
Interactive Cinematic Shading
Where are we?

Fabio Pellacini

Dartmouth College

Cinematic Rendering

• non interactive: [Pellacini et al 2005]
– geometric complexity

• 105 high-order primitives

• 106 shaded points

– shader complexity
• ~103 individual shaders

• ~105 instructions

• ~5 GB textures

Cinematic Rendering

• artists want interactive preview

• previewing animation
– crude models and appearance often good enough

• previewing lighting/shading
– need highest quality possible

– scalability in games has similar problems/solutions

Problem Statement

• given a production scene
– geometry/shading specified in a prod. renderer

• render at guaranteed interactive rates
– changing only shader parameters

– fix view and geometry

Cinematic Relighting

• cinematic lighting is complex
– major cost in movie production

– poor interactive artists feedback

• relighting engines used for better feedback
– take advance of static geometry and materials

Where are we?

• first systems appearing
– tuned for particular productions

• by efficiently supporting the right subset of possible shading

– prove that high quality is possible interactively

– used in real productions: [Pellacini et al. 2005]

SIGGRAPH 2006 8 – 1 Course 3, GPU Shading and Rendering

Where are we? Far far away…

• designed for lighting operations only
– but would like to extend to any shading

• require careful tuning of shaders
– often manual simplification/translation

• do not support all lighting primitives
– raytracing, global illumination, DSOs, …

Relighting Engines Primer

• fundamental assumptions
– fixed geometry

– fixed camera

• basic algorithm principle: deferred shading
– precompute visibility from camera viewpoint

– precompute non-changing partial shading values

– recompute shaders as parameters are edited

Shading Slicing and Caching

• given a shader of the form

• compute and store caches

• for each change, re-execute residual shader

color shader(fixed[],changing[]) {
 caches[] = computeCaches(fixed);
 return computeResidual(caches, changing);
}

Example

• simple lighting model
– Phong direct illumination

• cache material and geometry values
– computed in surface shader

– e.g.: position, normal, diffuse, specular, etc…

• compute each light using caching

Shader Slicing and Caching

• where to caches?

• what to cache?

• how to execute residual shaders?

Caching Domain

• problem: where to store caches?

• solution: object surfaces
– mesh vertices or textures

• solution: image samples
– image pixels

– standard deferred shading

SIGGRAPH 2006 8 – 2 Course 3, GPU Shading and Rendering

Image Space Caching

• pros: guaranteed framerate
– does not depend on geometric complexity

• cons: aliasing
– can only store one/few samples per pixels

• otherwise caches become really large

– hard to get handle hairs, motion blur, dof, etc…

Object Space Caching

• pros: allows for fully quality images
– by using high quality filtering

– exactly matches some renderers (Renderman)

• cons: recompute filtering
– depends on geometry: cannot guarantee framerate

– does not scale to fine geometry (hairs)

– need a lot of samples for motion blur / dof

Caching Domain

• currently: image space caching

• research: faster object space and/or smaller
image space

Shader Slicing

• problem: how to determine what to cache?
– most shaders are not in the form shown before

• solution: manual slicing
– artists write shader code in a “deferred form”

• solution: automatic slicing
– compiler automatically determines what to cache

Manual Slicing

• pros: always works
– code is written to match the caching mechanism

• cons: reduce coding flexibility
– want to write code without worrying about caching

– old shaders need to be rewritten

• cons: does not work if caching is changed
– changing caching method might break the code

Automatic Slicing

• pros: compiler determines what to cache
– [Guenter et al. 1995]

– always correct

• cons: maybe not be optimal (memory)
– store/compute ratio is hard to optimize

• very important to reduce cache sizes

SIGGRAPH 2006 8 – 3 Course 3, GPU Shading and Rendering

Shader Slicing

• problem: cache sizes too large
– lighting model requires too many material params

• solution: lossless slicing
– previous methods we discussed

• solution: lossy slicing
– remove some cache by simplifying lighting model

Lossy Slicing Example

• layered surface shader

• examples: rust on metal
– [Pellacini et al. 2005]

for each layer i
 finalColor = combineIntoFinalColor(
 computeLayer(layerParams[i],light));

Lossy Slicing Example

• lossless caching

• memory/computation for each layer
– but correct

layerCache[i] = computeCache(layerParams[i]);
for each layer i
 finalColor = combineIntoFinalColor(
 computeLayer(layerCache[i],light));

Lossy Slicing Example

• lossy caching

• guarantees interactivity
– but not correct

for each layer i
 finalCache = combineIntoFinalCache(
 computeCache(layerParam[i]));
finalColor = computeLayer(finalCache)

Shader Slicing

• currently: software relighting
– automatic slicing / not realtime

• currently: GPU-based relighting
– manual lossy slicing / realtime

• research: efficient and automatic GPU-based
slicing

Residual Execution

• how to execute residual shaders
– CPU: easy to do, but may not fast enough

– GPU: much harder, but faster
• will talk about this one

SIGGRAPH 2006 8 – 4 Course 3, GPU Shading and Rendering

Residual Execution

• problem: residual shaders written in CPU
language
– how to translate them to GPU?

• solution: manual translation
– artists manually create GPU version of shader

• solution: automatic translation
– compiler translate shader versions

Manual Translation

• pros: works

• cons: takes time

• cons: does not scale to new GPUs
– cannot adapt to new capabilities

– same problem as games

– but harder since lots of legacy shading code

Automatic Translation

• pros: compiler determines translation
– various systems attempts to do this for Renderman

• cons: cannot support all CPU shading
– does not know what to do in this case
– covered later

• cons: might not be as efficient
– computation structured differently on GPUs

– CPU languages do not convey it well enough

Automatic Translation

• Renderman string operations
– used for state binding: textures, matrices, etc.

• example: Ci = texture(“textureName”);

• problem: not a language transformation
– GPU renderer has to load all possible textures

Automatic Translation

• Renderman shader plugins
– any binary library that exposes interface

– used heavily for all sort of things

• problem: cannot automatically translate
– for example, allows for disk access from a shader

Automatic Translation

• Renderman derivatives
– used to compute shading antialiasing

• problem: cannot automatically translate
– unless GPU renderer has the same geometry than

Renderman and uses multiple passes

SIGGRAPH 2006 8 – 5 Course 3, GPU Shading and Rendering

Automatic Translation

• Renderman raytracing
– used for shadow, reflection, indirect illumination

• problem: not supported efficiently on GPU
– provide an external ray engine

• e.g. [Pellacini et al. 2005]

• problem: requires synching with CPU while
shading

Shader Translation

• currently: manual translation
– automatic translation does not cover the language

• currently: language extensions for GPU
– Renderman, MentalRay, …

• research: automate translation
– more of an engineering/compiler problem though

Residual Translation

• problem: residual might be too large
– cannot guarantee interactivity

• solution: manual simplification
– artists create shader simplifications

• solution: automatic simplification
– automatically simplify shaders (not a compiler

extension)

Manual Simplification

• pros: works somewhat
– cannot tell how well it simplifies

• cons: (really) takes too much time
– for large shaders, it is trial and error

• cons: (really) does not scale to new GPUs
– performance evaluated on particular GPUs

– same issue as game shader LODs

Automatic Simplification Algorithm Overview

• input shader code

2·x + 1Input Shader

SIGGRAPH 2006 8 – 6 Course 3, GPU Shading and Rendering

Algorithm Overview

• apply simplification rules …

2·x + 1

const ⊕ exp → exp

Input Shader

Simplification Rules

Algorithm Overview

• … to generate candidates

2·x + 1

const ⊕ exp → exp

2·x x + 1

Input Shader

Simplification Rules

Candidates

Algorithm Overview

• error is computed for each candidate

2·x + 1

const ⊕ exp → exp

2·x x + 1

err (2·x + 1,x + 1) err(2·x + 1, 2·x)

Input Shader

Simplification Rules

Candidates

Error

Algorithm Overview

• choose lowest-error candidate

2·x + 1

const ⊕ exp → exp

2·x x + 1

err (2·x + 1,x + 1) err(2·x + 1, 2·x)

Input Shader

Simplification Rules

Candidates

Error

Simplification Rules

• captures most simplifications

const ⊕ exp → exp

exp → average(exp)

for-loop → drop 1 instance

Error Metric

• average image difference
– uniform params: define domain

– texture params: define texture set

– varying params: define “mesh” set

• allow for changing parameters

SIGGRAPH 2006 8 – 7 Course 3, GPU Shading and Rendering

Simplification Example

#51,e=.35

Automatic Simplification

• pros: determine “optimal” simplification
– can try many more options than a person

• cons: does not scale to large shaders
– not sure how close to the “best possible”

• cons: no solution to simplify data and code
– [Olano et al. 2003] simplifies texture
– [Pellacini 2005] simplified code

– but hard to find a complete solution

Residual Simplification

• currently: manual simplification for GPUs

• currently: no simplification for CPU relighting

• research: better simplification
– numerical-vs-structural

Where are we?

• realtime relighting is possible
– manually translated/simplified shaders on GPUs

– not many advanced lighting effects
• but new work on the way

• indirect illumination [Hasan et al. 2006]

– essentially production “customized”
• some approximations/solution only works for some

productions

What can we not do?

• moving camera / dynamic scenes

• hairs / volumes

• really long and arbitrary CPU shaders

• dynamic indirect illumination

• this is future work for us research folks!

What did we learn?

• long/arbitrary shaders might not be needed
– [Pellacini et al. 2005] shows that really simplified

shaders look almost right

SIGGRAPH 2006 8 – 8 Course 3, GPU Shading and Rendering

What did we learn?

• shaders do not express right abstractions
– impossible to derive new algorithms since shaders

are arbitrary

– but are perfect for low-level GPU programming

What did we learn?

• (sadly) manual optimizations work
– even for “simple” shaders: automatic translation,

simplification, optimization not fruitful enough

– they will never work for complex lighting/geometry
effects (indirect, hair)

• since it requires changing the algorithm, not the code

What did we learn?

• current goal: interactive renderer
approximates offline

• better goal: offline renderer beautifies
interactive
– long term think about interactive rendering only

– have the batch renderer make a “cleaner” picture

SIGGRAPH 2006 8 – 9 Course 3, GPU Shading and Rendering

