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6.1 Abstract
Real-time pixel shading techniques have become increasingly complex, and consume
an ever larger share of the graphics processing budget in applications such as games.
This has driven the development of optimization techniques that either attempt to sim-
plify pixel shaders, or to cull their evaluation when possible. In this chapter, we follow
an alternative strategy: reducing the number of shading computations by exploiting
spatio-temporal coherence.

We describe a simple and inexpensive method that uses the graphics hardware to
cache and track surface information through time. The Real-Time Reprojection Cache
stores surface information in screen space, thereby avoiding complex data-structures
and bus traffic. When a new frame is rendered, reverse mapping by reprojection gives
each new pixel access to information computed during the previous frame.

Using this idea, we show how to modify a variety of real-time rendering tech-
niques to efficiently exploit spatio-temporal coherence. We present examples that vary
as widely as stereoscopic rendering, motion blur, depth of field, shadow mapping,
and environment-mapped bump mapping. Since the overhead of a reprojection cache
lookup is small in comparison to the required per-pixel processing, the cached algo-
rithms show significant cost and/or quality improvements over their plain counterparts,
at virtually no extra implementation overhead.
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Figure 6.1: Real-time rendering applications exhibit a considerable amount of spatio-temporal
coherence. This is true for camera motions (top) as well as for animated object (bottom). The
snapshots of the Parthenon, Heroine, and Ninja sequences illustrate this fact. Newly visible
surface points are rendered in red, whereas the vast majority (shown in green) were previously
visible. We introduce a real-time method that exploits this coherence by caching and tracking
visible surface information.

6.2 Introduction
Over the past few years, a clear tendency in real-time rendering applications has been
the steady increase in pixel shading complexity. As GPUs gain in power and flexibil-
ity, sophisticated per-pixel rendering effects are becoming prevalent. Researchers are
therefore starting to investigate general techniques for the optimization of pixel shad-
ing, such as automatic shader simplification [Olano et al. 2003; Pellacini 2005]. In this
work, we introduce the Real-Time Reprojection Cache (RRC), a method applicable in
the optimization of a wide range of pixel shading techniques.

Most real-time rendering applications exhibit a considerable amount of spatio-
temporal coherence (see figure 6.1). High frame rates lead to small time steps, which
in turn result in little change between consecutive frames. Camera motions, object an-
imations, and lighting variations are all modest. Accordingly, projected visible surface
areas and their properties are nearly unchanged. This coherence can be exploited if, in
the process of computing a new frame, we can efficiently access values computed in
the previous frame.

The underlying concept in the RRC is that of reverse mapping by reprojection (sec-
tion 6.4). We use frame-buffers to cache surface information, thereby avoiding complex

SIGGRAPH 2006 6 – 2 Course 3, GPU Shading and Rendering



data structures and bus traffic between the CPU and GPU. As each pixel is generated
in the new frame, we know the surface point from which it originated. We also know
where this surface point was, in 3D space, at the time the previous frame was ren-
dered. Therefore, we can easily find where it previously projected to, and whether it
was visible at that time. We can then fetch whatever surface information we stored in
the previous frame’s buffers, and use it while rendering the new frame.

In the real-time world, the raw cost of reprojecting a pixel has traditionally been
comparable to—or higher than—that of shading the pixel anew. However, the recent
popularity of sophisticated pixel shading techniques has made reprojection a compar-
atively cheap operation. This opens the door for a series of reprojection-based opti-
mizations that would otherwise be disadvantageous. The RRC is a tool that greatly
simplifies the implementation of such optimizations.

Consider, for example, the possibility of caching shaded surface colors. We can
usually reuse cached values directly while rendering a new frame, computing new col-
ors only for cache misses. This can lead to significantly higher frame rates at the same
visual quality. Alternatively, we can compute a full new frame, but merge older sam-
ples into it. The results are higher quality, super-sampled frames, whose costs have
been amortized across two or more frames.

Naturally, we are not limited to caching color information. We can also cache the
results of expensive operations, such as multiple texture fetches, procedural texture
computations, shadow map tests etc. (section 6.5). Caching allows us to decouple
the application refresh rate from the rate at which certain computations are performed.
We can cache partial results, to be completed during the rendering of future frames.
Alternatively, we can cache full results over alternating subsets of all pixels. In fact,
we can combine these two ideas in a variety of ways.

6.3 Related Work
Although the cost of reprojection has only recently become cheap relative to standard
real-time pixel shading techniques, reprojection-based optimizations have been used
extensively in other scenarios. For example, high-quality rendering techniques such
as ray-tracing or path-tracing have always been considerably more expensive than re-
projection. Additionally, given high enough scene complexity, image based rendering
techniques can run substantially faster than rasterization, even in a low-quality setting.
Finally, especially designed hardware can make reprojection advantageous by reducing
its cost.

Expensive renderers: Badt [1988] introduced reprojection as a technique to exploit
temporal coherence in the off-line generation of ray-traced animation sequences. Sam-
ples from the previous frame are forward-mapped into the new frame, by reprojection,
to account for camera motion. Besides handling object motion, the technique presented
by Adelson and Hodges [1995] also guarantees exact results. Further attempts to bring
interactivity to ray-tracing, such as the Radiance Interpolants [Bala et al. 1999] and the
Render Cache [Walter et al. 1999], resulted in very similar ideas.

One disadvantage of forward reprojection is that it leads to reconstruction chal-
lenges. Reprojection does not, in general, yield a one-to-one correspondence between
pixels in the two projection planes. Holes and overlaps must be efficiently detected and
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dealt with. Suggested solutions include carefully choosing the order in which pixels
are reprojected [McMillan and Bishop 1995], preserving previous pixel colors [Bishop
et al. 1994], filtering the holes out [Walter et al. 1999], or fully recomputing the values
within gaps [Bala et al. 1999].

A different approach is presented by the Holodeck and Tapestry systems [Ward
and Simmons 1999; Simmons and Séquin 2000]. These store samples on the vertices
of a dynamically tessellated triangle mesh that is placed in front of the camera. The
mesh is rendered using the graphics hardware, which automatically performs the re-
quired interpolation. The Shading Cache [Tole et al. 2002] goes one step further and
stores samples in object space, on the vertices of an adaptively refined representation
of the scene. Rendering from a full geometric representation produces better results,
especially on dynamic scenes.

Reverse reprojection seems to be the natural alternative, just as reverse mapping
is the preferred choice for texture mapping. This is the approach we take. However,
reverse reprojection requires depth information for the new frame, and enough com-
puting power to reproject every pixel. Unlike our method, those that rely on using the
CPU to guide an independent renderer rarely meet these conditions. Even in recent
work, which has focused on using the GPU for acceleration [Dayal et al. 2005; Zhu
et al. 2005], forward reprojection is still prevalent.

Image-based rendering: Most relevant to our work are 3D warping techniques which
operate on a set of views and depth maps, such as those presented by Chen and Williams
[1993], McMillan and Bishop [1995], and Mark et al. [1997], especially the latter.
These are mainly used to generate novel views from a set of precomputed or captured
images, with cost that is independent of scene complexity. Our technique, on the other
hand, was designed to support animated rendering applications, such as games.

Dedicated hardware: At least two hardware architectures have been proposed that
employ reprojection to accelerate real-time rendering. The Address Recalculation
Pipeline [Regan and Pose 1994] and the Talisman Architecture [Torborg and Kajiya
1996] achieve high frame rates by warping and compositing layered representations of
a scene. In contrast, the general programmability of modern graphics processors allows
us to design a caching scheme that can be easily used by other programs running on
the same stock hardware.

6.4 The Real-Time Reprojection Cache

While rendering a given frame, an RRC application commonly accesses the cache pre-
pared by a previous frame, and updates the cache for the frames to follow. In designing
our method, our goal was to make it as flexible as possible, ensuring that these tasks
can be performed in a simple, effective, and efficient way.

Our description of the RRC starts with standard caching components: the evic-
tion policy (section 6.4.1), data structures (section 6.4.2), and the lookup mechanism
(section 6.4.3). We also discuss sampling issues that are specific to our domain (sec-
tions 6.4.4 and 6.4.5), as well as control flow strategies (section 6.4.6).
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Figure 6.2: The graph shows the percentage of surface area that was visible within consecutive
frames for the animation sequences of figure 6.1. Spatio-temporal coherence causes rates to be
generally above 90%. This justifies our policy of keeping cache entries for visible surface areas.

6.4.1 Eviction policy

Because real-time rendering applications exhibit considerable spatio-temporal coher-
ence, the relevance of a cached surface entry is strongly tied to its visibility. After all,
visible points are likely to remain visible, and the converse is also true. This variant of
the principle of locality supports the policy of keeping cache entries for visible points.
The policy is also extremely convenient: the cache can have a fixed size, i.e., one entry
per pixel, and can be directly addressed by pixel coordinates.

Although the cache hit rates certainly depend on the amount of coherence in each
application, our experiments show that rates in excess of 90% are typical. Figure 6.2
shows the observed cache hit rates for three animation sequences. The Parthenon (fig-
ure 6.1, top) shows a fly-through over a model of the Parthenon, with static geometry
but high depth complexity. The Heroine sequence (figure 6.1, bottom left), shows
an animated charachter with weighted skinned vertices as she runs past the camera.
Finally, the Ninja sequence (figure 6.1, bottom right) shows an animated fighter per-
forming typical martial arts movements. These real-world examples provide strong
evidence that the eviction policy is appropriate.

6.4.2 Data structures

Given our eviction policy, it is natural to store cache entries in GPU-memory frame-
buffers. To update the cache, the application simply renders the payload information
into one or more payload buffers. Rendering is performed with the geometry and cam-
era parameters current at that time (the cache-time state). Z-buffering automatically
enforces the visibility eviction policy. In addition to the payload data, the only required
information is the depth of each cached entry. This is usually available for free.

Besides the simplicity, cache operations are very efficient. In general, both the
screen and the cache can be updated in a single pass on GPUs that support multiple
render targets (most cards in the market do). In practice, it is often possible to exploit
the alpha channel to store all required information in a single render target. Memory
consumption is therefore modest, and independent of scene complexity. Furthermore,
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Figure 6.3: Cache lookup. The vertex shader calculates the cache-time position of each vertex.
The fragment shader uses the interpolated position to test the visibility of the current point in the
cache frame-buffer.

since everything remains in GPU memory, there is no bus traffic between the GPU and
the CPU. Finally, cache lookups conveniently reduce to texture fetches.

6.4.3 Cache lookup

Conceptually, the texture coordinates for a cache lookup are computed by reverse re-
projection. In practice, due to the extensive information available at rendering time,
the process is much simpler. Figure 6.3 shows a schematic description of the process.

In general, the transformed coordinates of a vertex are calculated by a vertex pro-
gram, to which the application supplies the world, camera, and projection matrices, as
well required animation parameters (such as tween factors and blending matrices used
for skinning). If the application passes the cache-time parameters (typically for the
previous frame) in addition to the current parameters, the vertex program can output
both the current and cache-time transformed coordinates for each vertex.

Automatic interpolation produces the cache-time homogeneous screen coordinates
associated to each fragment. Division by w within the fragment program produces the
cache-time texture coordinates. These are used to fetch the depth for the cached entry.
If this depth does not match the interpolated cache-time depth for the pixel, we have
a cache miss (much like a shadow map test). If it does match, we have a cache hit.
Payload data can then be found using the same texture coordinates.

Notice that simple manipulations on the cache frame-buffers allow for a series of
customizations to the lookup behavior. For instance, to prevent certain objects from
being cached, we can re-render them with invalid depth. It is also trivial to propagate
an age field on each entry, and use it to control the life span of cached values.
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6.4.4 Spatial resampling

Reverse reprojection transforms the problematic scattering of cached samples into a
manageable gathering process. However, since reprojected pixels do not, in general,
fall exactly on top of cached samples, some form of resampling is necessary. Fortu-
nately, the uniform structure of the cache and the hardware support for texture filtering
greatly simplify this task. In fact, except for depth discontinuities, cache lookups can
be treated exactly as texture lookups.

The best choice for texture filtering depends on the data being cached and on the use
the application makes of it. Nearest neighbor filtering is appropriate when cached data
varies smoothly, or when results of cache lookup are post-filtered by the application.
On the other hand, considerable variation between adjacent cache samples might justify
bilinear filtering, especially if lookup results are to be directly reused.

Reconstruction can potentially fail near depth discontinuities. However, since we
are dealing with cache lookups, we can simply detect and reject problematic requests.
Although it is possible to be perfectly conservative, most applications are less restric-
tive. An efficient heuristic that works well in practice is to use bilinear filtering when
fetching cached depths. Near discontinuities, interpolation across significant depth
variations will not match the depth value received from the vertex shader. Lookup will
therefore fail automatically. Notice that the same argument applies to multisampled
frame-buffers.

Depth discontinuities pose a challenge to the use of trilinear or anisotropic filtering,
which could accidentally integrate across spatially unrelated data. Fortunately, since
there is little change between cache-time and lookup, we have no reason to expect
significant distortions in the reprojection map. Consequently, the area of a current
screen pixel covers a similar area in the cache, and it makes little sense to use trilinear
or anisotropic filtering.

6.4.5 Amortized super-sampling

A common approach to eliminate aliasing artifacts from high-quality renderings is the
use of stochastic sampling [Dippé and Wold 1985; Cook 1986]. Each pixel holds a
weighted average of a number of samples, and estimates the value of an integral over
its area. When the sampling process is unbiased, the expected value of the samples
matches the value of the integral. The quality of the estimate is given by its variance,
and depends on a series of factors.

Increasing the number of samples is the simplest variance reduction strategy, but
usually entails a corresponding increase in computational cost. Fortunately, because
the RRC tracks surface information through time, we can amortize the cost of the
sampling process across several frames. For instance, we can use a moving average
over the past n estimates for a given surface point. Since the estimates are independent,
this effectively multiplies the variance by 1/n. A serious disadvantage is that this
process requires keeping n cache entries for each pixel.

To eliminate the storage requirement, we can use a recursive low-pass filter in-
stead. Let C f−1 represent the contents of the cache at frame f − 1, and let s f be
the value for the newly computed sample. The recursive filter updates the cache to
hold C f = λC f−1 +(1−λ )s f , for λ ∈ (0,1). Notice that the relative contribution of a
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Figure 6.4: When performing amortized super-sampling with a recursive filter, there is a trade-
off between the amount by which the variance is reduced (the variance curve), and the number
of frames that effectively contribute to the current estimate (the memory curve). This trade-off is
controlled by the parameter λ . Values between 0.6 and 0.7 worked best in our tests.

given frame to the current estimate falls-off exponentially, with time constant given by
τ =−1/ lnλ . Notice further that the recursive filter preserves the expected value of the
sampling, but multiplies its variance by (1−λ )/(1+λ ) < 1.

Figure 6.4 shows the effect of the parameter λ on fall-off and variance reduction.
The memory of the system is defined as the time, in frames, until a value is scaled by
1/256 (i.e., completely lost in 8-bits of precision). The trade-off is between reducing
the variance and keeping the system responsive to change. For example, choosing a
value of λ = 3/5 reduces the variance to 1/4 the original by effectively considering
information on the last 10 frames (see figures 6.9b and 6.9d). Reducing the variance by
1/8 requires setting λ = 7/9, and pushes the complete fall-off to 22 frames. In practice,
convergence happens smoothly and much sooner (the memory, as defined above, is a
worst-case measure), and each application can find the highest acceptable value for λ .

6.4.6 Control flow
In order to take advantage of the caching mechanism, the application must be able to
control the execution flow towards different code paths for the cache-hit and cache-miss
cases. We refer to these code paths as the hit shader and miss shader, respectively.

Many factors can influence the choice between different methods for control flow in
graphics hardware [Sander et al. 2005]. Once again the best option ultimately depends
on the application at hand. The relative cost of the hit and miss shaders is an important
factor. The complexity of the scene also plays an important role. Finally, hardware
limitations might require a specific solution. We describe two options, to be used in
different scenarios.

The approach described in figure 6.5a is adequate when either the hardware sup-
ports dynamic flow control, or when the cost for the hit and miss shaders is comparable.
The first pass simply primes the Z-buffer. On the second pass, early Z-culling ensures
that the fragment shader will only be executed on visible pixels. Cache lookup results
are then used to branch between the hit and miss shaders. If the hardware supports dy-
namic flow control, the cost of execution will depend on the branch taken. The spatial
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Figure 6.5: Two control flow alternatives are presented. When the hardware supports dynamic
flow control, or when the costs of the hit and miss shaders are similar, option (a) can be used.
Otherwise, explicit early Z-culling is preferable (b).

coherence of lookup results ensures that lock-step execution on adjacent pixels is not
an issue. Otherwise, if the cost of both branches is similar, this is irrelevant.

If the miss shader is much more expensive than the hit shader and dynamic flow
control is not available, figure 6.5b describes an alternative: the cache lookup can be
moved to the first pass. On a hit, the hit shader is executed. On a miss, the pixel
is simply depth-shifted to prime the Z-buffer. On the second pass, early Z-culling
ensures that the miss shader will only be executed on those pixels, and only once per
pixel. Notice that, in current hardware, the depth-shift operation prevents the use of
early Z-culling on the first pass. However, since we are assuming the hit shader is
relatively cheap, this should not be a problem.

Other approaches are possible, for instance, using more than two passes. Depend-
ing on the application, these might be justifiable. In our tests, the options described
above proved to be adequate.

6.5 Applications
In the previous section, we described the RRC as a general mechanism for caching
surface information across frames. In this section, we present a series of concrete ex-
amples that use the RRC to exploit spatio-temporal coherence in a variety of rendering
tasks.

Perhaps the most direct application of the RRC is on stereoscopic rendering (sec-
tion 6.5.1). By caching color values, we can easily boost the frame rates at no visual
quality loss.

Effects such as motion blur (section 6.5.2) and depth of field (section 6.5.3) are also
strong candidates for coherence based optimizations. Although there exist efficient ap-
proximations for these applications, the most natural method involves multiple render
passes. These can be significantly optimized with the help of the RRC.

To explore the amortized super-sampling of section 6.4.5, we reduce aliasing in
two problematic applications. In section 6.5.4, we super-sample environment-mapped
bump mapping to eliminate aliasing artifacts from motion. In section 6.5.5, we super-
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sample shadow-map lookups to produce significantly higher quality shadow bound-
aries.

Results are presented within each application section. As usual, frame rate figures
depend on a series of factors, including the system used to run the tests and the resolu-
tion being used. When comparing RRC methods to their plain counterparts, we instead
focus on the trade-off between quality and performance. Similar results should apply
to applications having an equivalent balance between pixel shading and geometry pro-
cessing costs. In any case, all our results were produced on a P4 3.2GHz with an ATI
X800 graphics card.

6.5.1 Stereoscopic rendering
The idea of using reprojection to speed up the computation of stereoscopic images has
been explored by Adelson and Hodges [1993] and by McMillan and Bishop [1995],
respectively in the context of ray-tracing and head-tracked displays. Both report sub-
stantial increases in frame rate due to the extensive coherence present in nearby views.

We describe how to use the RRC to render anaglyph stereo images (see Dubois
[2001] for a good review), but the same idea applies to other stereoscopic rendering
techniques. On anaglyph images, the red channel is taken from the left eye view, and
the green and blue channels are taken from the right eye view. Using glasses with color
filters, each eye is exposed to the appropriate view, and the images appear to have three
dimensions.

We proceed in two passes. On the first pass, we render the right eye view, caching
the results. On the second pass, we render the scene using the left eye camera param-
eters, and perform one cache lookup per pixel. The hit shader simply copies the value
read from the right eye. The miss shader computes the pixel color from scratch. Finally,
we composite the results of the first and second passes, preserving the appropriate color
channels.

If rendering each pixel is expensive, copying the values from one view to the other
can lead to substantial performance improvements. Although results might not be exact
on view-dependent scenes, artifacts are rarely distracting. Furthermore, if added pre-
cision is required, it is usually possible to cache only the expensive view-independent
information, and add view-dependent components after cache lookup.

This is especially simple when the view-dependent components are additive, such
as specular highlights or reflections. On the second pass, cache-time view-dependent
information can be recomputed and subtracted from the cached value. The correct
view-dependent information can then be added on its place. Saturated values can be
easily detected and treated as cache misses.

Figure 6.6a was generated with a view-independent treatment of the scene. As
shown in figure 6.6c, the comparison against ground truth reveals the expected er-
rors over the specular highlights. In figure 6.6b, on the other hand, the highlights
were recomputed after cache lookup, completely eliminating errors. Notice the view-
dependent forced cache misses in figure 6.6d.

The model in figure 6.6 has 2k triangles and uses a Perlin noise pixel shader that
requires 215 instructions per pixel (expensive, but not unreasonable). Brute-force stere-
ographic rendering happens at 28fps on our system. The view-dependent RRC method
runs at 39fps, and the simpler view-independent version runs at 44fps. In other words,
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(a) View-independent (b) View-dependent

(c) Error (artificially enhanced) (d) Cache hits

Figure 6.6: When using the RRC with stereographic rendering, a view-independent treatment of
cached values (a) can result in incorrect images (c). Although results are perfectly acceptable in
this example, errors can be eliminated by adding view-dependent effects after cache lookup (b).
(d) In that case, we can force cache misses over saturated specular highlights (shown in blue),
in addition to the regular misses (shown in red).
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the RRC results in a 57% frame rate increase with negligible implementation overhead
and quality loss.

6.5.2 Motion blur
When film is exposed for an extended interval of time, any object, camera, or shutter
motion can result in a blurry image. This effect, known as motion blur, can be exploited
to convey the idea of motion in static photography, or to eliminate strobing from motion
pictures. The simulation of motion blur is therefore an important step in the creation
of realistic synthetic images.

Satisfactory results can be obtained, for example, with temporal super-sampling [Ko-
rein and Badler 1983], stochastic sampling [Cook et al. 1984; Dippé and Wold 1985],
or in the frequency domain [Potmesil and Chakravarty 1983]. In general, the high
frame rate demands of real-time rendering applications restrict the range of viable ap-
proaches to coarser approximations, such as silhouette extrusion [Wloka and Zeleznik
1996]. Although graphics hardware support for accumulation buffers makes the imple-
mentation of temporal super-sampling extremely simple [Haeberli and Akeley 1990],
the naïve approach tends to be overly slow. Fortunately, spatio-temporal coherence
within time samples allows us to use reprojection to speed up the rendering process.
This idea has been explored by Chen and Williams [1993], and by Havran et al. [2003],
respectively in the context of image based rendering and ray-tracing of animations.

To use the RRC in temporal super-sampling, we proceed as follows. Recall each
output image represents an interval of time, and is the result of accumulating a num-
ber of time samples within that interval. We fully render the first time sample into
the cache. Then, while rendering the remaining frames for the interval, we perform
one cache lookup per pixel. The miss shader computes the pixel color from scratch,
whereas the hit shader simply reuses the cached value for the previous frame. If an
object is known to change considerably in appearance over the exposure time (through
animated textures, for instance), cache misses can be forced for that object.

Given that all time samples are averaged together, the use of reprojection causes no
perceptible quality loss. On the contrary, since the rendering process becomes much
faster, more time samples can be used. Figure 6.7 shows a comparison of the results for
the brute-force and the RRC accumulation-based motion blur at the same frame rates.
The model shown has 2.5k triangles and uses the same Perlin noise pixel shader used
in the previous section. In this setting, the RRC enables us to double the number of
time samples.

6.5.3 Depth of field
The standard 3D graphics pipeline is based on the pinhole camera model, and produces
perfectly sharp images. Real cameras (as well as our eyes), on the other hand, have
lens systems with finite apertures. Only points within a certain distance from the focal
plane (the depth of field) are in focus. Points that are out of focus project to an area on
the film (the circle of confusion), and result in blured images. The effect is commonly
used to direct user attention, and is therefore important in high-quality renderings.

Depth of field can be simulated in a variety of ways [Demers 2004]. The most
accurate methods, such as distributed ray-tracing [Cook 1986] or the accumulation
buffer [Haeberli and Akeley 1990], are based on integration over the aperture extent.
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Post-filtering techniques, such as [Potmesil and Chakravarty 1981; Rokita 1993; Mul-
der and van Liere 2000; Bertalmío et al. 2004], approximate the effect by blurring a
sharp image in a depth-dependent fashion. These are usually fast enough for real-time
rendering, but often have problems with intensity leakage and partial occlusions. Elim-
inating these artifacts adds to the complexity of these methods [Scofield 1992; Riguer
et al. 2004].

By far, the simplest approach is to use accumulation [Haeberli and Akeley 1990].
Several sharp images are generated under varying camera positions that sample the
area of the aperture (for example, using a Poison disk pattern). Averaging the sharp
images together produces the appropriate depth of field effect. Although this process is
computationally intensive, all images share a considerable amount of spatial coherence
and the RRC can be used to significantly reduce rendering cost.

Once the camera positions are determined, each view is generated in sequence.
Using RRC lookups, values computed for the last view are reused whenever available.
The high amount of coherence between nearby views results on high cache-hit ratios.
Figure 6.7 show results for the same scene used in the motion blur test. Once again,
using the RRC allows us to either substantially increase the frame rates or the quality
of the renderings. This time, more than twice the number of samples can be used.

6.5.4 Environment-mapped bump mapping
While the previous applications used the RRC in order to avoid rerendering portions
of the scene, section 6.4.5 describes how the RRC can be used to reduce the variance
of super-sampling results. The strategy can be used directly on pixel colors to pro-
duce better results at reduced computational cost. We illustrate the technique with a
difficult problem in real-time computer graphics: the anti-aliasing of bump-mapped
environment mapping.

The complication stems from the fact that bump maps can cause the reflection vec-
tors emanating from nearby points on the object to span large regions in the envi-
ronment map. Since the derivative computation used in mip-level selection is based on
finite differences that span one entire pixel, adjacent pixels may end up selecting wildly
different mip-levels. The resulting aliasing artifacts can be extremely distracting in an-
imations, particularly for slow motions, which cause the lack of temporal coherence in
the aliasing to becomes evident as a shimmering effect. Naturally, smoothing the bump
map can defeat the purpose of using it.

A possible solution is to generate a roughness map [Schilling 1997], which pre-
computes the distribution of normal vectors for each region of the bump map. Unfortu-
nately, this distribution can be highly anisotropic, and current hardware does not have
the ability to anisotropically filter across cube map faces.

The simplest solution is to super-sample the environment map lookups. In order
to do this, we generate interpolated bump-mapped normals for a number of sub-pixel
samples within each pixel. We then compute associated reflection vectors, perform an
environment map lookup for each one, and average the resulting colors. Due to the
severity of the aliasing, many samples are required. Fortunately, it is simple to use
the RRC and a recursive filter to accumulate the contribution of several frames. The
resulting variance reduction allows us to generate fewer new samples per frame (thus
increasing frame rates), while maintaining an acceptable visual quality.
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Figure 6.8a depicts the aliasing artifacts resulting from using only a single texture
fetch from the environment map. Figures 6.8b and 6.8c show the same object with
4× and 9× super-sampling of the environment map lookups. The reduction in aliasing
artifacts come at the cost of a significant drop in frame rates. Figure 6.8d shows the
results using the RRC to combine 4× super-sampling with a λ = 0.6 recursive filter.
The resulting quality surpasses that of 9× super-sampling (it is roughly equivalent to
16×), but renders considerably faster.

6.5.5 Shadow mapping

Shadows not only make synthetic images much more realistic, but also provide impor-
tant visual cues on the relative position of objects and light sources. For these reasons
(and because current graphics hardware is powerful enough), shadow casting has be-
come a requirement in modern real-time rendering applications.

For a recent survey on shadow casting algorithms, see Hasenfratz et al. [2003].
Here we concentrate on an increasingly popular approach: Shadow Mapping [Williams
1978]. The idea is to render the scene twice. On the first pass, the scene is rendered
from the point of view of the light source, and depth values are stored in a shadow map.
On the second pass, the scene is rendered from the observer’s point of view. While each
pixel is generated, it is transformed into the light source’s reference frame, and tested
for visibility against the shadow map. Failure means the pixel is in shadow.

Although it is extremely simple and general, shadow mapping is plagued by alias-
ing problems, because the sampling densities on the screen and on the shadow map
can be considerably different (see figure 6.9a). One solution is to increase the effective
resolution of the shadow map [Fernando et al. 2001; Stamminger and Drettakis 2002].
A simpler alternative is to use the Percentage Closer Filtering (PCF) of Reeves et al.
[1987] (see figure 6.9b). The idea is to integrate the result of the shadow tests over
a neighborhood of the shadow map. The integration is performed stochastically, with
a Poisson disk sampling pattern, which transforms aliasing into high-frequency noise.
The noise becomes barely visible when 16 taps into the shadow map are averaged to-
gether (figure 6.9c).

This sampling process is directly amenable to optimization by the amortized super-
sampling method of section 6.4.5 (see figure 6.9d). We compute PCF results at each
frame, randomly rotating the sampling patterns each time (to make them independent).
Using the RRC and a recursive filter with λ = 3/5, the variance is reduced to 1/4 the
original. This effectively renders a 4-tap PCF as good as a much more expensive 16-tap
PCF (contrast figures 6.9c and 6.9d).

To reduce the amount of noise even further, we can apply a screen space Gaussian
blur to the cached PCF values, by rendering a full-screen quadrilateral. The accumu-
lation process then causes the contribution of older cached values to be progressively
smoother. Finally, the width of the shadow transitions can be narrowed by remapping
the PCF values with a smooth step function. Figure 6.9e shows the result of these two
extra steps. Noise levels are so small that the shadow boundaries can be thresholded to
produce approximate, alias-free hard shadows (see figure 6.9f). The method runs at the
same speed as the rotated 4-tap PCF, but produces substantially better results.
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6.6 Conclusions
In this chapter, we presented the Real-Time Reprojection Cache, a simple, efficient,
and effective technique to cache surface information across frames. This information
can be used to improve the quality, amortize the cost, or increase the rendering speed
of subsequent frames. We demonstrated the effectiveness of the RRC by presenting a
variety of concrete examples.

Limitations: The main underlying assumption in the use of the RRC is that repro-
jection is essentially free. This is true whenever the cost of shading a pixel is high.
Conversely, applications dealing with high geometric complexity and low pixel shad-
ing costs might not benefit at all from the technique. This problem can be aggravated if
the per-vertex transformations are expensive, since at each frame these operations have
to be repeated with the cache-time parameters.

A limitation of the amortized super-sampling is the inertia introduced by the mem-
ory of the recursive filter. The effect is visible when surface properties are changing
with time. In that case, choosing high values for λ (above 0.7) can cause a trailing
effect, not unlike motion blur. If frame rates are not high-enough, this can become
unacceptable. In that case, lower values of λ usually solve the problem, at the expense
of variance reduction.

Future work: Naturally, we have not explored all applications for the RRC. We are
experimenting with a technique which we call amortized tiled rendering. The idea is
to alternatingly render half of each frame from scratch, and use the previous frame as a
cache while rendering the other half. Preliminary results show that this technique can
increase the effective frame rate by almost a factor of two, with little noticeable quality
loss. Naturally, the idea could be pushed even further, by rerendering only 1/3 or 1/4
of the pixels every frame.

It would be also interesting to use our technique to guide an automatic per-pixel
selection of shader level-of-detail. A set of progressively cheaper shaders for the same
effect could be produced automatically [Olano et al. 2003; Pellacini 2005] or by hand.
Notice that reprojection gives the application access to the exact motion field for the
animation sequence. The speed at which a surface point moves on screen could be
used to dynamically select among the shaders, including reusing the result of a cache
lookup. This could potentially result in higher frame rates at no perceptible quality
loss, especially if motion blur is involved.
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(a) 60fps brute-force (b) 45fps brute-force

(c) 60fps RRC
30fps brute-force

(d) 45fps RRC
20fps brute-force

(e) 30fps RRC (f) 20fps RRC

Figure 6.7: The RRC can be used to optimize motion blur and depth of field rendering. Results
of running the brute-force accumulation method at high frame rates are usually unacceptable
(top). At the same frame rate, the RRC produces much better results (middle). Matching RRC
quality causes the brute-force method to drop the frame rate. Naturally, at these lower frame
rates, the RRC produces even higher-quality results (bottom).
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(a) 1 tap, 316fps (b) 4 taps, 182fps

(c) 9 taps, 98fps (d) 4 taps RRC, 160fps

Figure 6.8: Bump-mapped environment mapping can result in severe aliasing artifacts (a), espe-
cially in animations. In order to eliminate the problem, many samples are required (b, c), which
has a negative impact on the frame rate. Using the RRC, we can amortize the super-sampling
costs and substantially increase the frame rates (d).
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(a) 1 tap (b) 4 taps

(c) 16 taps (d) 4 taps RRC

(e) blured and
narrowed

(f) thresholded

Figure 6.9: The RRC can be used to super-sample shadow-map tests. The images show a closeup
of the Parthenon. (a) When the resolution of the shadow map is not high enough, aliasing effects
are clearly visible. (b) PCF turns aliasing into high-frequency noise by averaging the results
of several taps. (c) Increasing the number of taps makes the noise barely visible, but can be
too expensive. (d) Amortized super-sampling can eliminate the additional cost. (e) Shadow
boundaries can be blured and narrowed in screen space for added quality. (f) Approximate,
alias-free hard shadows can be obtained by thresholding.
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