Synchronous Up/Down Counter
with Clock Period Independent of Counter Size

Mircea R. Stan
Electrical Engineering Department
University of Virginia, Charlottesville, VA 22903
mircea@virginia.edu

Abstract

The theory and practice of up-only or down-only
prescaled (or constant time) counters is well understood
both in industry and in the academia. Such counters are ob-
tained by partitioning the counter into sub-blocks in order
to be able to anticipate the CARRY propagation inside each
block (similar to a carry-select adder). When properly de-
signed, prescaled counters have a clock period independent
of counter size. Until now it was not known whether it is
possible to design a constant time up/down binary counter.

This paper presents the theory behind building a syn-
chronous up/down counter of arbitrary length and with pe-
riod independent of counter size. The main idea behind the
novel up/down counter is to recognize that the only extra dif-
ficulty with an up/down (vs. up-only or down-only) constant
time counter is when the counter changes “direction” from
counting up to counting down and vice-versa. For dealing
with this difficulty the new design uses a “shadow” register
inside each sub-block with the purpose of always storing the
previous block value. When counting only up or only down
the counter functions like a standard up-only or down-only
constant time counter, but when it changes direction, instead
of trying to compute the new value (which typically requires
carry propagation), it simply uses the contents of the shadow
register which contains the exact desired previous value.

A 64-bit up/down counter running at 40MHz was im-
plemented in an Atmel AT6000 FPGA and similar up/down
counters can be implemented in any technology.

Keywords - prescalers, up/down counters, constant time
counters.

1 Introduction

Counters are basic building blocks in many digital sys-
tems with some applications requiring counters that are both
fast and long, but speed and size are conflicting qualities be-

1063-6889/97 $10.00 © 1997 IEEE

cause of the carry propagation from low order to high order
bits.

By using prescaling techniques it is possible to design
counters that are both long and fast, and examples of such
counters can be found both in industry (e.g. most FPGA
data books [1, 6, 12, 13] have application notes describing
prescaled counters with an emphasis on the practical aspects
of speeding-up long counters) and in the academia (e.g. [3,
11, 14] where the emphasis is on the theoretical implications
of having constant time counters of arbitrary length). The
following are desirable qualities for counters [2, 3] which
this work tries to satisfy (except for the last one, loadable):

¢ Clock period independent of counter size. In terms
of complexity theory, the clock period of a prescaled
counter is constant (i.e. O(1)) no matter what the size
N of the counter is. This powerful theoretical result
is only partially valid in practice because it is based
on the “synchronous paradigm” for which the clock
is a perfect broadcast signal.

o Readable on the fly with the sampling rate being equal
to the counting rate. These are the characteristics of
a synchronous design. If a synchronous behavior is
not needed (e.g. for frequency dividers) a simpler
ripple-carry (asynchronous) counter {11] can be used.

o Space complexity linear in the number of bits (i.e.
O(N)). If counters with a larger asymptotic com-
plexity are acceptable (e.g. when N is small or when
“super fast” counters are needed) ring (“twisted-tail”,
Johnson or Moebius) counters which have O(2V)
space complexity can be used.

e Binary counting sequence. If a binary sequence is
not needed, a simple linear feedback shift register
(LFSR) [5, 8] can be used, which has O(1) period and
O(N) space complexity, but has a nonbinary output
sequence.

274

MSB Lss

CARRY propagation
CARRY-in

Prescaler

Figure 1. Prescaled counter partitioned into
K-bit (here K = 2) prescaler and 2X high-
order block.

o Count either “up” or “down” or “up/down”. Up-only
counter have an increasing output sequence modulo-
2N down-only counters have a decreasing output
sequence modulo-2", while up/down counters can
change “direction” in any clock cycle under the con-
trol of an input signal.

o Loadable with a new value and be able to continue
counting from the new value in the next cycle. This
is a very difficult property for constant time counters
and is not addressed in this work.

Vuillemin [11] posed as an open problem the feasibility
of a constant time up/down counter and until now many
believed that such counters are not feasible (e.g. the Xilinx
databook [12] at page 8-68 states that “the ... prescaler
technique ... cannot be used in counters that are up/down”).
This paper answers this open problem by presenting the
design of a constant time up/down synchronous counter.
Section 2 briefly presents the main ideas behind previously
proposed constant time counters while section 3 describes
the novel up/down constant time counter with an example
of a 64-bit up/down counter that runs at 40MHz in an Atmel
FPGA.

2 Constant time up-counters

Prescaling long counters requires partitioning them into
a series of sub-blocks of increasing sizes. The simplest
prescaled counters have only two such blocks with a small
and fast least significant module called the prescaler and
a slower large counter for high-order bits like in figure 1
[7]. What makes a prescaled counter work is the fact that,
due to the characteristics of the binary number system, the
CARRY-in from the prescaler to the high order bits (which
corresponds to the moments when the high order bits have
to be incremented) has a low frequency (e.g. for a K-bit
prescaler, the CARRY-in will have a frequency 2K times
lower than the clock frequency). In this way, the “virtual
clock frequency” for the slow high-orderblock is 2K smaller
than the true clock frequency, and the CARRY propagation
inside the high-order partition can take a long time even
with a fast clock.

A simple reasoning leads to a theoretically unlimited
extension of the counter size without increasing the clock
period by adding more partitions [3, 11]. For higher order
blocks, successive CARRY-ins from the previous stages be-
come exponentially farther apart in time, hence higher order
blocks can have exponentially increasing sizes and for all
practical purposes 3 or 4 such partitions are typically enough
[11). In a correctly designed constant time counter the clock
period is limited only by the speed of the least significant
block, hence the first prescaler is typically very small (1 or
2 bits).

The following two issues arise in the practical design of
constant time counters and determine the sub-block sizes:

o The CARRY propagation inside a partition has to be
faster than the “virtual clock” for that block. Gen-
erally it is desired that the design be as simple (i.e.
small) as possible, hence a ripple CARRY propaga-
tion is typically chosen inside each partition. For such
an arrangement the number of bits inside a partition
is determined by dividing the “virtual clock” period
by the gate delay for one bit of carry propagation.

o The prescaled generation of the CARRY-in to a parti-
tion has to be synchronous with the true clock. Sev-
eral different approaches have been proposed for the
prescaled generation of the CARRY-in to high order
partitions. The first proposed solution, by Ercego-
vac and Lang [3], uses a (relatively inefficient) ring
counter, which practically doubles the overall com-
plexity of the counter. A much simpler CARRY-in
generation, proposed by Vuillemin [11], uses a com-
binational chain that takes further into account the
characteristics of the binary number system.

2.1 Partitioning the counter for a constant time
behavior

The size of each sub-block must be chosen such that the
CARRY propagation inside the block is shorter than the
delay between two successive CARRY-ins from the corre-
sponding prescaler. In this way the CARRY propagation
inside the block is not on the critical path and does not affect
the clock period.

Depending on the choice of the prescaled CARRY-in
generation method, the partition sizes can be determined:

o In atop-down manner [3] by first determining the size
of the most significant block, which is chosen as large
as possible, and then recursively determining the sizes
of the lower order blocks. By assuming unit delays for
the combinational gates and a unit delay clock, an N-
bit counter is first partitioned into an (N — [log N)
most significant block, and into another [log N'] block

275

which is recursively partitioned in the same manner
[3]. For example, in the case of a 64-bit counter, a top-
down partitioning results in the following block sizes:
58,3, 2, 1 [3]. The top-down procedure reduces the
penalty paid for having ring counter prescalers but has
the disadvantage that counters of different sizes will
require different partition sizes, hence design reuse
is difficult to implement. For a 128-bit counter the
top-down partitioning leads to: 121, 4, 2, 1 block
sizes.

In a bottom-up manner [11] by first deciding the size
of the least significant block, then choosing the second
biock as large as possible without affecting the clock
period, then choosing the third, etc. A bottom-up
partitioning which assumes unit delays for the com-
binational gates and a unit delay clock determines the
least significant block with no = 1 bit, the second
block with ny = 2™ = 2 bits, the third block with
ny = 2(re+n1) = 8 bits, and so on [11]. For the same
example of a 64-bit counter, a bottom-up partitioning
results in the following block sizes: 53, 8, 2, 1. This
bottom-up procedure has the advantage of using a few
“standard size” modules as building blocks for coun-
ters of different lengths with only the most significant
block of a non-standard size. For a 128-bit counter
the bottom-up partitioning leads to: 117, 8,2, 1 block
sizes.

2.2 Other types of counters

Being able to design counters with O(1) period is non-
intuitive considering that adders have a O(log N') period
and incrementing is a special case of addition. The follow-
ing observations give a justification for why constant time
counters are feasible:

1. the binary number system has periodicity in the way
the CARRY-in to high order bits is generated, which
makes it both predictable and with a low frequency

[i1],

the black-box mode! of a non-loadable counter (as op-
posed to an adder) has only alimited number of inputs:
Clock, Reset and Count Enable (CE). This explains
why the binary tree logic decomposition which leads
to the O(log N) delay for an adder can be circum-
vented for counters.

Considering other types of counters, down-counters have
very similar characteristics to up-counters, hence designing
a constant time down-counter is almost identical to design-
ing an up-counter, the only difference being the need for a
BORROW chain instead of the CARRY chain of the up-~
counter (practically this can be accomplished by inverting

276

the inputs to the AND gates that compute the chain [12]).
Unlike up-only and down-only counters, loadable counters
and up/down counters do not exhibit the nice periodicity and
predictability of the CARRY-in (or BORROW-in) to high
order blocks [12]. After a load, a loadable counter cannot
guarantee enough time for CARRY propagation inside the
sub-blocks, while an up/down counter can reverse direction
at any moment, which again does not guarantee enough time
for CARRY (or BORROW) propagation. It is interesting
to note that loadable counters have a large number of input
lines (the direct load lines) which grows linearly with the
number of bits, but up/down counters have only a constant
number of inputs (Clock, Up/Down (U/D), Reset and CE)
independent of the counter size, hence it seems more likely
to be able to design a constant time up/down counter than
a constant time loadable counter. In spite of this, constant
time up/down counters have only been recently reported
[9, 10]), while there have been several reported technigues
(e.g. “pulse swallowing” and “state skipping” [12]) that
enable a loadable counter to have a quasi-constant time be-
havior by letting the counter output to be out of sequence
for a period of time after loading.

In the following section we describe our design of a non-
loadable constant time up/down counter.

3 Constant time up/down counter

The main idea behind the technique for designing con-
stant time up/down counters is to realize that it is easy to
have a configurable counter (configured as an up-counter
it will have a CARRY chain and configured as a down-
counter it will have a BORROW chain) and the only extra
difficulty vs. an up-only or down-only counter is when the
counter changes direction. This change of direction is the
only moment when the CARRY (or BORROW) chain in-
side ablock may not have enough time to propagate until the
next CARRY-in (or BORROW-in) from the corresponding
prescaler. The solution proposed here is to have the desired
value prestored and simply load this value when necessary,
instead of trying to compute it. This can be easily accom-
plished by using a “shadow” register that is always loaded
with the previous block value whenever the block is loaded
with a new value.

The block diagram of the proposed up/down constant
time counter is shown in figure 2. The design is syn-
chronous, with a Clock active on the rising edge, a Reset
active HI and an Up/Down input which is LO for counting
up and HI for counting down. If desired, a separate Count
Enable (CE) can be easily added by gating the Clock, or
by AND-ing CE with the local signals that enable counting
if clock gating is not desirable. The following issues have
determined the structure of the new counter:

o The prescaled CARRY-in generation must be itself

th
MsB I module LsSB

UP/DOWN ring counter

BORROW
0 LO
DOWN upP —] CARRY

N

INCR/DECR MODE —

I— CE REGISTER

-—‘ CE SHADOW REGISTER

}) SWAP
UP/DOWN STATE
D Q

CE STATE REGISTER

Figure 2. Block diagram of the constant time up/down counter

up/down, hence it can be implemented as an up/down
ring counter similar to the ring counter proposed by
Ercegovac and Lang [3]. This also implies that a top-
down partitioning method [3] is needed in order to
minimize the size of the ring counters. Unfortunately,
a combinational chain as proposed by Vuillemin [11]
does not seem to work for an up/down counter because
the counter has to be able to change direction in any
cycle.

o Each block needs to be configurable for counting ei-
ther up or down. A separate configuration bit for each
block is needed to keep track of the block configura-
tion.

o Each sub-block has a shadow register that stores the
previous block value (i.e. decremented or incre-
mented by one block-least-significant bit depending
on the configuration). When the block configuration
is “up” the shadow stores the present value minus one
LSB and when the configuration is “down” it stores
the present value plus one LSB.

The sub-blocks in this design function practically inde-
pendent of each other, the ring counter inside each block
effectively replacing the need for receiving the CARRY-in

from lower-order blocks. The complexity of the up/down
counter is approximately twice larger than for an up-only
counter as in [3] and four times larger than in [11] because
of the extra shadow register and the configurable CARRY
chain.

3.1 Least-significant bit counter

A 1-bit counter counts in the same sequence, no matter
if it is up-only, down-only or up/down, hence the first block
(see fig. 3) can be a simple 1-bit counter which acts both
as the 1-bit least significant bit and as a ring counter for the
second block. There is no need for a shadow register or
configuration bit for the first block.

3.2 Configuration bit

A configuration bit for each higher-order block keeps
track of how the block is configured (up or down). A
CARRY-in can occur only if the UP/DOWN input signal is 0
(UP), whilea BORROW-in can occur only if the UP/DOWN
input signal is 1 (DOWN). There are four possible situations:

o The block is configured “up” and a CARRY-in comes
from the ring counter. The configuration remains the

277

—o

DO

Qo

D Q

A

CLOCK l

Figure 3. The least-significant bit block.

same (“up”) and the block behaves like a normal up-
only constant time counter. The shadow register gets
loaded with the present block value while the block
gets loaded with its next (incremented) value. Since
the present configuration is “up”, this means that the
previous “event” was also a CARRY-in, hence enough
time has passed for CARRY propagation inside the
Incrementer/Decrementer (which is configured as an
incrementer).

The block is configured “down” and a BORROW-
in comes from the ring counter. The configura-
tion remains the same (“down”) and the block be-
haves like a normal down-only constant time counter.
The shadow register gets loaded with the present
block value while the block gets loaded with its next
(decremented) value. Since the present configura-
tion is “down”, this means that the previous “event”
was also a BORROW-in, hence enough time has
passed for BORROW propagation inside the Incre-
menter/Decrementer (which is configured as an decre-
menter).

o The block is configured “up” and a BORROW-
in comes from the ring counter. The block
changes configuration to “down” and it swaps the
present value with the shadow register. The Incre-
menter/Decrementer output is disabled in this case,
hence there is no need in this case to wait for BOR-
ROW propagation.

The block is configured “down” and a CARRY-in
comes from the ring counter. The block changes con-
figuration to “up” and it swaps the present value with
the shadow register. The Incrementer/Decrementer
output is disabled in this case, hence there is no nced
in this case to wait for CARRY propagation.

There is a somehow subtle point in realizing that the
configuration bits for different blocks can be different at
times. This happens for example when after counting up
for a number of cycles the counter changes “direction” by
only changing lower order bits. In such a case the high

278

» > SWAP

BORROW-in
CARRY-in
UP/DOWN b q UP/DOWN STATE
LOAD
CE
CLOCK

Figure 4. The configuration bit inside each
block :

order blocks will still remain configured “up” and will only
change configuration when a BORROW-in comes from the
corresponding ring counter. If the counter changes direction
again, before a BORROW-in, the higher order block will
never “know” that the lower order blocks were in a different
configuration for a period of time.

The configuration register is implemented as a simple
D edge-triggered register with a Clock Enable (CE) input
(figure 4) and aReset (not shown). The configuration of each
block can only change when a CARRY-in (or BORROW-in)
is received from the ring counter. When the configuration
changes (the present configuration in “up” and the next one
is “down”, or vice-versa) the SWAP signal becomes active
which enables swapping the value of the block with the
shadow register. When the configuration stays the same, the
block register is loaded from the Incrementer/Decrementer
and the shadow register is updated with the previous block
value.

The main block register and the shadow register are im-
plemented with the same D-type edge-triggered registers
with CE and Reset as the configuration bit.

3.3 Clock period

For simplicity we will assume unit delays for all the
combinational gates in the circuit (including multiplexers
and XOR gates). There are several critical paths in the
circuit that determine the minimum clock cycle to be two
(or more, depending on the granularity of the basic cell) unit
delays (instead of one unit delay as in the case of the up-only
counter): i

o The least significant bit block has a unit delay, so it
does not represent the critical path.

¢ Incrementing/decrementing the ring counter requires
two unit delays, since the ring counter is basically a
bidirectional shift register.

¢ Loading (actually “swapping™) the value of the block
with the value of the shadow register requires a unit

l 1 [
[o D D o
Q Q Q Q
[Lyo [n [42 [us
- a.
UP/DOWN .
i |
D D D
AR l |
Ja
Jo 22

CARRY

J1
BORROW

Figure 5. 4-bit (8 states) ring counters (John-
son or Moebius): a.) up-counter, b.) up/down
counter.

b.

delay through a mux, and in parallel, the mux control
signal requires two unit delays (see figure 2). The
timing of the Up/Down (U/D) signal is on the critical
path and the signal needs to be synchronized with the
clock.

By choosing a proper size for each block, the de-
lay of Incrementer/Decrementer which takes care of
CARRY (or BORROW) propagation inside the block
can be masked, and this delay is not on the critical
path.

The clock frequency is independent of counter size but
is lower (by a constant) than for an up-only counter because
of the extra complexity. Instead of being limited only by
the low order prescaler, the speed is limited by the extra
logic needed for swapping with the shadow register. In a
real design the clock period can be even larger than two unit
delays due to particular implementation details and fan-out
effects on long lines.

34 Up/down ring counter

A 2%-bit twisted-tail ring counter (also known as a John-
son or Moebius counter) has 2(¥+1) distinct states and clock
period independent of size, hence it can functionas a (k+1)-
bit counter prescaler [3] (see figure 5 a.) for an up-only
counter. In the case of the proposed up/down counter an
up/down ring counter is needed, and this can be easily ob-
tained as in figure 5 b. The ring counter inside each block
is used in order to generate in constant time the CARRY-in
(or BORROW-in) for the block. A CARRY-in must be gen-
erated when the least significant bits before the block are all

279

__ |pe
UP/DOWN STATE
\ 4

Qo

D1 Qt

Figure 6. Ripple chain: a. Incrementer
(CARRY chain), b. Decrementer (BORROW
chain), c. Incrementer/Decrementer.

1, which in terms of the ring counter translates into the most
significant bit = 1 and all other bits = 0. A BORROW-in
must be generated when the least significant bits before the
block are all 0, which in terms of the ring counter translates
into all bits = 0. Both the condition for CARRY-in and
for BORROW-in can be easily decoded in constant time by
analyzing only 2 bits of the ring counter (this is a general
property of the ring counter if the contents is a legal value
with a run of all-zeros and a run of all-ones).

3.5 Partitioning

Determining the partition sizes for the proposed up/down
counter proceeds top-down, similarly to [3], the only differ-
ence being that the minimum clock period is larger than
the combinational unit delay due to the extra complexity.
If we consider T¢;, = p - 8, where § is the unit delay, the
partitioning first divides the N-bit counter into a most sig-
nificant N — [(log %)] block and into another [(log %)'I
block which is recursively divided in the same manner until
the smaller block is a 1-bit counter. Forp = 2and N = 64
the partitioning leads to the following sizes: 59, 3, 1, 1. For
p = 4 and N = 64 the partitioning leads to the following
sizes: 60, 3, 1.

3.6 Incrementer/decrementer

The Incrementer/Decrementer can be easily implemented
as a CARRY-ripple chain (see figure 6). For a n-bit block,
the delay through the ripple chain will be n times the unit
logic delay, and if this delay is less than the time between

CE

RESET

CL.K

582

\
33

v v v T | v v
6 416 496 576 656 736 816 896 76 1072

sl

Figure 7. Simulation of the 64-bit up/down counter at 40MHz. Only the 6 least-significant and the 2

most-significant bits are shown.

two consecutive CARRY-ins (or BORROW-ins) from the
ring counter (which is always true by partitioning) the In-
crementer/Decrementer is not on the critical path. The con-
figuration is controlled by the configuration bit for each
block.

3.7 Initializing the counter

For a “standard” N-bit counter which has 2% possible
states, all the states are legal and a Reset signal may not be
needed for some applications (although desirable at least for
testing). In the case of the proposed constant time up/down
counter which has many extra registers (the configuration
bits, the ring counters, the shadow registers) itis very impor-
tant to initialize the counter to a legal state. A Reset signal is
needed to initialize all the configuration bits to 0 (counting
“up™), the counter block values to all-zeros, the shadow reg-
isters to all-ones (block value minus 1) and the ring counters
to all-zeros. It would be hard to load the counter with an
arbitrary legal value as required by a loadable counter.

3.8 FPGA implementation

We have implemented the design of a 64-bit up/down
counter partitioned into three modules with 60, 3, 1 bits that
runs at 40MHz in an Atmel FPGA. The partitioning has re-
sulted from the minimum clock period which is p = 4 times

280

the minimum combinational delay due to the simple cells
in the chosen device. The Atmel SRAM-based AT6000
FPGAs are 2-dimensional arrays of relatively fine-grained
simple logic cells which can implement a limited number
of registered or combinational functions with up to 3 inputs
and 2 outputs. Each cell has direct connections with its 4
neighboring cells and there are also local and express con-
nections for routing to distant cells. The cell registers have
a limited number of features and the ones that influenced the
design are:

o the registers have only true (Q) outputs,

o there is no clock enable on the registers but registers
with enable are offered as macros in the design library,

o registers only have a RESET but no SET input.

A functional simulation at 40MHz of the 64-bit up/down
counter is shown in fig. 7. As can be seen the counter counts
up and down and can change direction each cycle.

4 Conclusion

We presented a methodology behind designing syn-
chronous up/down counters of arbitrary length with period
independent of counter size. Recently there has been areport
of a related design implemented in a LUT-based FPGA by

Tenca and Ercegovac [10]. Instead of the “shadow register”,
the design in [10] stores the values on the CARRY (or BOR-
ROW) chain in order to recover the correct previous value in
case the block changes direction. This slightly complicates
the configuration state machine inside the block.

An example of a 64-bit counter that runs at 40MHz in
an Atmel AT6000 FPGA shows a practical implementation
of our methodology. It should be relatively easy to migrate
the design to a different technology or counter size. Since
logic synthesis tools are not going to “discover” such a
design, it is best to put it in a module library which can be
parameterized by the counter length. This only makes sense
when relatively long (more than 24 bits) up/down counters
are needed. Better (faster or simpler) results can be probably
obtained for short counters with other approaches which are
not constant time but are better for small numbers.

From the point of view of state machines with a large
number of states but with a limited number of inputs, the fact
that counters can be constant time becomes less intriguing
considering that O(1) state machines with a state transition
graph (STG) similar to a binary counter are well known:
LFSRs, Johnson counters, etc. It would be interesting to
be able to determine when a state machine can have period
O(1) justby looking at the STG and the stateencoding. Even
more interesting would be to determine a state encoding that
enables a O(1) period for a given STG if such an encoding
exists.

5 Acknowledgements

I thank Joel Rosenberg of Atmel Corp. for an FPGA
development tools grant and professors Israel Koren and
Wayne Burleson from UMass/Ambherst for inspiring my in-
terest in Computer Arithmetic.

References

[1] “Configurable logic design and application book”, At-
mel, 1994-1995.

[2] D. Chu, “Phase digitizing sharpens timing measure-
ments”, IEEE Spectrum, July 1988, pp. 28-32.

[3] M. Ercegovac, T. Lang, “Binary counter with counting
period of one half adder independent of counter size”,
IEEE Trans. on Circ. and Systems, vol. 36, no. 6, June
1989, pp. 924-926.

[4] I. Koren, “Computer Arithmetic Algorithms”,
Prentice-Hall, 1993.

[51 W.W. Peterson, “Error Correcting Codes”, MIT Press,
1961.

[6] “Very high speed FPGAs data book”, QuickLogic,
1992.

[7] R. Rogenmoser, Q. Huang, F. Piazza, “1.57GHz asyn-
chronous and 1.4GHz dual-modulus 1.2 ym CMOS
prescalers”, IEEE Custom Integrated Circuits Confer-
ence, 1994,

[8] M. R. Stan, “Shift register generators for circular FI-
FOs”, Electronic Engineering, Feb. 1991, pp. 26-27.

{91 M. R. Stan, W. P. Burleson, “Synchronous up/down
counter with period independent of counter size”,
poster at FPGA’96 - ACM/SIGDA Symposium on
Field Programmable Gate Arrays, 1996.

[10] A.F. Tenca, M. D. Ercegovac, “Synchronous up/down
binary counter for LUT FPGAs with counting fre-
quency independent of counter size”, FPGA’97 -
ACM/SIGDA Symposium on Field Programmable
Gate Arrays, pp. 159-165, 1997.

[11] J. E. Vuillemin, “Constant time arbitrary length syn-
chronous binary counters”, Proc. IEEE 10th Symp.
on Comp. Arithmetic - Grenoble, France, June 26-28,
1991, pp. 180-183.

[12] *“The programmable logic data book”, Xilinx, 1994.

[13] G. Yasar, Y. Tsyrkina, D. Thygesen “FPGA fast
counter design”, 4** Canadian Workshop on Field-
Programmable Devices, May 1996, Toronto, Canada.

[14] Z. Zilic, G. Lemieux, K. Loveless, S. Brown and Z.
G. Vranesic, “Designing for High Speed-Performance
in CPLDs and FPGAs”, 3"¢ Canadian Workshop on
Field-Programmable Devices, June 1995, Montreal,
Canada.

281

