our 32 bit adder (refer to the text for details). SSC is the
sign-select circuit shown in Figure 6, M is the inverting multiplexor shown in Figure 7 (the
architecture is flexible and the block M can be replaced with the transmission gate MUX in
Figure 1 with minor modifications). BM is a 4-bit block multiplexor, and RCA is the ripple
carry adder shown in Figure 8. CG block shown in Figure 9 is used instead of SSC block for
the group of 4 least significant digits in order to reduce the critical path delay. Every group
R;.; is generated from R signals of the same sub-groups that are combined to generate the
corresponding T;.;. For example, Ty7.1 is generated from Taz.00 and Tig.19, likewise, Rar.1o is
generated from Ry7.09 and Rig.15-
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Figure 6 : Sign Select Circuit (SSC) implementing the first two levels of the binary look-ahead
tree for sign selection.
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Figure 7 : Alternate design: inverting multiplexor which actively restores the signals.
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Figure 8 : The ripple-carry circuit for block size b = 4.
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Figure 9 : The “Carry Generate” (CG) block for the least significant bit-group. This is used
instead of the SSC block to reduce the critical path delay.
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Additional Figures (Spice timing plots)

Generated by Hansoo Kim who left and is now at Cadence.

A variant of 32 bit the architure illustrated in the paper was layed out in
MAGIC, extracted with 2 micron technology files and simplated in SPICE
(v3f4). The plots are one each on a page with bare minimal explanations at
the bottom. This file is concatenated to main.ps by the dvipscat utility in a

hurry !
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