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Introduction

The RapidMind Development Platform is an interface for high-level data-parallel programming,
consisting of a vocabulary of types and operations embedded in C++. It can target a number of
massively parallel processors and computer systems, including but not limited to GPUs and the
Cell BE processor. The RapidMind platform provides a uniform and portable interface for a range
of consumer, embedded, and scientific applications requiring high-performance computation.
This document is aimed at developers targeting graphics and general-purpose applications
specifically on GPUs. It is assumed that the reader has a background in both C++ and graphics.
Examples will be drawn from interactive graphics that highlight the advanced programming
capabilities of the RapidMind platform.

On GPUs, the RapidMind platform can be used for both shaders and general-purpose
programs. We use a stream processing model of programming that is well-suited to efficient
execution on GPU architectures. As a shader language, the RapidMind platform is both complete
and more expressive than any other shading language. It provides the full power of C++ for
object-oriented data abstraction while completely eliminating the need for “glue” code. In its
general purpose mode, the RapidMind platform enables the use of the GPU as a high-
performance numerical co-processor. Shaders are in fact just a special case of the more general
purpose concept of a stream program.

Figure 1: Some procedural shaders implemented with our platform.

The RapidMind platform has a unique interface for specifying computations. It is packaged as
library, but with the functionality and ease of use of a specialized programming language. It
includes a dynamic just-in-time compiler. Unlike other libraries its functionality is completely
open-ended. It is easiest to think about the RapidMind platform as being a vocabulary for data-
parallel programming. Rather than designing a separate language to specify parallel
computations, we have just added a small number of nouns (types) and verbs (operations) to an
existing language, C++. We have used the standard features of C++ to do this, so the RapidMind
platform can be used with a variety of ISO-compliant compilers and your existing development
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tool chain. The RapidMind platform can be seen either as an advanced API for specifying high-
performance computations or a just-in-time compiler whose “parser” is implemented using C++
operator overloading.

The structure of our interface has major advantages in practice. Custom languages that are
compiled separately from the host language require extra “glue” code to interface the
computation to the host program. The RapidMind system requires no glue code at all: the
interface is the language.

Our system is also unique in that it targets multiple computational resources with a common
interface, including GPUs, the Cell BE processor, and multi-core CPUs. You can use it to write
shaders in a graphics application or pure numerical computations in a scientific application, or
both, as in a game or a visualization application. In the following the focus is on the GPU as a
target, but it should be emphasized that most of the code and programming techniques presented
will run on any of the supported targets.

The RapidMind system looks at first like a standard operator overloaded numerical/graphics
library, with matrices, points and vectors, and you can use it that way if you want. We
intentionally gave it this interface to make it intuitive to use. However, the RapidMind platform
supports an additional feature with deep implications: you can also record sequences of
operations, and compile these recorded operations into a “program object”. Program objects can
then be run on a variety of target processors, including the GPU and the host CPU. In essence, we
have added the ability to create new functions at runtime to standard C++.

The RapidMind compiler subsystem is dynamic, and can take the (arbitrary) computations
specified through the interface and generate optimized code on the fly. It supports a modular
backend system that can compile the same computation to multiple co-processors, even from the
same host program. In addition to the compiler, the RapidMind platform also includes a runtime
engine. The runtime engine is designed to make best use of the available hardware features but
without burdening the programmer with low-level details. It manages memory as well as code,
making it possible to program complex multipass algorithms and to encapsulate data
representations in an object-oriented fashion. It should be emphasized, however, that our
compiler records only the numerical computations specified by the host program, not the object-
oriented overhead associated with C++. A programmer using our system can use object-oriented
code structuring mechanisms without suffering a performance penalty in time-critical
applications. The object-oriented structure serves only as scaffolding. For actual execution, this
scaffolding is torn completely away by our compiler. You can structure your code with C++, but
get the runtime performance of FORTRAN, an advantage even for CPU targets.

Programs written using the RapidMind platform can run on the GPU but act like extensions
of the host application. The semantics of our vocabulary have been set up so that program objects
act like C++ functions which follow the normal scope rules of C++. For instance, to communicate a
value from the host to a co-processor, the code used in a program object simply has to refer to a
non-local variable outside its definition, and the host only has to assign a new value to that
variable whenever necessary. The system will automatically track dependencies between
variables and when the variable is updated, will ensure that the code running on the co-processor
can access the new value. We also manage remote memory buffers (such as textures on the GPU)
so they act like arrays. The visibility of these arrays follows the same scope rules as other
variables. In summary, the scope rules of C++ control which parameters and data arrays are
visible to which program objects. Since all the modularity constructs of C++ are based on scope
rules, our approach enables the use of all C++ modularity constructs for structuring
computations: namespaces, templates, and classes can be used to organize and parameterize
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program objects; you can define your own types and operators; and you can define libraries of
functions and program objects.

The C++ control constructs can also be used to manipulate and construct program objects on
the fly. Such metaprogramming can be used to adapt implementation complexity and
performance to the target platform, generate variants of shaders for different levels of detail, to
build custom “fast paths” based on runtime options and to generate program objects from data
files read in at runtime or specified at runtime via a user interface.

For general-purpose computation, compiled program objects can be applied as functions to
streams of data. These programs will execute on the designated co-processor without it ever
being necessary for the user to make a co-processor specific API call. In the case of the GPU, it is
unnecessary to use a graphics APl if you are only interested in general-purpose computation. The
same programs can be compiled (on the fly, using just-in-time compilation, and with full support
for metaprogramming) to the host CPU as well, so the decision to execute an algorithm on the
CPU or on a co-processor can be deferred — until runtime if necessary.

Program objects can also be manipulated in various ways: specialization, conversion of
uniform variables to inputs, conversion of inputs to uniform variables, conversion of inputs to
array and texture lookups, currying, functional composition, concatenation and other operations.
These dynamic code manipulation capabilities are extremely powerful but are built upon a small
number of simple operations we call a program algebra.

In the following we will introduce the RapidMind platform by working through a number of
examples. First, we will present the basic types, tuples and matrices, and show how they can be
used in immediate mode to perform computations on the host. Then we will show how program
objects are created by capturing sequences of operations on these types using a retained-mode
“recording” mechanism. We also show how the interface between program objects and the rest of
the application is defined. Then we discuss how memory objects are managed and how our
platform can be used to build data abstractions. For general-purpose computation, we support a
stream processing model. Our stream processing abstraction also includes a program algebra
which is useful for manipulating and transforming program objects, and a stride and offset
algebra on arrays which is useful for expressing structured data access patterns.

Tuples, Matrices, Operators and Functions

The core types in the RapidMind platform are short sequences of numbers, or n-tuples. Tuples
have a semantic type (such as point, vector, normal, plane, and so forth), a length (which must be
a compile time constant, but may otherwise be arbitrary; in particular, tuples are not limited in
length), and a storage type (how the actual numbers are stored). For instance, Point3f
represents a three-dimensional point stored as a triple of single precision floating-point numbers,
whereas Color4ub is a four-component color whose components are stored as unsigned bytes.
Floating point and integer types at a variety of precisions are available. All RapidMind types are
declared in their own namespace to avoid name conflicts with user-defined types.

Generic tuples are given the semantic type of Value, for instance Value3£. These names are
actually predefined type definitions wrapping a more general template mechanism for specifying
tuples. For general purpose, non-graphics computations, the existing semantic types can be
ignored and new, application-specific types can be derived. As much as possible, the type
Valuelf has the same semantics and follows the same syntactic rules as a f1oat. For instance,
to implement complex numbers, you can just use std: : complex<Valuelf>.

Operators are overloaded on these types. Arithmetic operators usually act component by
component, except for multiplication and division on certain types in which an alternative
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definition makes sense (matrices in particular). Scalar promotion works on most operators. For
example, you can multiply a vector by a scalar (and that scalar can be a C++ floating-point literal
scalar or a 1-tuple).

Swizzling is a useful operation that permits the flexible extraction and rearrangement of the
components of tuples. The “()” notation is used for swizzling, using integers to index
components. If c is a Color3£ representing an RGB color, then ¢ (2,1, 0) gives that color in
BGR order. Swizzles can also change the length of a tuple or repeat elements. If we are given a 2-
component LA (luminance plus transparency) color b and want to convert it to a 3-component
RGB color, we could use b (0,0, 0) .

The swizzle notation with one argument can be used to select elements of a tuple, although
the “[]1” operator can also be used in this case. The “|” and “~” operators are used for dot
product and cross product respectively, although dot and cross functions are also supported.
The RapidMind platform supports a large and growing number of other built-in functions,
including noise and hashing functions of various kinds, tuple sorting, trigonometric, exponential,
logarithmic, and geometric operations, smoothed discontinuities, and spline evaluators. To
perform better on SIMD target machines, all functions in the standard library are designed to
work without branches or loops. When possible the names of our standard library functions are
similar to those in the C++ standard library or in other major shading languages (for graphics-
oriented functions).

Comparison operations return tuples whose components are either 0 or 1, using the same
storage types as their inputs. The “s&” and “| |” operators are defined to be equivalent to min
and max respectively (which is consistent with Boolean operations). The any and all operations
can be used to reduce Boolean tuples to a single decision. The cond function supports
conditional assignment (unfortunately, the ternary operator “?:” cannot be overloaded in C++;
cond is equivalent semantically) with both Boolean tuples and scalars.

Normal C++ syntax can be used to specify functions. For example, suppose you would like to
simulate the appearance of glass. You will need a function to compute a reflection vector, a
refraction vector and to determine the ratio between reflection and refraction (known as the
Fresnel coefficient). Functions to compute these quantities are actually already in the standard
library, but if you wanted to define a reflection function yourself, you could do it as shown in
Listing 1. This function definition has the obvious semantics. In fact, you can use function
pointers, pass by reference to return values in arguments, separate compilation and all the usual
machinery of C++.

Vector3f
reflect (Vector3f v, Normal3f n) ({
return Vector3f(2.0* (n|v)*n - v);

}

Listing 1: A function to compute a reflection vector.

We also support small fixed-size matrices. In geometric applications like vision and graphics,
these can be used to represent transformations of points and vectors. Matrix types have names
like Matrix3x4f and can be square or rectangular. There is a set of standard library functions
that support operations on these matrices, and includes functions to compute the determinant,
adjoint, trace, inverse, and transpose, and to build matrices from tuples by row or column.
Matrices also support swizzling and slicing. For example, if M is a 4x4 matrix, then
M(2,1,0) (2,1,0) extracts the 3 x 3 upper-left submatrix and transposes it, reversing both the
rows and columns of the result. Both row and column swizzles must be supplied, but the empty
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swizzle “()” is the identity. Therefore, M() (3,2,1,0) reverses the columns of M and
M(3,2,1,0) () reverses the rows. Matrices also support the “[]” operator. Application of this
operator extracts a tuple representing a row of the matrix. A second application of “[]” then

selects a component of this tuple, so M[2] selects row 2 of the matrix M as a Valued4f and
M[2] [3] selects the scalar at row 2, column 3.

On the left hand side of an assignment, the same indexing operators can be used to
selectively write to elements of both tuples and matrices. This can be interpreted as swizzling
references to elements, and is commonly called writemasking. The only restriction is that on the
left hand side, elements cannot be repeated (since this would imply assigning two values to one
element).

Transformations of tuples by matrices is supported by the or operators, which both
represent matrix/tuple multiplication. If the matrix is on the left and the tuple on the right, the
tuple is interpreted as a column vector. If the tuple is on the left and the matrix is on the right, the
tuple is interpreted as a row vector. This rule avoids a lot of transpose operators, and is consistent

II‘II

1%IT “ | ”

with the use of for dot product. Some semantic types support some additional special rules.
In particular, if a point or vector is one element too small for the matrix being applied to it, it is
automatically extended with a homogeneous coordinate relative to its type. For instance, if you
try to transform a Point3f by a Matrix4x4f, the point will be automatically extended with a
homogeneous coordinate of 1. If a Vector3f is transformed the same way, it will be extended
with a homogeneous coordinate of 0. This is one of the few places where the semantic type of a

tuple matters—and note that the alternative would be to declare a size mismatch error.

Programs, Parameters and Attributes

The tuple and matrix types of our platform can be used in immediate mode as if they were a
simple matrix/vector utility library with a relatively sophisticated syntax. However, sequences of
operations on these types can also be recorded in a retained mode and dynamically cross compiled
to another target using the BEGIN _PROGRAM and END keywords. The BEGIN PROGRAM keyword
takes a string parameter that specifies the compilation target. For example, a value of
"gpu:vertex" indicates compilation to the vertex shading unit of the currently installed GPU,
while "gpu:fragment" indicates compilation to the fragment unit of the currently installed
GPU. The BEGIN_PROGRAM keyword returns an object of type Program which represents the
compiled program. We are using the short form of the keywords here; longer forms with
prefixes are also available to avoid name conflicts in production code.

For another example, consider Listing 2. This example implements vertex and fragment
programs that support point and normal transformation as well as a modified Blinn-Phong
lighting model for point light sources. Shaders are just special cases of program objects. They are
applied in parallel to streams of vertices or pixels as they are drawn to the screen in an interactive
application on a GPU. We will show how our platform can apply program objects to arbitrary
streams of data in a few pages.

We use C++ metaprogramming to unroll a loop over the light sources and build different
versions of the shader supporting different numbers of point sources. A typical rendering (with
one light source) is given on the left hand side of Figure 2.

vertex shader = BEGIN_PROGRAM("gpu:vertex") {
/1 declare input vertex attributes (unpacked in order given)
In<Normal3f> nm; /I normal vector (MCS)
In<Position3f> pm; //position (MCS)
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/1 declare outputs vertex attributes (packed in order given)
Out<Normal3f> nv; !/ normal (VCS)
Out<Point3f> pv; /1 position (VCS)
Out<Positiondf> pd; //position (DCS)

/1 specify computations

pv = MV|pm; /I 'VCS position

pd = VD|pv; /I DCS position

nv = normalize (nm|inverse MV); // VCS normal
} END;

fragment shader = BEGIN_PROGRAM ("gpu:fragment") {
/I declare input fragment attributes (unpacked in order given)
In<Normal3f> nv; /I normal (VCS)
In<Point3f> pv; /1 position (VCS)
In<Position3f> pd; //fragment position (DCS)
/I declare output fragment attributes (packed in order given)

Out<Color3f> fc; /I fragment color
/I compute unit normal and view vector

nv = normalize (nv);

vv = -normalize (Vector3f (pv));

/1 process each light source (note that this is a metaprogrammed loop)
for (int i =0; i < NLIGHTS; i++) {
/I compute per-light normalized vectors
Vector3f 1lv = normalize (light position[i] - pv);
Vector3f hv = normalize (lv + vv);
/1 access the light color (array access is metaprogrammed)
Color3f ec = light color[i] * max(0.0, (nv|lv));

I 'sum up contribution of light source
fc += ec *(kd + ks*pow (pos (hvIinv),q)):;

} END;

Listing 2: Vertex and fragment shaders for the Blinn-Phong lighting model.

Note the use of In and Out binding type modifiers to modify the declaration of some of the types
inside each shader. Conceptually, Program objects represent functions that are applied in
parallel to streams of records, each record containing k objects of various types. This produces
another stream of records, with each output record containing m objects of various types. For
instance, a vertex shader takes the vertex attributes bound to each input vertex by the user and
produces another set of attributes that will be interpolated by the rasterizer. This computation is
repeated for each vertex. Likewise, the fragment shader takes as input interpolated values bound
to fragments and computes output values (in this case only one color tuple per fragment, but
multiple output values are possible).

In general, we refer to values that are presented as inputs and outputs to Program objects as
attributes. Tuples and matrices declared without qualifiers are temporaries local to the shader.
They are initialized to zero at the start of every invocation of a shader, which in this case
simplifies the accumulation of contributions from multiple light sources. We also support reading
from output tuples and writing to input tuples (the latter does not change the real input data;
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program objects always use pass by value). If the target platform does not support these
semantics, our compiler automatically introduces an appropriate temporary.

Other values are used in this computation. These are highlighted in italics in the listings: the
modelview matrix MV, the point source position 1ight position, the diffuse coefficient kd, the
Phong exponent g, and so forth. These are instances of matrix and tuple types declared external
to a shader. Using an externally declared object in a Program definition means that the values of
that object should be made available for use by the shader as a “non-local variable”. These objects
cannot be assigned to inside the shader, but immediate-mode assignments to tuples and matrices
referenced by a program will update these values for the next evaluation of the shader. We call
objects used in this manner parameters.

The scope rules and modularity constructs of C++ can be used to control which parameters
get bound to which shaders. Normally we would define shaders inside a framework that
encapsulates parameters and program objects. A simple example is given in Listing 3. Here we
declare transformation parameters in the BaseShader abstract class, point light parameters for
NLIGHT light sources in the PointLightShader templated subclass, and finally the Blinn-
Phong specific parameters in the B1innPhong subclass. The constructor BaseShader calls the
initialization method, eventually defined in the B1innPhong concrete class, which constructs the
Program objects vertex shader and fragment shader. The bind member function loads
these shaders onto the GPU when called. Such encapsulation is not mandatory. On the other
hand, more sophisticated frameworks are certainly possible. A wide variety of programming and
encapsulation techniques are enabled by the close binding between C++ and the RapidMind
platform and the semantic similarity of Program definitions to dynamic function definitions
with static binding to parameters.

Figure 2: The Blinn-Phong lighting model, using both specular and diffuse textures on the right.

class BaseShader {
public:

static Matrix4x4f VD; //VCS to DCS
static Matrix4x4f MV; //MCS to VCS
static Matrix4x4f MD; // MCS to DCS
static Matrix4x4f inverse MV; // MCS from VCS
Program vertex shader;
Program fragment shader;
void bind ()
virtual void init () = 0;
BaseShader () ;
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}i
template <int NLIGHTS>
class PointLightShader: public BaseShader {
public:
static Point3f light position[NLIGHTS];
static Color3f light color[NLIGHTS];
PointLightShader ();
}i
template <int NLIGHTS>
class BlinnPhongShader: public PointLightShader<NLIGHTS> {
public:
Color3f ks; /1 specular color
Color3f kd; /1 diffuse color
Valuelf g; /I exponent
BlinnPhongShader () ;
virtual void init ();
}i
Listing 3: Framework classes for managing parameters.

Introspection is also supported on Program objects. Member functions are supported for
iterating over inputs, outputs, and parameters, and recalling metadata for each. The platform
supports built-in metadata such as type, name, and description, but we also provide a
mechanism for the application to bind arbitrary user-defined metadata to tuples, matrices and
other platform types, then retrieve this data from Program objects that use them.

Arrays, Tables and Textures

Texture maps are supported as template classes which take the type they store as a template
argument. For instance, if we want to create a texture that stores 3-channel unsigned byte color
data in a 3D grid, we would declare a Texture3D<Color3ub>. If we wanted a cube map of
floating-point vectors, we would declare a TextureCube<Vector3£>. Lookups on textures are
supported with the “()” and “[]” operators. These are slightly different. The “ () ” operator
treats the lookup as if the texture were a tabulated function, and the function were resolution
independent. It therefore uses a normalized texture coordinate range of [0,1]x[0,1]. However, if
“[1” is used, texels are centered at the integers, although interpolation is still performed.

An example shader using texture lookup is given in Listing 4; this is a small modification of
the shader given in Listing 2. All we have done is passed through texture coordinates in the
vertex shader (demonstrating the InOut binding type modifier, which marks a variable that is
both an input and an output) and converted ks and kd to textures. An example rendering is
given on the right of Figure 2.

template <int NLIGHTS>
class TexturedBlinnPhongShader: public PointLightShader<NLIGHTS> ({
public:
Texture2D<Color3f> ks; //specular texture
Texture2D<Color3f> kd; //diffuse texture
Valuelf g; //exponent
TexturedBlinnPhongShader ();
void init () {
vertex shader = BEGIN_PROGRAM("gpu:vertex") {

/I declare input vertex attributes

SIGGRAPH 2006 3-9 Course 3, GPU Shading and Rendering



RAPIDMIND

InOut<TexCoord2£f> u; //texture coordinate

In<Normal3f> nm; /1 normal vector (MCS)
In<Position3f> pm; /1 position (MCS)

/1 declare output vertex attributes

Out<Normal3f> nv; 1/ normal (VCS)
Out<Point3f> pv; /1 position (VCS)

Out<Positiondf> pd; /I position (DCS)

/1 specify computations

pv (MV|pm) (0,1,2); // VCS position

pd = VD|pv ; // DCS position

nv = normalize ((nm|VM) (0,1,2)); //VCS normal
} END;

fragment shader = BEGIN_PROGRAM ("gpu:fragment") {
/1 declare input fragment attributes
In<TexCoord2f> u; //texture coordinate
In<Normal3f> nv; /I normal (VCS)
In<Point3f> pv; /1 position (VCS)
In<Position3f> pd; //fragment position (DCS)
/I declare output fragment attributes
Out<Color3f> c; /I fragment color

/I compute unit normal and view vector

nv = normalize (nv);

vv = normalize (-pv);

/I process each light source

for (int i =0; I < NLIGHTS; i++) {
/I compute per-light normalized vectors
Vector3f 1lv = normalize(light position[i].pv - pv);
Vector3f hv = normalize (lv + vv);
Color3f ec = light color[i].c * pos(nv|lv );
1 'sum up contribution of light source
c += ec*kd(u) + ks(u)* pow(pos (hv|nv),q);

}

} END;

}i
Listing 4: Textured Blinn-Phong shader.

Texture types are supported for 1D, 2D (both square and rectangular), 3D, and cube textures.
Three major classes of texture types are supported. The Array types (ArraylD, Array2D,
ArrayRect, etc.) only support nearest-neighbor lookup and no filtering. The Table types
support bilinear interpolation but not filtering. Finally, Texture types support MIP-map
filtering with trilinear interpolation. Other minor modes or variations on these modes are
supported with template trait modifiers.

You can define your own data abstractions by encapsulating texture types and providing
your own access functions. For instance, consider Listing 5, which implements homomorphically
factorized reflectance models [3], using a parabolic representation of the hemispherically
parameterized functions involved. Figure 3 gives some renderings using homomorphically
factorized materials.
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class HfShader: public PointLightShader<l> {
public
Texture2D<Color3£f> a;
Texture2D<Color3£f> Db;
Color3f k;
HfShader ();
void init () {
vertex shader = BEGIN_PROGRAM ("gpu:vertex") {

/1 declare input vertex attributes (unpacked in order given)
In<Vector3f> tm; /1 primary tangent (MCS)
In<Vector3f> sm; /] secondary tangent (MCS)
In<Position3f> pm; //position (MCS)

/1 declare output vertex attributes (packed in order given)
Out<Vector3f> vs; /1 view vector (SCS)
Out<Vector3f> ls; /1 light vector (SCS)
Out<Color3f> ec; /1 irradiance
Out<Positiondf> pd; // position (HDCS)

/I compute transformations

Point3f pv = (MV|pm) (0,1,2); //VCS position
pd = MD|pv ; // DCS position

// find surface frame
Vector3f tv = normalize((MV|tm) (0,1,2));
Vector3f sv normalize ((MV|sm) (0,1,2));

Normal3f nv = normalize (tv"sv); //compute normal

/I compute irradiance
Vector3f 1lv = normalize (light.pv - pv);
ec = light .c * pos(nv|1lv);
/I compute SCS view and light vectors
Vector3f vv = normalize (-pv);
ls = Vector3f(tv|lv ,sv|lv ,nv|1lv );
vs = Vector3f (tv|vv ,sv]|vv ,nv]|vv );

} END;

fragment shader = BEGIN_PROGRAM ("gpu:fragment") {
!l declare input fragment attributes (unpacked in order given)
In<Vector3f> vs; // view vector (SCS)
In<Vector3f> 1s; //light vector (SCS)
In<Color3f> ec; //irradiance
In<Position3f> pd; //fragment position (DCS)
/1 declare output fragment attributes (packed in order given)
Out<Color3f> c; //final color
/I compute normalized vectors

1ls = normalize(ls);
vs = normalize(vs);
Vector3f hs = normalize(ls + vs);
c =k * ec
* a(parabolic(vs))
* b (parabolic (hs))
*

a (parabolic(1ls));
} END;

}i
Listing 5: Vertex and fragment shaders for homomorphic factorization.
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We can encapsulate the representation of the BRDF in a class, as shown in Listing 6. We could
easily define other classes with the same base class to represent reflectance models in different
ways; for instance, we might define classes that use spherical harmonics, Lafortune lobes [1], or
parameterized lighting models. A more complete implementation could provide stronger data
hiding by providing copy constructors and access methods rather than making data members
public. Similar techniques can be used to build new texture types, for instance sparse textures,
cubically interpolated textures, or silhouette map textures.

/I Texture abstraction: radially symmetric 2D texture
template <typename ELEM>
class RadialTexturezD {

protected:
TexturelD<ELEM> tex;
public:
ELEM operator () (TexCoord2f u) const {

TexCoordlf r = 2.0 * length(u - TexCoord2f (0.5, 0.5));
return tex(r);

}:
/I BRDF abstraction: HF representation
template <typename TEXTURE>
class HfBRDF: public BRDF {
public:
TEXTURE a, b;
Color3f k;
HfBRDF () ;
Color3f operator () (Vector3f vs, Vector3f 1s) const {
ls = normalize(ls);
vs = normalize(vs);
Vector3f hs = normalize (1
Color3f c = a(parabolic(v
* b (parabolic (h
* a(parabolic(l
return c * k;

vs);

)
)

S
S
S
S

+

))
)
)

’

template <typename F>
class BRDFShader: public PointLightShader<l> {
public:
BRDFShader () ;
void init () {
vertex shader = BEGIN_PROGRAM ("gpu:vertex") {
/1 as before
} END ;
Fragment shader = BEGIN_PROGRAM ("gpu:fragment") ({
/1 declare input fragment attributes (unpacked in order given)
In<Vector3f> vs; /1 view vector (SCS)
In<Vector3f> ls; /1 light vector (SCS)
In<Color3f> ec; /1 irradiance
In<Position3f> pd; //fragment position (DCS)
/1 declare output fragment attributes (packed in order given)
Out<Color3f> fc; /I fragment color
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/I multiply BRDF by irradiance
fc = ec * F(vs,1ls);
} END;

}
}i
Listing 6: Data abstraction for the homomorphically factorized BRDF representation.

Streams

To provide facilities for manipulating programs dynamically, two extra operators are defined
that act on program objects and create new program objects: the connection operator “<<”, which
is defined as functional composition or application, and the combination operator “&”, which is
equivalent to the concatenation of the source code of programs. These operators can also be used
with stream abstractions based on the Stream and Array types, but we will describe their effect
on program objects first.

Figure 3: Homomorphically factorized materials. On the left, satin, on the right, a combination of three
materials (garnet red, satin, and mystique).

Suppose we have a program gl with n inputs and k outputs and another program pl with k
inputs and m outputs. The “<<” operator creates a new program object with n inputs and m
outputs by taking the outputs of g1 and feeding them into the inputs of p1.

Now suppose we are given two more programs p2 and g2. Let p2 have n inputs and m
outputs, and let g2 have k inputs and [ outputs. Applying the “&” operator to p2 and g2 results
in a new program with n+k inputs and m+! outputs. This new program has all the inputs, outputs,
and computations of the original programs.

Because of the way our interface is defined, the operator “&” is in fact equivalent to the
concatenation of the source code of the input programs, using two separate scopes. Such a
concatenation would ensure that the inputs and outputs of p2 are declared before g2, and so
would give the same result as defined above.

The use of these operators to combine program objects can result in redundant computation.
However, the “<<” operator, in conjunction with the optimizer in our dynamic compiler
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(particularly dead code removal) and the definition of some simple “connector” programs, can be
used to eliminate such redundant computations. Both operators actually operate on the internal
representation of program objects to build a completely new program objects, which are
ultimately run through the full suite of optimizations and virtualizations supported by our
platform’s dynamic compiler. This has important implications.

For instance, suppose we combine two programs with “&” and the resulting program
computes the same value twice (in two different ways, so we cannot discover this fact using
common subexpression elimination). We can define a simple program that copies its inputs to its
outputs except for one of the redundant results. This “connector” program can be attached to the
output of the combined program and our dead code eliminator will remove the redundant
computation.

To satisfy the type rules for connecting programs, we need to define the interface of each
such glue program to match the particular interface types of the given base program. To make
this easier, we provide some shortcuts, similar to manipulators in the C++ iostream library, for
manipulating the input and output channels of RapidMind programs: deleting outputs,
reordering inputs and outputs, replacing inputs with texture lookups and so forth. These
manipulators are really functions that return instances of either program objects or instances of
special manipulator classes. Manipulator classes store information about the particular
manipulation required. When combined with a program object in an expression, the appropriate
connector program is automatically generated, using introspection over the program objects the
manipulator is combined with to perform the desired manipulation. This approach can
automatically resolve type issues.

The RapidMind Development Platform supports a stream computation model for general
purpose computation, based on the extension of these two operators to data. Recall that arrays
are containers for a number of elements of the specific type given as its template argument.
Stream objects are represented using the Stream class, and are containers that hold a sequence
of arrays of potentially different types.

Streams are specified by combining arrays (or other streams) with the “&” operator. Streams
only refer to arrays, they do not create copies. An array can still be referenced as a separate object,
and can also be referenced by more than one stream at once. For convenience, an Array of any
type and dimensionality can also be used directly as a single-channel stream. Streams may not
refer to themselves as components.

In addition to being viewed as a sequence of channels, a stream can also be seen as a
sequence of homogeneous records, each record being a sequence of elements from each
component channel. Stream programs conceptually map an input record type to an output record
type, and are applied in parallel to all records in the stream. If a Program is compiled with the
"stream" profile, it can be applied to streams. This is the default mode; an empty argument to
the BEGIN_PROGRAM keyword also specifies a stream program.

The “<<” operator is overloaded to permit the application of stream programs to streams. For
instance, a program p can be applied to an input stream a and its output directed to an output
stream b as follows:

b =p << a;

When specified, the above stream operation will execute immediately. Use of “p << a” alone
creates an unevaluated program, which is given the type Program (and can be assigned to a
variable of this type, if the user does not want execution to happen immediately). Such pre-
bound program objects can also be interpreted as “procedural streams”. Only when an
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unevaluated procedural stream is assigned to a concrete output stream will the computation
actually be executed.

The implementation of the << operator permits partial evaluation via currying. You do not
have to supply all the inputs to a program at one time. If a stream program is applied to a stream
with an insufficient number of channels, an unevaluated program with fewer inputs is returned.
This program requires the remainder of its inputs before it can execute. Currying is a concept
borrowed from functional languages. In a functional language, currying is usually implemented
with deferred execution. Since in a pure functional language values in variables cannot be
changed after they are set, this is equivalent to using the value in effect at the point of the partial
evaluation. However, in an imperative language, we are free to modify the value provided to the
partially evaluated expression before final evaluation is performed. We could copy the value at
the point of the partial evaluation, but this would be expensive for stream data. Instead, we use
deferred read semantics: later execution of the program will use the value of the stream in effect
at the point of actual execution, not the value in effect at the point of the partial evaluation. This
is useful in practice, as we can create (and optimize) a network of kernels and streams in advance
and then set them up rapidly for execution in the inner loop of our program.

The “<<” operator can also be used to apply programs to tuples. A mixture of tuple and
stream inputs may be used. In this case, the tuple is interpreted as a stream all of whose elements
are the same value. The same by-reference semantics are applied for consistency. In fact, what
happens is that an input “varying” attribute is converted into a “uniform” parameter. This is an
extremely useful operation in practice.

Since we provide an operator for turning a varying attribute into a uniform parameter, we
also provide an inverse operator for turning a parameter into an attribute. Given program p and
parameter x, the following removes the dependence of p on x, creating a new program object q:

Program g = p >> X;

The parameter is replaced by a new attribute of the same type, pushed onto the end of the input
attribute list. The “&” operator can also be applied to streams, channels, or tuples on the left hand
side of an assignment. This can be used to split apart the output of a stream program. For
instance, let a, b, and c be arrays, and let %, y, and z be streams, arrays, or tuples. Then the
following binds a program p to some inputs and executes it:

(a & b & ¢c) = p <K x Ky < z;

This syntax also permits program objects to be used as subroutines (let all of a, b, ¢, %, y, and z
be tuples).

Listing 7 defines a stream program to update the state of a particle system in parallel [8]. This

kernel implements simple Newtonian physics and can handle collisions with both planes and
spheres. The particles are then rendered as point sprites by feeding the positions of the particles
back through the GPU as a vertex array (code for this is not shown). Screenshots are shown in
Figure 4.
This example demonstrates the use of deferred read semantics for currying. The state stream is
defined and bound to the particle program along with some uniform parameters. The result is
assigned to the update program object. The update object now has compiled-in access to the
state arrays referenced by the state stream. The inner loop is very simple and fast. In particular,
all program object compilation is done during setup, not in the inner loop.
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// SETUP
particle = BEGIN_PROGRAM("gpu:stream") {
InOut<Point3£f> Ph; //head position
InOut<Point3£f> Pt; //tail position
InOut<Vector3f> V; //velocity
In<Vector3f> A; /! acceleration
In<Valuelf> delta; //timestep
Pt = Ph; // Physical state update
A = cond(abs(Ph(1l)) < 0.05, Vector3f£(0.,0.,0.), A);
V += A * delta;
V = cond((V|V) < 1.0, Vector3f(0.,0.,0.), V);
Ph += (V - 0.5 * A) * delta ;
Valuelf mu(0.1), eps(0.3);
for (int i = 0; i < num spheres; i++) { // Sphere collisions
Point3f C = spheres[i].center ;
Valuelf r = spheres[i].radius ;
Vector3f PhC = Ph - C;
Vector3f N = normalize (PhC);
Point3f S = C + N * r;

Valuelf collide = ((PhC|PhC) < r*r) * ((V|N) < 0);
Ph = cond(collide, Ph - 2.0 * ((Ph - S)|N) * N, Ph );
Vector3f Vvn = (V|N) * N;

Vector3f Vt = V - Vn;
V = cond(collide, (1.0 - mu) * Vt - eps * Vn, V);
}
Valuelf under = Ph (1) < 0.0; //Collide with ground
Ph = cond(under, Ph * Value3f(l., 0., 1.), Ph);
Vector3f Vvn = V * Value3f (0., 1., 0.);
Vector3f Vvt = V - Vn;
V = cond(under, (1.0 - mu) * Vt - eps * Vn, V);
Ph(l) = cond(min (under, (V|V) < 0.1), Pointlf(0.0f), Ph(l));
Vector3f dt = Pt - Ph; // Avoid lines disappearing
Pt = cond((dt|dt) < 0.02, Pt + Vector3f (0.0, 0.02, 0.0), Pt);
} END;

/I define stream specifying current state
Stream state = (pos & pos_tail & vel);

/1 define update operator, bind to inputs
Program update = particle << state << gravity << delta ;

/I IN INNER LOOP

/1 execute state update (input to update is compiled in)
state = update;

Listing 7: Particle system simulation.
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Figure 4: Frames from the particle system animation corresponding to Listing 7.

Engineering

The implementation of the RapidMind platform includes three major level of modularity: the
front end(s), the optimizer, and the backend(s). Our main front end supports the C++ API
described here, and generates an intermediate representation of programs. Our intermediate
representation is similar to an assembly language, but higher-level. When BEGIN_ PROGRAM is
called, a new intermediate representation is initialized, and a mode flag is set so that our types
know they are declared inside a program definition. When operations are specified inside a
program definition, an appropriate instruction for each is added to the intermediate
representation. We do not build a parse tree, since operations are already called in postfix order.
This process builds a correct but inefficient program. In particular, there are a lot of extraneous
moves due to constructors and function parameter passing. However, these extra operations, as
well as many other sources of inefficiency, are cleaned up completely by the optimizer.

When an externally declared parameter or texture is used in a program, a dependency is set
up. The visible classes in our interface are really only smart pointers; the real data is kept
elsewhere, and is reference counted. Therefore, even if a program refers to a parameter that is
later destroyed, the value of that parameter will still be available to the program. When a
program object is loaded, the runtime system goes over its list of dependencies and notifies them
that an active program object depends on them. Whenever a parameter is modified in immediate
mode, it checks for active dependencies, and updates the appropriate values on the target co-
processor (the constant registers on the GPU, in this case) as necessary. Updates are done lazily.
When coordinating with a graphics API, an update function must be called once all parameters
have been modified. Lazy update is especially important for large parameters that are expensive
to download, such as textures. We also shadow textures and streams on both the host and the
GPU (or other target processor) and keep track of which is the most recently modified version.

The optimizer is a crucial component of the RapidMind platform. Among other
optimizations, it supports forward substitution, dead code removal, constant propagation and
uniform lifting. These are not just nice features, they are essential. For instance, dead code
elimination is used for virtualization and specialization. Uniform lifting finds computations in
program objects that depend only on uniform parameters and arranges to compute them once
only, creating a set of hidden, dependent uniform parameters.

The backends map the intermediate representation to a particular target platform, and
provide runtime support. In order to support stream processing and data-dependent control
flow, we may have to decompose programs into multiple parts and schedule these parts over
multiple passes, but this is done completely transparently to the user. The backends also do
detailed buffer management, automatically using appropriate graphics API extensions for this
purpose when available. Multiple GPU backends are available that support different runtime
strategies or programming interfaces. Currently for GPUs we support ARB assembly, ARB with
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NV assembly extensions, or the OpenGL Shading Language. In this tutorial, we have only used
the default GPU and CPU compilation targets, but a more detailed syntax is available for
selecting alternatives and passing parameters to the backend in order to control execution and
coordinate with graphics APIs and other applications running on the same co-processor when
necessary. A CPU backend is also available that supports the dynamic compilation and linking of
host code. Finally, as mentioned earlier, a backend that supports the multi-core Cell BE processor
is also available.
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