
Chapter 1: Introduction 
Marc Olano, UMBC 

1 Course Background 
This is the seventh offering of a graphics hardware-based shading course 
at SIGGRAPH, and the field has changed and matured enormously in that 
time span. The first course, "Procedural Shading on Graphics Hardware" 
in 2000 focused on a handful of research projects that had emerged 
showing procedural shading actually could be accomplished on graphics 
hardware (if you tried really, really hard). The focus was on how you could 
possibly get those inflexible graphics machines to do something as 
flexible as procedural shading. 

Since that early beginning, real-time procedural shading hardware and 
software has blossomed. This year's course focuses much more on 
current shading and rendering approaches on the GPU, both real-time 
and non-real-time. 

The remainder of this chapter provides some basic shading 
background. If you are a long-time shading user, skip ahead. If you're 
just getting started and wonder what all this shading stuff is about, read 
on. 

2 Shading Background 
Procedural shading is a proven rendering technique in which a short 
user-written procedure, called a shader, determines the shading and 
color variations across each surface. This gives great flexibility and 
control over the surface appearance. 

The widest use of procedural shading is for production animation, 
where has been effectively used for years in commercials and feature 
films. These animations are rendered in software, taking from seconds to 
hours per frame. The resulting frames are typically replayed at 24-30 
frames per second. Since the frames are stored and played back later, 
rendering frame rate is totally decoupled from playback frame rate, 
instead being dictated by a combination of production schedule, 
maximum allowable preview wait time, and budget for building a large 
render farm. 

One important factor in procedural shading is the use of a shading 
language. A shading language is a high-level special-purpose language 
for writing shaders. The shading language provides a simple interface for 
the user to write new shaders. Pixar's RenderMan shading language 
[Upstill90] is the most popular, and several off-line renderers use it. A 
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shader written in the RenderMan shading language can be used with any 
of these renderers. 

Meanwhile, polygon-per-second performance has been the major focus 
for most interactive graphics hardware development. Only in the last few 
years has attention been given to surface shading quality for interactive 
graphics. Recently, great progress has been made on two fronts toward 
achieving real-time procedural shading. This course will cover progress 
on both. First, graphics hardware is capable of performing more of the 
computations necessary for shading. Second, new languages and 
machine abstractions have been developed that are better adapted for 
real-time use. 

To support general procedural shading, a system must support the 
following: 

1. Texture or table lookup 
2. Arithmetic operations sufficient to implement all functions in a 

standard math library 
3. Types with sufficient range and precision for shading computations 

(preferably floating point) 
4. Flow control (at least looping, preferably also branching and 

function calls) 
The first has been common at the fragment level for a couple of decades, 
but is only just appearing at the vertex level. Graphics hardware has had 
the second (in the guise of texture lookups and flexible blending) for a 
while, but only in the past 5-6 years has the interface to it been refined 
to treat them as generic arithmetic operations. The third is finally 
becoming an standard hardware feature after years of first fixed-point 
computation, then reduced-precision floating point. The last has been 
possible for years through multi-pass rendering with the application able 
to decide how many passes is sufficient for the required loop iterations, 
but has only become possible in fragment shading in the most recent 
generation or two of hardware. The recent NVIDIA gelato™ to accelerate 
production film rendering provides a concrete demonstration that we are 
finally reaching the point where graphics shading hardware has the same 
basic capabilities as CPU-based shading. 

Interactive graphics machines themselves are complex systems with 
relatively limited lifetimes. The RenderMan shading language insulates 
the shading writer from the implementation details of the off-line 
renderer. A RenderMan shader writer does not know or care if the 
renderer uses the REYES algorithm, ray tracing, radiosity, or some other 
rendering algorithm. In the same way, a real-time shading system 
presents a simplified view of the interactive graphics hardware. This is 
done in two ways. First, we create an abstract model of the hardware. 
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This abstract model gives the user a consistent high-level view of the 
graphics process that can be mapped onto the machine. Second, a 
special-purpose language allows a high-level description of each 
procedure. Given current hardware limitations, languages for real-time 
shading differ quite a bit from the one presented by RenderMan. Through 
these two, we can achieve device-independence, so procedures written 
for one graphics machine have the potential to work on other machines 
or other generations of the same machine. 

In the first incarnation of this course at SIGGRAPH 2000, there were as 
many single-platform shading languages as there were presenters, each 
with the same spirit, but incompatible in syntax. Now we have a selection 
of cross-platform languages. Where the choice of language used to be 
based on which hardware you were using, now it is based more on which 
graphics API and language syntax you prefer. 

3 Procedural Techniques 
Procedural techniques have been used in all facets of computer graphics, 
but most commonly for surface shading. As mentioned above, the job of 
a surface shading procedure is to choose a color for each pixel on a 
surface, incorporating any variations in color of the surface itself and the 
effects of lights that shine on the surface. A simple example may help 
clarify this. 

We will show a shader that might be used for a brick wall (Figure 3). The 
wall is to be described as a single polygon with texture coordinates. 
These texture coordinates are not going to be used for image texturing: 
they are just a pair of numbers that parameterize the position on the 
surface. 

The shader requires several additional parameters to describe the size, 
shape and color of the brick. These are the width and height of the brick, 
the width of the mortar between bricks, and the colors for the mortar and 

 
Figure 1. Size and shape parameters for brick shader. 
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brick (see Figure 1). These parameters are used to fold the texture 
coordinates into brick coordinates for each brick. These are (0,0) at one 
corner of each brick, and can be used to easily tell whether to use brick 
or mortar color. A portion of the brick shader is shown in Figure 2. In this 
figure, row and col are local variables used to construct the brick 
coordinates. The simple bricks that result are shown in Figure 3a. 

One of the real advantages of procedural shading is the ease with which 
shaders can be altered to produce the desired results. Figure 3 shows a 
series of changes from the simple brick shader to a much more realistic 
brick. Several of these changes demonstrate one of the most common 

// shader constants 
// could be passed in to allow modification 
float width=.25, height = .1, mortar = .01;	

 
vec4 brick_color = vec4(1.,0.,0.,1.);	

 
vec4 mortar_color = vec4(.5,.5,.5,1.); 
 
void	

main()	

{ 
	

  // find row and column for this pixel 
	

  float col = gl_TexCoord[0].x, row = gl_TexCoord[0].y; 
 
	

  // offset even rows by half a row 
	

  if (mod(row,2.*height)<height) col += width/2.; 

 

	

  // wrap texture coordinates to get "brick coordinates" 
	

  col = mod(col,width); row = mod(row,height); 
 
	

  // pick color for this pixel, brick or mortar 
	

  if (row < mortar || col < mortar) 
	

    gl_FragColor = mortar_color; 
	

  else 
	

    gl_FragColor = brick_color; 
} 

Figure 2. Code for a simple brick shader. 

 
Figure 3. Evolution of a brick shader. a) simple version. b) with 

indented mortar computed bump map. c) with added graininess. d) 
with variations in color from brick to brick. e) with color variations 

within each brick. 
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features of procedural shaders: controlled randomness. With controlled 
use of random elements in the procedure, this same shader can be used 
for large or small walls without any two bricks looking the same. In 
contrast, an image texture would have to be re-rendered, re-scanned, or 
re-painted to handle a larger wall than originally intended. 

Procedural shading can also be used to create shaders that change with 
time or distance. Figure 4a and b are frames from a rippling mirror 
animated shader. Figure 4c shows a yellow brick road where high-
frequency elements fade out with distance. Error! Reference source not 
found.d and e show a wood shader that uses surface position instead of 
texture coordinates. Figure 4d is also lit by a procedural light, simulating 
light shining through a paned window. 

4 Shading for Interactive Rendering 
The shaders in Figure 4 were written for interactive rendering on the 
PixelFlow graphics system [Olano and Lastra 1998]. This system had 
somewhat different performance characteristics than current shading 
hardware. Specifically, texture lookups on PixelFlow had a high latency 
(the time between when you started the lookup and when you absolutely 
had to know the result). This was reasonable if only a few textures were 
used in each shader, but made it generally preferable to do shading 
computations as explicit computations rather than many texture lookups. 
Even without that performance difference, shaders written for offline use 
(large RenderMan shaders for example), tend to include a fairly high ratio 
of computation to texture lookups. While textures may still play a large 
part in computing the shaded appearance, a computation-based shader 
is much more flexible than one that is more strongly texture-based. That 
flexibility translates into shaders that are useful in more situations 
without needing to be rewritten, and fewer design cycles trying to get the 
shader appearance just right. In contrast to both of these, today's 
shading hardware (at least the fragment shading hardware responsible 
for per-pixel computation) encourages the use of textures, including 
storing partial computations into textures, over raw computation alone. 
This has had a great impact on the way we write shaders for real-time 
use, and has created a whole area of graphics research on how to cast 

 
Figure 4.  Examples of shaders. a+b) two frames of rippling mirror. c) 

yellow brick road. d+e) wood volume shader. 
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different problems into a form requiring only combinations of functions 
of two variables that can easily be stored in a texture. 

One of the great promises of real-time shading is the potential to have 
a single shading program that can run across a wide range of graphics 
hardware. While we don’t yet have a single cross-platform shading 
language to satisfy everyone, there is ample evidence that it is possible. 
In this chapter, we discuss what is necessary to create a cross-platform 
shading language, how shading languages allow us to ignore hardware 
differences, what range of hardware can reasonably be represented by a 
single shading language, and what evidence exists now that it will really 
work. 

5 Cross-Platform Shading 
The key to a cross-platform shading language is to work with a common 
model of shading hardware rather than specifics of the hardware itself. 
The model is a mental picture of what’s going on that shader-writers use 
to make sense of the code they write. The further you get into hardware 
specifics, the less general your model becomes.  

Designing a good model for shading is the balance of three competing 
goals. The model should be simple enough for novice users to 
understand. It should be a good model of the problem domain, accurately 
describing what the shader is trying to do rather than exactly how to do 
it. This will allow the shading language compiler to map the shader onto 
the hardware in the way that is best for the specific hardware platform. Of 
course, it should also be possible to map it efficiently onto all the desired 
platforms. 

The second goal is particularly important — the purpose of shading 
code (or any code) is to describe what you want done. The compiler can 
and will made different choices about how (within limits — it can’t 
change the algorithms you use, but it can rearrange the execution order, 
unroll loops, decide if a certain operation should be computed or looked 
up in a texture, etc.).  

5.1 Single Program, Multiple Data 
Shading is inherently a very parallel task. Whether we are talking about 
vertices in an object, a surface diced into micropolygons, ray-traced 
intersection points, or screen pixels, there is always some relatively 
common set of operations being applied to a set of samples on the 
surface. It is this parallel nature that makes shading so approachable by 
hardware and allows us to even consider real-time shading.  

The model that almost every shading system adopts is Single 
Program/Multiple Data (SPMD), with no processor-to-processor 
communication. You write a shader to describe what happens to a single 
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sample on the surface (single program). That same single program is run 
at every sample on the surface (multiple data). SPMD is closely related to 
the Single Instruction/Multiple Data (SIMD) model of parallel computation, 
but SIMD implies more about how the program will be executed. With 
SIMD, a set of parallel processors will runs the same set of instructions in 
lockstep, but with different data at each processor. SPMD runs the same 
program, but without any implication of whether the same path through 
the program must be taken by all processors. On a pure SIMD array of 
processors, conditional code is handled by disabling a subset of the 
processors, who must wait while the others process the conditional 
instructions. Contrast this with the Multiple Instruction/Multiple Data 
(MIMD) model, where every processor can be running a completely 
different program. 

SPMD is sometimes referred to as “SIMD on MIMD” or “effective SIMD”, 
as it is uses a SIMD style of programming, but can include programs to 
run on a single processor, MIMD machine or SIMD machine. 

5.2 No communication 
One of the aspects of shading that has allowed the explosion of fast 

shading hardware is the independence of each shading sample from 
every other shading sample. One of the most difficult and expensive 
aspect of general-purpose parallel machines is the communication 
network allowing the processors or nodes to communicate with each 
other. If the need for this communication is removed, the need for 
synchronization between the processors disappears, as does the need for 
physical connections between processors. The processors can be packed 
much more densely and are free to execute on batches of samples, 
samples in a pipeline, samples one at a time — whatever is most efficient. 

Communication costs are also generally so high relative to 
computational costs, and so dependent on the machine architecture, that 
introducing processor to processor communication into a SPMD model 
greatly reduces the kinds of hardware a program can use effectively. The 
longer we can avoid communication, the more general our shaders will 
be.  

Shaders don’t need sample to sample communication because shaders 
are typically restricted to computing only local lighting models. Anything 
that makes the appearance of one point on the surface depend on points 
elsewhere on the surface introduces the need a sample to sample 
communication. Shadows, global illumination and subsurface scattering 
are all on the list of effects that break the model to some degree if they 
are allowed in a shader. 

General purpose computations, on the other hand, often require 
significant processor to processor communication. As graphics hardware 
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becomes more powerful and flexible, there is an increasing desire to use 
it for other general purpose parallel computation. This comes at a cost in 
flexibility of the resulting code. I would argue that we need two 
computational models. A model including communication for general 
purpose computation on NVIDIA and ATI-style hardware, and a model for 
shading (possibly targeting the general model on hardware that supports 
it) that is task oriented and unifies vertex and fragment computations. 

In the mean time, many people have succeeded in creating general 
purpose algorithms on GPUs with inter-processor communication. They 
achieve this feat through the use of multiple passes. On one pass, you 
write data into textures or buffers in the graphics card. On the following 
pass, any processor can read any data from this texture, not just its own. 
Even if you are willing to accept multiple passes through the hardware, 
this communication method isn’t perfect for all uses. The reader decides 
what other processor’s data to read, and can read at most a handful of 
data per pass. Some computational algorithms map well to this model, 
while others would prefer to have the writer decide where the data should 
go. All of that will be covered in more depth later – for now, we’ll restrict 
the discussion to shading. 

5.3 Languages for hardware abstraction 
One of the best examples of a shading language for hardware 

abstraction is the RenderMan shading language. Shaders written in this 
language have been successfully targeted to a huge range of different 
hardware. Pixar’s PhotoRealistic RenderMan targets a single processor 
running each step of the shader in a loop over the micropolygons in a 
diced-up surface as generated by the REYES algorithm [Cook 1987]. 
BMRT also targeted a single processor, but as a ray-tracer it ran each 
shader in its entirety on one ray-intersection sample before moving on to 
the next sample [Gritz and Hahn 1996]. SGI created a RenderMan 
implementation targeting multiple rendering passes on graphics 
hardware, assuming hardware with a fast render-to-texture/read-from-
texture or copy framebuffer-to-famebuffer [Peercy et al. 2000]. ATI has 
created a RenderMan language compiler targeting current shading 
hardware as part of their ASHLI toolkit. 

RenderMan may not turn out to be the best language for hardware 
shading, but it has done an admirable job at being adaptable to a wide 
range of hardware. In the model presented by RenderMan, the shader 
writer tags data as being either uniform or varying. Uniform data is the 
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same across a set of samples being shaded at once1. Varying data may 
change from sample to sample.  

For compilation of RenderMan shaders, the most important uniform and 
varying designations are for the inputs to the shader. The shading 
compiler must derive for itself which intermediate results within an 
expression are uniform and which are varying. Expressions using only 
uniform arguments will have uniform results; expressions with any 
varying arguments will have a varying result. The compiler can use similar 
logic to decide whether any local variable in a shader is really uniform or 
varying regardless of how it was specified in the shading code. 

Given an accurate idea of exactly which quantities vary across the 
shaded surface and which don’t, the shading compiler can make several 
choices for actual execution. It can decide to still evaluate every 
computation at every sample (not using the uniform/varying distinction). 
It can evaluate the uniform computations once for a set of samples and 
for each varying computation, loop over the samples to evaluate it. It can 
execute the varying computations as SIMD instructions across a parallel 
array of processors. It can execute the entire shader or just the varying 
computations across a set of MIMD processors. It can create a pipeline of 
stream processors, each executing one or a few varying instructions on 
one sample before passing that sample on to the next. 

5.4 Where should we break the portability? 
There are several facets of the RenderMan shading language that are 

not well suited for graphics hardware. We can expect several of these to 
be the foundation of differences between real-time languages and the 
RenderMan shading language, or limitations of hardware-accelerated 
RenderMan implementations. 

Since PRMan version 3.8, the RenderMan shading language has included 
the ability to call arbitrary code from within a shader. This code can do 
anything, from compute a specialized noise function to spawn a different 
style of renderer to download an image from a live camera on the south 
pole. Until graphics hardware has the ability to run arbitrary code, this 
won’t really be an option for real-time shading. 

RenderMan’s has just one scalar data type, float. Graphics hardware 
supporting floating point data is now ubiquitous, but the size and 
precision of the floating point numbers vary. Fixed point or reduced-
precision floating point numbers are also provided on some hardware as 
a faster option than pure 32-bit floating point. With no way to indicate 

                                                
1 One RenderMan trick that will tell you something about how many samples are shaded 
at once, breaking the illusion that all hardware is the same, is to assign a random color 
into a uniform variable in a RenderMan shader. 
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the range or precision of computations, a RenderMan compiler cannot 
know when to use these faster operations. Many of the candidates for a 
real-time shading language include some reduced precision types for 
efficiency: the OpenGL Shading Language [Kessenich et al. 2003], 
Direct3D HLSL [Microsoft 2002], and Cg [Mark et al. 2003]. 

RenderMan shaders have two computational frequencies (how often a 
computation happens), uniform and varying. Shading hardware has at 
least three — compute on the CPU, compute per vertex and compute per 
fragment, with no interleaving of computation between the levels. All of 
the languages mentioned above have chosen to break shading 
computation into separate procedures executing at each of these levels. 
That choice makes those shaders a poor fit to any hardware or software 
rendering system that does not follow the CPU/Vertex/Fragment 
breakdown. However, any alternative language that targeted all three 
stages must include new types for the new types of computation 
[Proudfoot et al. 2001]. 

The RenderMan shading language also includes no real means of 
communication from sample to sample. This is one of the strengths that 
allow RenderMan shaders to run on such a wide range of rendering 
systems, but is a serious restriction for the general computations that are 
becoming popular on graphics hardware. Communication between 
processors in current hardware seems best supported by rendering 
partial results to a texture then using the random access provided by the 
texturing hardware to find values from other processors in a later pass.  

This form of communication is currently limited to fragment shaders 
and comes at a very high price of communication to instructions. Similar 
communication at the vertex shader level is possible, though 
considerably more complicated. The all but the final vertex shader pass 
can operate on a regular grid of vertices, allowing all vertex and fragment 
operations to be used (including any vertex and fragment texturing and 
rendering to texture for communication). In the next-to-last vertex 
shader pass, the vertex locations (or data necessary to do the final 
computation) can be rendered in to a vertex array for use in a final vertex 
shader pass. If multiple passes of fragment shading are needed, they 
must follow after all vertex shading passes, but need not repeat the 
multi-pass vertex shading computation. 
Obviously, stretching the hardware beyond its intended limits like this 
introduces a significant burden on the shader developer!  Because users 
want to write algorithms that use communication, better facilities will 
appear in real-time shading languages, but as they do they will limit the 
applicability of those shaders to the class of similar hardware.  
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5.5 The Vertex/Geometry/Fragment stream model 
All current shading hardware presents a model in which three different 
types of shaders operate on a stream of primitives (Figure 5). The 
hardware and driver software promise to translate whatever code you 
give fitting this model into something the hardware can execute.  

The vertex shader describes what operations should happen to a single 
vertex. This same shader is applied to each vertex in the stream of 
vertices (with several vertices being processed in parallel), producing a 
stream of transformed vertices. Then the hardware groups these vertices 
into triangles for the geometry shader (when supported, see Chapter 2).  

The geometry shader describes what happens to a single triangle.  Once 
again, this single function is applied to every triangle in a stream of 
triangles, except this time each triangle can add a somewhat arbitrary 
number of processed triangles to its output stream. None the less, the 
output is a new stream of triangles, and the hardware once again silently 
handles the conversion of a stream of triangles into a stream of 
fragments or pixels (OpenGL likes to call them fragments when in 
process, and reserve the word pixel for the single values stored in a 
frame buffer after z-buffering, antialiasing, etc. have been done). 

The fragment shader or pixel shader describes what happens to a 
single fragment/pixel, computing the final color for display. There are 
typically many times more fragments than either vertices or triangles, so 

 
Figure 5. Hardware Shading Model. 
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Fragment shading is the most computationally expensive and uses the 
greatest degree of parallel execution. 

All of the shader stages have access to texture memory, and the final 
stage writes to memory (either texture or framebuffer) for later use or 
display. 

This model has seen some evolution over the past several years, but 
that evolution has consisted primarily of adding programmable stages. 
improvements in the ability to read or write memory, and generalization 
of the memory from very special purpose separation of vertex buffers, 
texture and frame buffer memory to a much more unified view. However, 
each of these changes improved or generalized the previous model, but 
did not break it. Thus, we should expect that shaders written to todays 
models will continue to work into the future. 
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