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Abstract 
This research is motivated by the need to support inference 
across multiple intelligence systems involving uncertainty. 
Our objective is to develop a theoretical framework and re-
lated inference methods to map semantically similar vari-
ables between separate Bayesian networks in a principled 
way. The work is to be conducted in two steps. In the first 
step, we investigate the problem of formalizing the mapping 
between variables in two separate BNs with different se-
mantics and distributions as pair-wise linkages. In the second 
step, we aim to justify the mapping between networks as a set 
of selected variable linkages, and then conduct inference 
along it.  

 
At present, a Bayesian network (BN) is used primarily as a 
standalone system. When the problem scope is large, a large 
network slows down inference process and is difficult to 
review or revise. When the problem itself is distributed, 
domain knowledge and evidence has to be centralized and 
unified before a single BN can be created for the problem. 
Alternatively, separate BNs describing related subdomains 
or different aspects of the same domain may be created, but 
it is difficult to combine them for problem solving –– even if 
the interdependency relations are available. This issue has 
been investigated in several works, including most notably 
Multiply Sectioned Bayesian Network (MSBN) by Xiang 
(Xiang 2002) and Agent Encapsulated Bayesian Network 
(AEBN) by Valtorta et al. (Valtorta et al, 2002). However, 
their results are still restricted in scalability, consistency and 
expressiveness. MSBN’s pair-wise variable linkages are 
between identical variables with the same distributions, and, 
to ensure consistency, only one side of the linkage has a 
complete CPT. AEBN also requires a connection between 
identical variables, but allows these variables with different 
distributions. Here, identical variables are the same vari-
ables deployed into different BNs. 
 In this paper, we propose a framework that supports 
inference across  BNs through mappings between seman-
tically similar variables. 

Formalization of BN mapping 
We modeled BN mapping as a set of four-layered concepts. 
The first layer is called pair-wise probabilistic relations, 
which use joint probabilities to represent the dependency 
between the two variables. These variables have similar but 
not necessarily identical semantics and are in two BNs. In 

our framework we assume these joint probabilities are al-
ready available. Then pair-wise variable linkages, the 
second layer concept, are created from these probabilistic 
relations to provide channels for propagating probabilistic 
influences between the variables across the two BNs. The 
third layer is called valid BN mapping, a selected subset of 
all available linkages that ensures the consistency of 
mapped networks. The fourth layer, Minimum valid BN 
mapping, is obtained by mapping reduction, a process that 
minimizes the set of linkages while maintaining the con-
sistency.  
 

 
Figure 1. A Variable Linkage 

 
A variable linkage starts from one variable (source vari-

able) and ends at another variable (destination variable) in a 
different BN. The purpose of building linkages between 
variables in different Bayesian networks is to propagate the 
probability influences from one network to the other. Sup-
pose variable A in BNA and variable B in BNB represent two 
identical concepts. An observation of A (and hence B since 
A and B are identical) is made in BNA as P (A). This 
observed distribution of variable B can then be used as soft 
evidence (denoted by se) to update the distributions of BNB 
(see Valtorta, Kim, and Vomlel 2002) using P(B|se) = P(A). 
All other variables VB in BNB are then updated by Jeffery’s 
rule (Pearl 1990): 
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If A and B are similar but not identical, the similarity 
between them can be represented by a probabilistic relation 
(e.g., joint distribution of A and B). However, in general the 
probabilistic relation is described in a probability space Ss 
which is different from SA and SB, the spaces for BNA and 
BNB, respectively. As depicted in Figure 1, A’ and B’ in Ss 
represent the same concept as A in SA and B in SB and. Then 
we can propagate soft evidence P(A’|se) = P(A) from SA to 



SB  through conditional probability established in SS, and 
update the belief on B as  

P(B| se) =∑ ==
i

ii aAPaABP )()''|'( .        (2) 

All other variables in BNB are updated using equation (1). 
This leads us to define a linkage from A in SA and B in SB 

as: 
< A, B, BNA, BNB, Rel(A, B)>, 

where Rel(A, B ) is a probability relation between A and B 
established in some other space.  We say such a linkage is 
the mapping between from variable A to B. 

Mapping reduction and Inference 
A pair-wise linkage provides a channel to propagate belief 
from A in one BN to influence the belief of B in another BN. 
When the propagation is completed, (1) must hold between 
the distributions of A and B.  If there are multiple such 
linkages, (1) must hold simultaneously for all pairs. And if 
this can be achieved to a set of linkages, we say these 
linkages are consistent. If all probabilistic relations in a set 
of consistent linkages S can be satisfied by a subset S’ of  S, 
we say S’ is valid. 
 In theory, any pair of variables between two BNs can be 
linked, albeit with different degree of similarities. Fortu-
nately, satisfying a given probabilistic relation between A 
and B does not require the utilization, or even the existence, 
of a linkage between A and B. Several probabilistic relations 
may be satisfied by one linkage. As shown in Figure 2(a), 
we have variables A and B in BN1, C and D in BN2, and 
probability relations between every pair as below:  
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(a) BN1 and BN2 

 
(b) Map variable A to C 

Figure 2. Mapping Reduction Example 
 

However, we do not need to set up linkages for all these 
relations. As Figure 2(b) depicts, when we have a linkage 
from A to C, all these relations are satisfied. This is because 

not only beliefs on C, but also beliefs on D are properly 
updated by the mapping A to C. 

A process called “Mapping Reduction” will be used to 
form a small valid set of linkages from all available 
pair-wise relations. Our current focus is to develop reduc-
tion rules by exploring the network structure of BNs on both 
sides.  

Inference with BN mapping 
Suppose we already have BNA and BNB, and valid BN 
mappings as k linkages L1, …, Lk between k pairs of nodes 
A1, A2,…, Ak in BNA and B1, …, Bk in BNB. Note that more 
than one of these linkages may start from one node in BNA 
and more than one may end at one node in BNB. The in-
ference process is outlined as below: 

1. Apply the hard evidence in BNA and then obtain the 
posterior distributions of the source nodes A1, …, Ak 
of linkages L1, …, Lk: P(Ai| hard_evidence). 

2. For each linkage, compute the distributions of Bi, 
Q(Bi), using equation (2). 

3. Enter the hard evidence to BNB, and update it using 
both hard and soft evidences Q(B1),…, Q(Bk). 

Iterative proportional fitting procedure may be used to 
satisfy multiple soft evidences (Valtorta et al, 2002). 

Conclusion and Future Work 
Compared with previous works on distributed BN, our 
framework is more expressive in representing probabilistic 
relations and more applicable with the help of the mapping 
reduction process. A series of experiments have been con-
ducted on synthetic BNs to validate our ideas of the for-
malization of BN mapping and inference methods. We had 
obtained encouraging results and now are focusing on 
mapping reduction. We are also working on the semantics 
of BN mapping and examine its scalability and applicability. 
A potential Application of this framework is to support 
ontology mapping, if the ontologies can be translated in 
BNs as suggested in (Ding et al, 2004). 
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