
 

Chapter 8. Rendering Algorithms 

John Hart 





Graphics Hardware (2002), pp. 37–46
Thomas Ertl, Wolfgang Heidrich, and Michael Doggett (Editors)

The Ray Engine

Nathan A. Carr Jesse D. Hall John C. Hart

University of Illinois

Abstract
Assisted by recent advances in programmable graphics hardware, fast rasterization-based techniques have made
significant progress in photorealistic rendering, but still only render a subset of the effects possible with ray
tracing. We are closing this gap with the implementation of ray-triangle intersection as a pixel shader on existing
hardware. This GPU ray-intersection implementation reconfigures the geometry engine into a ray engine that
efficiently intersects caches of rays for a wide variety of host-based rendering tasks, including ray tracing, path
tracing, form factor computation, photon mapping, subsurface scattering and general visibility processing.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism
Keywords:Hardware acceleration, ray caching, ray classification, ray coherence, ray tracing, pixel shaders.

1. Introduction

Hardware-accelerated rasterization has made great
strides in simulating global illumination effects, such
as shadows35, 25, 7, reflection3, multiple-bounce reflection5,
refraction9, caustics29 and even radiosity13. Nonetheless
some global illumination effects have eluded rasterization
solutions, and may continue to do so indefinitely. The
environment map provides polygon rasterization with
limited global illumination capabilities by approximating
the irradiance of all points on an object surface with the
irradiance at a single point3. This single-point irradiance
approximation can result in some visually obvious errors,
such as the boat in wavy water shown in Figure 1.

Ray tracing of course simulates all of these effects and
more. It can provide true reflection and refraction, complete
with local and multiple bounces. Complex camera mod-
els with compound lenses are easier to simulate using ray
tracing15. Numerous global illumination methods are based
on ray tracing including path tracing12, Monte-Carlo ray
tracing33 and photon mapping10.

Ray tracing is classically one of the most time consum-
ing operations on the CPU, and the graphics community has
been eager to accelerate it using whatever methods possible.
Hardware-based accelerations have included CPU-specific
tuning, distribution across parallel processors and even con-

Figure 1: What is wrong with this environment-mapped pic-
ture? (1) The boat does not meet its reflection, (2) the boat
is reflected in the water behind it, and (3) some aliasing can
be seen in the reflection.

struction of special purpose hardware, as reviewed in Sec-
tion 2.

Graphics cards have recently included support for pro-
grammable shading in an effort to increase the realism of
their rasterization-based renderers16. This added flexibility is
transforming the already fast graphics processing unit (GPU)
into a supercomputing coprocessor, and its power is being
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applied to a wider variety of applications than its developers
originally intended.

One such application is ray tracing. Section 3 shows how
to configure the graphics processing unit (GPU) to compute
ray-triangle intersections, and Section 4 details an imple-
mentation. This GPU ray-triangle intersection reconfigures
the graphics accelerator into aray engine,described in Sec-
tion 5, that hides the details of its back-end GPU ray-triangle
intersection, allowing the ray engine to be more easily inte-
grated into existing rendering software systems.

The ray engine can make existing rasterization-based ren-
derers look better. A rasterization renderer augmented with
the ray engine could trace the rays necessary to achieve ef-
fects currently impossible with rasterization-only rendering,
including local reflections (Figure 1), true refractions and
sub-surface scattering11.

The ray engine is also designed to be efficiently integrated
into existing ray-tracing applications. The ray engine per-
forms best when intersecting caches of coherent rays21 from
host-based rendering tasks. This is a form of load balanc-
ing that allows the GPU to do what it does best (perform
the same computation on arrays of data), and lets the CPU
do what the GPU does worst (reorganize the data into effi-
cient structures whose processing requires flow control). A
simple ray tracing system we built using the ray engine is al-
ready running at speeds comparable to the fastest known ray
tracer, which was carefully tuned to a specific CPU32. The
ray engine could likewise accelerate Monte Carlo ray trac-
ing, photon mapping, form factor computation and visibility
preprocessing.

2. Previous Work

Although classic ray tracing systems support a wide variety
of geometric primitives, some recent ray tracers designed to
achieve interactive rates (including ours) have limited them-
selves to triangles. This has not been a severe limitation
as geometric models can be tessellated, and the simplicity
of the ray-triangle intersection has led to highly efficient
implementations2, 18.

Hardware z-buffered rasterization can quickly determine
the visibility of triangles. One early hardware optimization
for ray tracing was the first-hit speedup, which replaced eye-
ray intersections with a z-buffered rasterization of the scene
using object ID as the color34. Eye rays are a special case
of a coherent bundle of rays. Such rays can likewise be effi-
ciently intersected through z-buffered rasterization for hard-
ware accelerated global illumination28, of which ray tracing
is a subset.

One obvious hardware acceleration of ray tracing is to op-
timize its implementation for a specific CPU. The current
fastest CPU implementation we are aware of is a coherent
ray tracer tuned for the Intel Pentium III processor32. This

ray tracer capitalized on a variety of spatial, ray and mem-
ory coherencies to best utilize CPU optimizations such as
caching, branch prediction, instruction reordering, specula-
tive execution and SSE instructions. Their implementation
ran at an average of 30 million intersections per second on
an 800 Mhz Pentium III. They were able to trace between
200K and 1.5M rays per second, which was over ten times
faster than POV-Ray and Rayshade.

There have been a large number of implementations of
ray tracers on MIMD computers26. These implementations
focus on issues of load balancing and memory utilization.
One recent implementation on 60 processors of an SGI Ori-
gin 2000 was able to render at 5122 resolution scenes of from
20 to 2K patches at rates ranging from two to 20 Hz19.

Special purpose hardware has also been designed for ray
tracing. The AR350 is a production graphics accelerator de-
signed for the off-line (non-real-time) rendering of scenes
with sophisticated Renderman shaders8. A ray tracing sys-
tem designed around multiprocessors with smart memory is
also in progress23.

Our ray engine is similar in spirit to another GPU-based
ray tracing implementation that simulates a state machine24.
This state-based approach breaks ray tracing down into sev-
eral states, including grid traversal, ray-triangle intersection
and shading. This approach performs the entire ray tracing
algorithm on the GPU, avoiding the slow readback process
required for GPU-CPU communication that our approach
must deal with. The state-based method however is not par-
ticularly efficient on present and near-future GPU’s due to
the lack of control flow in the fragment program, resulting
in a large portion of pixels (from 90% to 99%) remaining
idle if they are in a different state than the one currently be-
ing executed. Our approach has been designed to organize
ray tracing to achieve full utilization of the GPU.

3. Ray Tracing with the GPU

3.1. Ray Casting

The core of any ray tracer is the intersection of rays with ge-
ometry. Rays are represented parametrically asr(t) = o+ td
whereo is the ray origin,d is the ray direction andt ≥ 0 is
a real parameter corresponding to points along the ray. The
classic implementation of recursive ray tracing casts each
ray individually and intersects it against the scene geometry.
This process generates a list of parametersti corresponding
to points of intersection with the scene’s geometric primi-
tives. The least positive element of this list is returned as the
first intersection, the one closest to the ray origin.

Figure 2(a) illustrates ray casting as a crossbar. This il-
lustration represents the rays with horizontal lines and the
(unorganized) geometric primitives (e.g. triangles) with ver-
tical lines. The crossing points of the horizontal and vertical
lines represent intersection tests between rays and triangles.
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Figure 2: Ray intersection is a crossbar.Online Submission ID: 0092

Figure 3: Programmable pixel shading is a crossbar.

vanced shading [Lindholm et al. 2001]. These programmable el-
ements can be separated into two components, the vertex shader
and the pixel shader, as shown in Figure 3(b).

The vertex shader replaces the graphics pipeline with a user-
programmable stream processor. This stream processor cannot
change the number of vertices passing through it, but it can change
the vertex attributes, including position, color and texture coordi-
nates.

The pixel shader generalizes the per-pixel access and application
of texture. The pixel shader can perform arithmetic operations on
the texture coordinates before they index into the texture, and can
then perform additional arithmetic operations with the fetched tex-
ture result. In a single pass, the pixel shader computes each pixel in
isolation, and cannot access data stored at other pixels in the frame-
buffer.

The speed of modern graphics accelerators is indicated by vertex
rate, which measures the vertical bandwidth of Figure 3, and its
pixel rate, which measures the horizontal bandwidth. The pixel
rate is an order of magnitude faster than the vertex rate on modern
graphics cards.

3.3 Mapping Ray Casting to Programmable Shading
Hardware

We map the ray casting crossbar in Figure 2 to the rasterization
crossbar in Figure 3 by distributing the rays across the pixels and
broadcasting a stream of triangles to each pixel by sending their
coordinates down the geometry pipeline as the vertex attribute data
(e.g. color, texture coordinates) of screen filling quadrilaterals.

The rays are stored in two screen-resolution textures. The color
of each pixel of the ray-origins texture stores the coordinates of
the origin of the ray. The color of each pixel of the ray-directions
texture stores the coordinates of the ray direction vector.

An identical copy of the triangle data is stored at each vertex
of a screen-filling quadrilateral. Rasterization of this quadrilateral
interpolates these attributes at each pixel of its screen projection.
Since the attributes are identical at all four vertices, interpolation
simply distributes a copy of the triangle data to each pixel.

A pixel shader performs the ray-triangle intersection computa-
tion by merging the ray data stored per-pixel in the texture maps
with the triangle data distributed per-pixel by the interpolation of
the attribute data stored at the vertices of the quadrilateral. The
specifics of this implementation will be described further in Sec-
tion 4

3.4 Discussion

The decision to store rays in texture and triangles as vertex at-
tributes was based partially on precision. The geometry pipeline
supports full-precision 32-bit floating point values whereas the tex-
ture pipeline is restricted to 8-bit clamped fixed-point values. Rays
can be specified with five real values whereas triangles require nine.

We found it easier and more accurate to store the five ray values in-
stead of the nine triangle values in the lower texture precision. We
were also able to use special high-precision texture modes designed
for bump mapping to store the ray origins as 10- and 11-bit values,
and ray directions as 16-bit values.

Vertex shaders perform computations at a higher precision and
range (currently 32-bit floating point) than do pixel shaders (cur-
rently 16-bit fixed point ranging from -8 to 8). We nonetheless de-
cided to perform ray-triangle intersection as a pixel shader instead
of a vertex shader. Vertex shaders do not have direct access to the
rasterization crossbar, so our test implementation of ray-triangle in-
tersection as a vertex shader had to store ray data as constants in the
vertex shader’s local memory. Furthermore the triangle rate is an
order of magnitude slower than the pixel rate on modern graphics
accelerators. The vertex shader was able to compute 4.1M ray-
triangle intersections per second, which is much less than what the
pixel shader (or the CPU) is capable of performing.

Since the GPU can be viewed as a SIMD processor [Peercy et al.
2000], the decision to distribite ray data as pixels and broadcast the
geometry was also influenced by other SIMD ray tracing imple-
mentations. SIMD ray tracers have the choice of rays or geometry
distribution.Ray distributionstores the ray data locally per proces-
sor and broadcasts the geometry simultaneously to all processors
whereasgeometry distributionstores the triangle data locally and
broadcasts the ray data.

The AR350 ray tracing hardware utilized a fine-grain ray dis-
tribution to isolated processors [Hall 2001]. This distribution im-
proved load balancing, but inhibited the possible advantages of ray
coherence. The geometry was broadcast from the host similar to
standard graphics cards.

The coherent ray tracer [Wald et al. 2001b] also distributed rays
at its lowest level. It intersected each triangle with four coherent
rays using the SIMD instructions available on the CPU. An axis-
aligned BSP-tree provided spatial coherence of the triangle data,
but required special implemention to efficiently support parsing by
the four ray-parallel processes.

One counterexample worth noting is a distributed-memory paral-
lel ray tracer that used a geometry distribution to handle the special
problems of ray tracing large scene databases [Wald et al. 2001a].

One final benefit of ray distribution, as the next section will show,
is that it allows us to use thez-buffer to efficiently maintain the
parametric distance to the first triangle intersected by each ray.

4 Ray-Triangle Intersection on the GPU

The pixel shader implementation of ray-triangle intersection treats
the GPU as a SIMD parallel processor [Peercy et al. 2000]. In this
model, the framebuffer is treated as an accumulator data array of 5-
vectors(r,g,b,α,z), and texture maps are used as data arrays for in-
put and variables. Operations on this data array are performed using
image-processing combinations of the textures and the framebuffer.
Pixel shaders are sequences of these image-processing combina-
tion operators. While compilers exist for multipass programming
[Peercy et al. 2000; Proudfoot et al. 2001], the current limitations
of pixel shaders required complete knowledge and control of the
available instructions and registers to implement ray intersection.

4.1 Input

Ray Data. As mentioned in Section 3.3, the GPU component of
the ray engine intersects multiple rays with a single triangle. Every
pixel in the data array corresponds to an individual ray. Our imple-
mentation stores ray data in two textures: a ray-origins texture and
a ray-directions texture. Batches of rays cast from the eyepoint or a
point light source will have a constant color ray-origins texture and

3

Figure 3: Programmable pixel shading is a crossbar.

This crossbar represents an all-pairs check of every ray
against every triangle. Since their inception, ray tracers
have avoided checking every triangle against every primi-
tive through the use of spatial coherent data structures on
both the rays and the geometry. These data structures reor-
ganize the crossbar into a sparse overlapping block structure,
as shown in Figure 2(b). Nevertheless the individual blocks
are themselves full crossbars that perform an all pairs com-
parison on their subset of the rays and geometry.

The result of ray casting is the identification of the geome-
try (if any) intersected first by each ray. This result is a series
of points in the crossbar, no greater than one per horizontal
line (ray). These first intersections are shown as black disks
in Figure 2(c). The other ray-triangle intersections are indi-
cated with open circles and are ignored in simple ray casting.

3.2. Programmable Shading Hardware

Graphics accelerators have been designed to implement a
pipeline that converts polygons vertices from model coor-
dinates to viewport coordinates. Once in viewport coordi-
nates, rasterization fills the polygon with pixels, interpolat-
ing the depth, color and texture coordinates in a perspective-
correct fashion. During rasterization, interpolated texture co-
ordinates index into texture memory to map an image texture
onto the polygon.

This rasterization process can also be viewed as a cross-
bar, as shown in Figure 3(a). The vertical lines represent
individual polygons passing through the graphics pipeline
whereas the horizontal lines represent the screen pixels.

Consider the case where each polygon, a quadrilateral, ex-

actly covers all of the screen pixels. Then rasterization of
these polygons performs an all-pairs combination of every
pixel with every polygon.

While even early graphics accelerators were pro-
grammable through firmware4, modern graphics accelera-
tors contain user-programmable elements designed specifi-
cally for advanced shading16. These programmable elements
can be separated into two components, the vertex shader and
the pixel shader, as shown in Figure 3(b). The vertex shader
is a user-programmable stream processor that can alter the
attributes (but not the number) of vertices sent to the ras-
terizer. The pixel shader can perform arithmetic operations
on multiple texture coordinates and fetched texture samples,
but does so in isolation and cannot access data stored at any
other pixel. Pixel shaders run about an order of magnitude
faster than vertex shaders.

3.3. Mapping Ray Casting to Programmable Shading
Hardware

We map the ray casting crossbar in Figure 2 to the rasteriza-
tion crossbar in Figure 3 by distributing the rays across the
pixels and broadcasting a stream of triangles to each pixel
by sending their coordinates down the geometry pipeline as
the vertex attribute data (e.g. color, texture coordinates) of
screen filling quadrilaterals.

The rays are stored in two screen-resolution textures. The
color of each pixel of the ray-origins texture stores the co-
ordinates of the origin of the ray. The color of each pixel of
the ray-directions texture stores the coordinates of the ray
direction vector.

An identical copy of the triangle data is stored at each
vertex of a screen-filling quadrilateral. Rasterization of this
quadrilateral interpolates these attributes at each pixel of its
screen projection. Since the attributes are identical at all four
vertices, interpolation simply distributes a copy of the trian-
gle data to each pixel.

A pixel shader performs the ray-triangle intersection com-
putation by merging the ray data stored per-pixel in the tex-
ture maps with the triangle data distributed per-pixel by the
interpolation of the attribute data stored at the vertices of the
quadrilateral. The specifics of this implementation will be
described further in Section 4.

3.4. Discussion

The decision to store rays in texture and triangles as vertex
attributes was based initially on precision. Since rays can be
specified with five real values whereas triangles require nine
we found it easier and more accurate to store the ray values
at the lower texture precisions.

We also chose to implement ray-triangle intersection as
a pixel shader instead of a vertex shader. Vertex shaders do
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not have direct access to the rasterization crossbar, and hence
needed to store ray data as constants in the vertex shader’s lo-
cal memory. The vertex shader is also slower, and was able to
compute 4.1M ray-triangle intersections per second, which
is much less than what the CPU is currently capable of per-
forming.

Viewing the GPU as a SIMD processor20 allowed us to
compare other SIMD ray tracing implementations. SIMD
ray tracers typically distribute rays to the processors and
broadcast the geometry, or distribute geometry and broad-
cast the rays. The AR350 ray tracing hardware utilized a
fine-grain ray distribution to isolated processors8, which im-
proved load balancing, but inhibited the possible advantages
of ray coherence. The coherent ray tracer32 also distributed
rays at its lowest level, intersecting each triangle with four
coherent rays using SSE whereas an axis-aligned BSP-tree
coherently organized the triangles (but required special im-
plemention to efficiently intersect four-ray bundles). Geom-
etry distribution on the other hand seems better suited for
handling the special problems due to ray tracing large scene
databases31.

4. Ray-Triangle Intersection on the GPU

The pixel shader implementation of ray-triangle intersec-
tion treats the GPU as a SIMD parallel processor20. In
this model, the framebuffer is treated as an accumulator
data array of 5-vectors(r,g,b,α,z), and texture maps are
used as data arrays for input and variables. Pixel shaders
perform sequences of operations that combine the textures
and the framebuffer. While compilers exist for multipass
programming20, 22, the current limitations of pixel shaders
required complete knowledge and control of the available
instructions and registers to implement ray intersection.

4.1. Input

Ray Data. As mentioned in Section 3.3, the GPU compo-
nent of the ray engine intersects multiple rays with a sin-
gle triangle. Every pixel in the data array corresponds to an
individual ray. Our implementation stores ray data in two
textures: a ray-origins texture and a ray-directions texture.
Batches of rays cast from the eyepoint or a point light source
will have a constant color ray-origins texture and their tex-
ture map could be stored as a single pixel or a pixel shader
constant.

Triangle Data. The triangle data is encapsulated in the at-
tributes of the four vertices of a screen filling quad. Leta,b,c
denote the three vertices of the triangle, andn denote the
triangles front facing normal. The triangle id was stored as
the quad’s color, and the vectorsa,b,n,ab(= b−a),ac,bc
were mapped to multi-texture coordinate vectors. The re-
dundant vector information includes ray-independent pre-
computation that reduces the size and workload of the pixel
shader. Our implementation passes only the three vertices of

the triangle from the host, and computes the additional re-
dundant values in the vertex shader.

The texture coordinates for texture zero (s0, t0) are spe-
cial and are not constant across the quadrilateral. They are
instead set to(0,0),(1,0),(1,1),(0,1) at the four vertices,
and rasterization interpolates these values linearly across the
quad’s pixels. These texture coordinates are required by the
pixel shader to access each pixel’s corresponding ray in the
screen-sized ray-origins and ray-directions textures.

4.2. Output

The output of the ray-triangle intersection needs to be
queried by the CPU, which can be an expensive opera-
tion due to the asymmetric AGP bus on personal computers
(which sends data to the graphics card much faster than it can
receive it). The following output format is designed to return
as little data as necessary, limiting itself to the index of the
triangle that intersects the ray closest to its origin, using the
z-buffer to manage the ray parametert of the intersection.

Color. The color channel contains the color of the first trian-
gle the ray intersects (if any). For typical ray tracing appli-
cations, this color will be a unique triangle id. These triangle
id’s can index into an appearance model for the subsequent
shading of the ray-intersection results.

Alpha. Our pixel shader intersection routine conditionally
sets the fragments alpha value to indicate ray intersection.
The alpha channel can then be used as a mask by other ap-
plications if the rays are coherent (e.g. like eye rays through
the pixels in the frame buffer).

The t-Buffer. The t-value of each intersection is computed
and replaces the pixel’sz-value. The built-inz-test is used
so the newt-value will overwrite the existingt-value stored
in the z-buffer if the new value is smaller. This allows the
z-buffer to maintain the least positive solutiont for each ray.
Since the returnedt value is always non-negative, thet-value
maintained by thez-buffer always corresponds to the first
triangle the ray intersects.

4.3. Intersection

We examined a number of efficient ray-triangle intersection
tests6, 2, 18, and managed to reorganize one18 to fit in a pixel
shader.

Our revised ray-triangle intersection is evaluated as
ao = o−a, (1)

bo = o−b, (2)

t = −n ·ao
n ·d , (3)

aod = ao×d, (4)

bod = bo×d, (5)

u = ac·aod, (6)

v = −ab ·aod, (7)

w = bc ·bod. (8)

The intersection passes only if all three (unnormalized)
barycentric coordinatesu,v and w are non-negative. If the
ray does not intersect the triangles, the alpha channel for that
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Figure 4: Leaky teapot, due to the low precision implemen-
tation on PS1.4 pixel shaders used to test the performance
of ray-triangle intersection. Our simulations using the preci-
sion available on upcoming hardware are indistinguishable
from software renderings.

pixel is set to zero and the pixel is killed. The parametert is
also tested against the current value in thez-buffer, and if it
fails the pixel is also killed. Surviving pixels are written to
the framebuffer as the ray intersection currently closest to
the ray origin.

This implementation reduces cross products, which re-
quire multiple pixel shader operations to compute. The quo-
tient (3) was implemented using thetexdepthinstruction,
which implements the “depth replace” texture shader.

4.4. Results

We tested the PS1.4 implementation of the ray-triangle in-
tersection using the ATI R200 chipset on the Radeon 8500
graphics card. The limited numerical precision of its pixel
shader (16-bit fixed point, with a range of±8) led to some
image artifacts shown in Figure 4, this implementation did
suffice to measure the speed of an actual hardware pixel
shader on the task of ray intersection.

We clocked our GPU implementation of ray intersection
at 114M intersections per second. The fastest CPU-based
ray tracer was able to compute between 20M and 40M in-
tersections per second on an 800Mhz Pentium III32. Even
doubling the CPU numbers to estimate performance on to-
day’s computers, our GPU ray-triangle intersection perfor-
mance already exceeds that of the CPU, and we expect the
gap to widen as GPU performance growth continues to out-
pace CPU performance growth.

5. Ray Engine Organization

This section outlines the encapsulation of the GPU ray-
intersection into a ray engine. It begins with a discussion of
why the CPU is a better choice for the management of rays
during the rendering process. Since the CPU is managing the
rays, the ray engine is packaged to provide easy access to the
GPU ray-intersection acceleration through a front-end inter-
face. This interface accepts rays in coherent bundles, which

can be efficiently traced by the GPU ray-intersection imple-
mentation.

5.1. The Role of the CPU

We structured the ray engine to perform ray intersection on
the GPU and let the host organize the casting of rays and
manage the resulting radiance samples. Since the bulk of the
computational resources used by a ray tracer are spent on
ray intersection, the management of rays and their results is
a relatively small overhead for the CPU, certainly smaller
than performing the entire ray tracing on the CPU.

The pixel shader on the GPU is a streaming SIMD proces-
sor good at running the same algorithm on all elements of a
data array. The CPU is a fast scalar processor that is better at
organizing and querying more sophisticated data structures,
and is capable of more sophisticated algorithmic tools such
as recursion. Others have implemented the entire ray tracer
on the GPU24, but such implementations can be cumbersome
and inefficient.

For example, recursive ray tracing uses a stack. While
some have proposed the addition of state stacks in pro-
grammable shader hardware17, such hardware is not cur-
rently available. Recursive ray tracing can be implemented
completely on the GPU24, but apparently at the expense of
generating two frame buffers full of reflection and refrac-
tion rays at each intersection, which are then managed by
the host.

The need for a stack can be avoided by path tracing12.
Paths originating from the eyepoint passing through a pixel
can accumulate its intermediate results at the same location
in texture maps. Path tracing requires importance sampling
to be efficient, even with fast ray intersection. Sophisticated
importance sampling methods30 use global queries into the
scene database, as well as queries into previous radiance re-
sults in the scene. Such queries are still performed more ef-
ficiently on the CPU than on the GPU.

Some ray tracers also organize rays and geometry into co-
herent caches that are cast in an arbitrary order to more effi-
ciently render large scenes21. The management of ray caches
and the radiances resulting

rom their batched tracing requires a lot of data shuffling.
An implementation on the GPU would require all of the pix-
els in the image returned by the batch ray intersection algo-
rithm to be shuffled to contribute to the radiance of the pre-
viously cast rays. While dependent texturing can be used to
perform this shuffling24, the GPU is ill-designed to organize
and set up this mapping.

We used the NV_FENCE extension to overlap the com-
putation of the CPU and GPU. This allows the CPU to test
whether the GPU is busy working on a ray-triangle bun-
dle so the CPU can continue to work simultaneously on ray
caching.
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5.2. The Ray Engine Interface

Organizing high-performance rendering services to be trans-
parent makes them easier to integrate into existing rendering
systems14. We structured the ray engine as both a front end
driver that runs on the host and interfaces with the appli-
cation, and a back end component that runs on the GPU to
perform ray intersections.

The front end of the ray engine accepts a cache of rays
from a host application. This front end converts the ray cache
into the texture map data for the pixel shader to use for in-
tersection. The front end then sends the geometry (from a
shared database with the application) down the geometry
pipeline to the pixel shader. The pixel shader is treated as a
back end of this system that intersects the rays with the trian-
gles passed to it. The front end grabs the results of ray inter-
section (triangle id,t-value and, if supported, the barycentric
coordinates) and returns them to the application in a more
appropriate format.

v

Ray Intersection Pixel Shader

GPU

CPU

Application (Ray Tracing, Path Tracing,
             Photon Mapping, Form Factors)

Front End

Ray Data
as

Texture
Maps

Triangle
Data as

Flat Quad
Attributes

Relevant
Intersection

Data as
Pixels

Ray
Cache

Cache
Results

The Ray Engine

Geometry

Figure 5: The organization of the ray engine.

The main drawback of implementing ray casting applica-
tions on the host is the slow readback bandwidth of the AGP
bus when transferring data from the GPU back to the CPU.
This bottleneck is addressed by the ray engine system with
compact data that is returned infrequenty (once after all tri-
angles have been sent to the GPU).

5.3. The Ray Cache

Accelerating the implementation of ray intersection is not
enough to make ray tracing efficient. The number of ray
intersections needs to be reduced as well. The ray engine
uses an octree to maintain geometry coherence and a 5-D
ray tree1 to maintain ray coherence.

The ray engine works more efficiently when groups of

similar rays intersect a collection of spatially coeherent tri-
angles. In order to maintain full buckets of coherent rays,
we utilize a ray cache21. Ray caching allows some rays to
be cast in arbitrary order such that intersection computations
can be performed as batch processes.

As rays are generated, they are added to the cache, which
collects them into buckets of rays with coherent origins
and directions. For maximum performance on the ray en-
gine, each bucket should contain some optimal hardware-
dependent number of rays. Our bucket size was 256 rays,
organized as two 64× 4 ray-origin and ray-direction tex-
tures. Textures on graphics cards are commonly stored in
small blocks instead of in scanline order to better capitalize
on spatial coherence by placing more relevant texture sam-
ples into the texture cache of the GPU. The size of these
texture blocks is GPU-dependent and can be found through
experimentation.

If adding a ray makes a bucket larger than the optimal
bucket size then the node is split into four subnodes along
the axis of greatest variance centered at the using the mean
values of the ray origins and directions. We also add rays
to the cache in random order which helps keep the tree bal-
anced.

When the ray tracer needs a result or the entire ray cache
becomes full, a bucket is sent to the ray engine to be inter-
sected with geometry. We send the fullest buckets first to
maximize utilization of the ray engine resources. Each node
of the tree contains the total number of rays contained in the
buckets below it. Our search traverses down the largest val-
ued nodes until a bucket is reached. While this simple greedy
search is not guaranteed to find the largest bucket, it is fast
and works well in practice since the buckets share the same
maximum size. This greedy search also tends to balance the
tree.

Once the search has chosen a bucket, rays are stolen from
that node’s siblings to fill the bucket to avoid wasting inter-
section computations. Due to the greedy search and the node
merging described next, this ensures that buckets sent to the
ray engine are always as full as possible, even though in the
ray tree they are typically only 50-80% full.

Once a bucket has been removed from the tree and traced,
it can often leave neighboring buckets containing only a few
rays. Our algorithm walks back up the tree from the removed
bucket leaf node, collecting subtrees into a single bucket
leaf node if the number of rays in the subtree has fallen be-
low a threshold. Our tests showed that this process typically
merged only a single level of the tree.

The CPU performs a ray bucket intersection test1 against
the octree cells to determine which should be sent to the
GPU. We also used the vertex shader to cull back-facing tri-
angles as well as triangles outside the ray bucket from inter-
section consideration. The vertex shader cannot change the
number of vertices passing through it, but it can transform
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the screen-filling quad containing the triangle data to an off-
screen location which causes it to be clipped.

5.4. Results

We implemented the ray engine on a simulator for an up-
coming GPU based on the expected precision and capabil-
ities needed to support the Direct3D 9 specification. These
capabilities allow us to produce full precision images that
lack the artifacts shown earlier in Figure 4.

We used the ray engine to classically ray trace a teapot
room and an office scene, shown in Figure 6(a) and (c).
We applied the ray engine to a Monte-Carlo ray tracer that
implemented distributed ray tracing and photon mapping,
which resulted in Figure 6(b). The ray engine was also used
to ray trace two views of one floor from the Soda Hall
dataset, shown in Figures 6(d) and (e).

The performance is shown in Figure 1. Since our imple-
mentation is on a non-realtime simulator, we have estimated
our performance using the execution rates measured on the
GeForce 4. We measured the performance in rays per sec-
ond, which measures the number of rays intersected with
the entire scene per second. This figure includes the expen-
sive traversal of the ray-tree and triangle octree as well as the
ray-triangle intersections.

Scene Polygons Rays/sec.

Teapot Room Classical 2,650 206,905
Teapot Room Monte-Carlo 2,650 149,233
Office 34,000 114,499
Soda Hall Top View 11,052 129,485
Soda Hall Side View 11,052 131,302

Table 1: Rays per second across a variety of scenes and ap-
plications.

This perfomance meets the low end performance of the
coherent ray tracer, which was able to trace from 200K to
1.5M rays per second32. It too used coherent data structures
to increase performance, in this case an axis aligned BSP tree
organized specifically to be efficiently traversed by the CPU.
Our ray traversal implementation is likely not as carefully
optimized as theirs.

6. Analysis and Tuning

Suppose we are given a set ofR rays and a set ofT trian-
gles for performing ray-triangle intersection tests. We de-
note the time to run the tests on the GPU and CPU respec-
tively as GPU(R,T) and CPU(R,T). To acheive improved
performance, we are only interested in values ofRandT for
which GPU(R,T) ≤ CPU(R,T), suggesting the right prob-
lem granularity for which the GPU performs best.

Since the GPU performs all pairs intersection test between

the rays and triangles passed to it, its performance is inde-
pendent of scene structure

GPU(R,T) = O(RT). (9)

The running time for CPU(R,T) is dependent on both scene
and camera (sampling) structure since partitioning structures
in both triangle and ray space may be used to reduce com-
putation

CPU(R,T)≤O(RT). (10)

As Section 4.4 shows, the constant of proportionality in the
O(RT) in (9) is smaller (by at least a factor of two) than the
one in (10). Tuning the ray engine will require balancing the
raw speed of GPU(R,T) with the efficiency of CPU(R,T).

6.1. The Readback Bottleneck

We can model GPU(R,T) by analyzing the steps in the GPU
ray-triangle intersection in terms of GPU operations, and
empirically measuring the speed of these operatrions. A sim-
ple version of this model sufficient for our analysis is

GPU(R,T) = TRfill−1 +Rγ readback−1, (11)

whereγ is the number of bytes read back from the graphics
card per ray. This model shows that the GPU ray-triangle
intersection time is linearly dependent on the number of
rays and affinely dependent on the number of triangles. This
model does not include the triangle rate, which would add a
negligible term proportianal toT to the model. Once we de-
termine values for fill and readback we can then determine
the smallest number of trianglesTmin needed to make GPU
ray-triangle intersection practical.

The fill rate is measured in pixels per second (which in-
cludes the cost of the fragment shader execution) whereas
the readback rate is measured in bytes per second. The fill
rate is measured pixels per second instead of bytes per sec-
ond because it is non-linear in the number of bytes trans-
ferred (modern graphics cards can for example multitexture
two textures simultaneously). Since our ray engine uses two
ray textures (an origins texture and a directions texture) we
simply divide the number of rays (pixels) by the fill rate (pix-
els per second) to get the fragment shader execution time.

We determine values for the fill and readback rates empir-
ically. For example, the GeForce3 achieves a fill rate of 390
MP/sec. (dual-textured pixels) and an AGP 4x readback rate
of 250 MB/sec (which is only one quarter of the 1 GB/sec
that should be available on the AGP bus). Returning a single
64-bit triangle ID uses aγ of four, whereas returning an ad-
ditional three single-precision floating-point barycentric co-
ordinates setsγ to 16. Hence we can return triangle ID’s at a
rate of 62.5M/sec., but when we include barycentrics the rate
drops to 15.6M/sec. We can further increase performance by
reducing the number of bytes used for the index of each tri-
angle, especially since the ray engine sends smaller buckets
of coherent triangles to the GPU.
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(a) (b) (c) (c) (c)

Figure 6: Images tested by the ray engine: teapot Cornell box ray traced classically (a) and Monte Carlo (b), office (c), and
Soda Hall side (d) and top (e) views.
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Figure 7: Theoretical performance in millions of ray-
triangle intersection tests per second on the GPU withγ = 4.

For small values ofT the performance is limited by the
readback rate. AsT increases, the constant cost of read-
back is amortized over a larger number of intersections tests.
(When we measured peak ray-triangle intersection rates on
the Radeon 8500, we sent thousands of triangles to the
GPU.) In each case, the curve asymptotically approaches the
fill rate, which is listed as the maximum performance possi-
ble. Realistically, only smaller values ofT should be con-
sidered since the GPU intersection routine is an inefficient
all-pairsO(RT) solution and our goal is to only send coher-
ent rays and triangles to it.

Figure 7 shows that even for small value ofT, the perfor-
mance is quite competitive with that of a CPU based imple-
mentation in spite of the read back rate limitation. For exam-
ple, the ray-triangle intersections per second for ten triangles
clock at 240M on the GeForce3 and 286M on the GeForce4
Ti4600 (if they had the necessary fragment processing capa-
bilities). The recent availability of AGP 8x, and the upcom-
ing AGP 3.0 standard will further reduce the impact of the

readback bottleneck and further validate this form of general
GPU processing.

6.2. Avoiding Forced Coherence

The previous section constructed a model for the efficiency
of the GPU ray-triangle intersection. We must now deter-
mine when it is more efficient to use the CPU instead of the
GPU.

It is important to exploit triangle and ray coherence only
where it exists, and not to force it where it does not. We
hence identify the locations in the triangle octree where the
ray-triangle coherence is high enough to support efficient
GPU intersection. This preprocess occurs after the triangle
octree construction, and involves an additional traversal of
the octree, identifying cells that represent at leastTmin trian-
gles. Since these cells are ideal for GPU processing we refer
to these cells as GPU cells.

Rendering employs a standard recursive octree traversal
routine. When a ray ray traverses through a cell not tagged
as a GPU cell, the standard CPU based ray-triangle intersec-
tion is performed. If a ray encounters a GPU cell during its
traversal, the ray’s traversal is terminated and it is placed in
the ray cache for that cell for future processing. When the
ray cache corresponding to a given GPU cell reachesRmin
rays, its rays and triangles are sent to the GPU for process-
ing using the ray-intersection kernel.

A point may be reached where the ray engine has receive
all known rays from the application to be processed. At this
poing there may exist GPU cells whose ray cache is non-
empty, but containing less thanRmin rays. A policy may be
chose to select a GPU cell and force its ray cache to be send
to the CPU instead of the GPU. This allows the ray engine
to continually advance towards completion for rendering the
scene.

6.3. Results

We have performed numerous tests to tune the parameters of
the geometry engine to eek out the highest performance.

Table 2 demonstrates the utilization of the GPU. As men-
tioned earlier, only reasonably sized collections of coherent
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Scene % GPU Rays

Teapot Room Classical 89%
Teapot Room Monte-Carlo 71%
Office 65%
Soda Hall Top View 70%
Soda Hall Side View 89%

Table 2: Percentage of rays sent to the GPU across a variety
of scenes and applications.

rays and triangles are sent to the GPU. The remaining rays
and triangles are traced by the CPU. The best performers
resulted from classical ray tracing of the teapot room and
the ray casting of the Soda Hall side view. The numerous
bounces from Monte Carlo ray tracing likely reduce the co-
herence on all but the eye rays. Coherence was reduced in the
office scene due to the numerous small triangles that filled
the triangle cache before the ray cache could be optimally
filled. The Soda Hall top view contains a lot of disjoint small
“silhouette” wall polygons that likely failed to fill the trian-
gle cache for a given optimally filled ray cache.

System Rays/sec. Speedup

CPU only 135,812
plus GPU 165,098 22%
Asynch. Readback 183,273 34%
Infinitely Fast GPU 234,102 73%

Table 3: Speedup by using the GPU to render the teapot
room.

Table 3 illustrates the efficiency of the ray engine. The
readback delay was only responsible for 12% of the poten-
tial speedup of 34%. One feature that would allow us to re-
cover that 12% is to be able to issue an asynchronous read-
back (as is suggested in OpenGL 2.0), such that the CPU
and GPU can continue to work during the readback process.
The NV_FENCE mechanism could then report when the
readback is complete. This feature could possibly be added
through the use of threads, but this idea has been left for fu-
ture research.

The last row of Table 3 shows the estimated speed if we
had an infinitely fast GPU, which shows that most of our
time is spent on the CPU reorganizing the geometry and
rays into coherent structures. This effect has been observed
in similar ray tracers32, where BSP tree traversal is “typically
2-3 times as costly as ray-triangle intersection.”

Table 4 shows the effect of tuning the number of triangles
that get sent to the GPU. In each of these cases, the number
of rays intersected by each GPU pass was set to 64.

Table 5 shows that the number of rays in each bucket can
also be varied to achieve peak efficiency. Tuning the ray en-
gine to assign more rays to the GPU frees the CPU to per-

T GPU Rays Rays/sec. Speedup

CPU 135,812
4–16 78% 147,630 8%
5–12 81% 157,839 16%
5–15 89% 165,098 22%

Table 4: Tuning the ray engine by varying the range of tri-
angles T sent to the GPU, measured on the teapot room.

R Rays/sec. Speedup

CPU 135,812
64 165,098 22%

128 177,647 31%
256 180,558 33%
512 175,904 29%

Table 5: Tuning the number of rays R sent to the GPU for
intersection.

form more caching. For example, for the teapot room clas-
sical ray tracing, we were able to achieve a 52% speedup
over the CPU by settingR to 256 and hand tuning the octree
resolution.

7. Conclusions

We have added ray tracing to the growing list of applications
accelerated by the programmable shaders found in modern
graphics cards. Our ray engine performed at speeds compa-
rable to the fastest CPU ray tracers. We expect the GPU will
become the high-performance ray-tracing platform of choice
due to the rapid growth rate of GPU performance.

By partitioning computation between the CPU and GPU,
we combined the best features of both, at the expense of
the slow readback of data and the overhead of ray caching.
The AGP graphics bus supports high-bandwidth transmis-
sion from the CPU to the GPU, but less bandwidth for re-
covery of results. We expect future bus designs and driver
implementations will soon ameliorate this roadblock.

The overhead of ray caching limited the performance
speedup of GPU to less than double that of the CPU only,
and this overhead as also burdened others32. Even though
our method for processing the data structures is considered
quite efficient27, we are anxious to explore alternative struc-
tures that can more efficiently organize rays and geometry
for batch processing by the GPU.
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Abstract

We capitalize on recent advances in modern programmable graphics hardware, originally designed to
support advanced local illumination models for shading, to instead perform two different kinds of global
illumination models for light transport. We first use the new floating-point texture map formats to find
matrix radiosity solutions for light transport in a diffuse environment, and use this example to in-
vestigate the differences between GPU and CPU performance on matrix operations. We then examine
multiple-scattering subsurface light transport, which can be modeled to resemble a single radiosity gath-
ering step. We use a multiresolution meshed atlas to organize a hierarchy of precomputed subsurface
links, and devise a three-pass GPU algorithm to render in real time the subsurface-scattered illumina-
tion of an object, with dynamic lighting and viewing.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Subsurface
Scattering

1. Introduction

The programmable shading units of graphics proces-
sors designed for z-buffered textured triangle rasteriza-
tion have transformed the GPU into general purpose
streaming processors, capable of performing a wider
variety of graphics, scientific and general purpose pro-
cessing.

A key challenge in the generalization of the GPU to
non-rasterization applications is the mapping of well-
known algorithms to the streaming execution model
and limited resources of the GPU. Some popular
graphics and scientific algorithms and data structures,
such as ray tracing 19, 3 as well as preconditioned con-
jugate gradient and multigrid solvers 2, have neverthe-
less been implemented on, or at least accelerated by,
the GPU. This paper expands the horizon of photore-
alistic rendering algorithms that the GPU can accel-
erate to include matrix radiosity and subsurface scat-
tering, and describes how the techniques could even-
tually lead to a GPU implementation of hierarchical
radiosity.

Matrix radiosity is a classic technique for simulat-
ing light transport in diffuse scenes 7. It is capable
of synthesizing and depicting the lighting, soft shad-
owing and color bleeding found in scenes of diffuse
materials. Our mapping of radiosity to the GPU uses
the floating-point texture format to hold the radios-
ity matrix, but also pays attention to cache coherence
and the order of computation to efficiently perform
a Jacobi iteration which gathers radiosities as it iter-
ates toward a solution. Given precomputed form fac-
tors, we are thus able to both compute and display
a radiosity solution entirely on the GPU. While the
geometry is fixed, the emittance is not, and our GPU
algorithm can support dynamic relighting as well as
dynamic alteration of patch reflectances.

Lensch et al.15 shows how the BSSRDF formulation
of subsurface (multiple diffuse) scattering12 resembles
a single radiosity gathering step. Light transport in
the object interior is computed by gathering, for each
patch, the diffused image of the Fresnel transmitted
irradiances from the other patches. The BSSRDF can
be integrated to form a throughput factor15 that re-
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sembles a form factor. We use this similarity to bridge
our GPU implementation of matrix radiosity into a
GPU implementation of subsurface scattering.

Subsurface scattering can be computed more effi-
ciently through a multiresolution approach. Whereas
others have used an octree representation12, we
have opted for a MIP-mappable texture atlas
representation4 of surface radiosities. This represen-
tation allows the BSSRDF to be integrated over the
surface of an object by applying a fragment program to
the appropriate level of the MIP-mapped atlas. This
results in a GPU implementation of multiresolution
subsurface multiple diffuse scattering that runs in real
time (61Hz) on a mesh with 7K faces.

2. Previous Work

2.1. Radiosity

Early radiosity techniques beginning with Goral et al.7

required computationally intensive solutions, which
led to numerous acceleration strategies including
shooting5 and overrelaxation. Though form factor
computation is generally considered the bottleneck of
radiosity techniques, hardware accelerated methods
such as the hemicube6 have been available for a long
time, though recent improvements exist17.

Graphics researchers have looked to hardware ac-
celeration of radiosity long before commodity graph-
ics processors became programmable1. For example,
Keller14 used hardware-accelerated OpenGL to accel-
erate radiosity computations. He performed a quasi-
Monte Carlo particle simulation for light transport on
the CPU. He then placed OpenGL point light sources
at the particle positions, setting their power to the ra-
diosity represented by the particle’s power along the
random walk path. He then used OpenGL to render
the direct illumination due to these particles, integrat-
ing their contribution with an accumulation buffer.

Martin et al.16 computed a coarse-level hierarchi-
cal radiosity solution on the CPU, and used graphics
hardware to refine the solution by texture mapping
the residual.

In each of these cases, graphics hardware is used to
accelerate elements of the radiosity solution, but the
bulk of the processing occurs on the CPU. Our goal
is to port the bulk of the radiosity solution process to
the GPU, using the CPU for preprocessing.

2.2. Subsurface Scattering

Hanrahan and Krueger9 showed subsurface scatter-
ing to be an important phenomena when rendering

translucent surfaces, and used a path tracing simu-
lation to render skin and leaves. Pharr et al.18 ex-
tended these techniques into a general Monte-Carlo
ray tracing framework. Jensen and Buhler13 used a
dipole and diffusion to approximate multiple scatter-
ing. These methods made clear the importance of sub-
surface scattering to the graphics community, and led
some to consider additional approximations and accel-
erations.

Jensen et al.12 accelerates subsurface scattering
using a hierarchical approach consisting of several
passes. Their first pass finds surface irradiances from
external light whereas the second pass transfers these
irradiances to the other surface patches. Their hierar-
chical approach uses an octree to volumetrically rep-
resent the scattered irradiances in the interior of the
translucent substance.

Hao et al.11 approximated subsurface scattering us-
ing only local illumination, by bleeding illumination
from neighboring vertices to approximate local back
scattering. They precompute a scattering term for
source lighting expressed in a piecewise linear basis.
They reconstructed scattering per-vertex from direc-
tional light by linearly interpolating these terms com-
puted from the nearest surrounding samples. Their
technique was implemented on the CPU but achieved
real-time rendering speeds.

Sloan et al.21 uses a similar precomputation strat-
egy, though using a spherical harmonic basis for
source lighting. They precomputed per-vertex a trans-
fer matrix of spherical harmonic coefficients from
environment-mapped incoming radiance to per-vertex
exit radiance that includes the effects of intra-object
shadowing and interreflection in addition to subsur-
face scattering. They were able to compress these large
transfer matrices in order to implement the evaluation
of precomputed radiance transfer entirely on the GPU
to achieve real-time frame rates.

Lensch et al.15 approximated back scattering by fil-
tering the incident illumination stored in a texture at-
las. The shape of these kernels is surface dependent
and precomputed before lighting is applied. They also
approximated forward scattering by precomputing a
vertex-to-vertex throughput factor, which resembles a
form factor. Forward scattering is rendered by per-
forming a step similar to radiosity gathering, by col-
lecting for a given vertex the irradiance from the other
vertices scaled by the throughput factor.

While Lensch et al.15 benefited from some hardware
acceleration, for example using a vertex shader to ac-
cumulate external irradiances, the application of the
vertex-to-vertex throughput factors to estimate for-
ward scattering, and the atlas kernel filtering to esti-
mate backward scattering is performed on the CPU
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(actually a pair of CPUs). They expressed a desire to
explore full GPU implementations of these techniques,
and our GPU implementation of subsurface scattering
is an extension of their technique. But as we have dis-
covered and documented in this paper, their technique
requires novel extensions to be efficiently implemented
given the limited resources of a modern GPU.

2.3. Texture Atlas Generation

A texture atlas is a one-to-one mapping from an object
surface into a 2-D texture map image. Texture atlases
arise from a parameterization of an object surface, and
provide a mechanism for navigating complex surfaces
by navigating its charts in a flat texture space. The
texture atlas also provides method for applying the
pixel shader processors of a GPU to a sampling of
an entire object surface (instead of just the visible
portions of the surface).

Following Carr and Hart4, we use a multiresolution
meshed atlas (MMA) to distribute available texture
samples evenly across the entire object surface. Un-
like more common atlases, the MMA is discrete, pack-
ing each triangle individually into the texture map,
independently from its neighbors. Seam artifacts that
can occur when a triangle’s sample is inadvertently
drawn from a neighboring texel in the texture map
are avoided by carefully matching the rules of rasteri-
zation with the rules of texture sampling. A half-pixel
gutter surrounds each texture map triangle to support
bilinear texture interpolation to avoid magnification
aliasing.

The MMA is based on a binary face clustering where
each node in a binary tree represents a simply con-
nected cluster of mesh triangles. The two children of
a node represent a disjoint partitioning of the parent
cluster into two simply connected (neighboring) sub-
sets. Leaf nodes correspond to individual surface mesh
triangles. Hence the binary tree contains exactly 2T−1
nodes, where T is the number of triangles in our mesh.

The MMA creates a correspondence between each
triangle cluster corresponding to a node in the binary
tree with a rectangular (either 2:1 or square) region
of the texture map. Hence the face cluster hierar-
chy is packed as a quadtree hierarchy in the texture
map. This organization allows the texture map to be
MIP-mapped such that a each texel value (color) in
a lower-resolution level of the MIP-map corresponds
to an average cluster value (color) in the mesh. Other
MIP-mappable atlas methods exist20, but the MMA
more completely utilizes available texture samples.
This MIP-map allows the MMA to reduce minifica-
tion aliasing, as well as providing a data structure to
store and quickly recall precomputed sums or averages
over mesh regions.

(a)

(b) (c)

Figure 1: A multiresolution meshed atlas of a cow.
Each node in the binary tree (a) corresponds to a clus-
ter of triangles in the model (b) and a rectangular re-
gion in the texture domain (c). Each cluster/region is
the union of its corresponding node’s children’s clus-
ter/region.

3. Matrix Radiosity

The recent support for floating point texture for-
mats provides an obvious application to matrix prob-
lems. Matrix radiosity7 expresses the illumination of
a closed diffuse environment as a linear system

Bi = Ei + ρi

N∑
j=1

FijBj (1)

where B is a column vector of N radiosities, E are the
emittances, ρ are the diffuse reflectivities and Fij is
the form factor. This system is solved in Ax = b form
as

MB = E (2)

where M is a matrix formed by the reflectivities and
form factors.

A variety of techniques have been used to solve
(2) in computer graphics, including standard numer-
ical techniques such as Jacobi and Gauss-Seidel iter-
ation. Gauss-Seidel is typically preferred because it
requires less space and converges about twice as fast
as Jacobi. However, Gauss-Seidel is inherently serial,
whereas Jacobi iteration offers significant parallelism,
and hence takes better advantage of the streaming na-
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ture of GPU architectures. The typical Jacobi itera-
tion formula is

B
(k+1)
i = Ei −

∑
j 6=i

Mij

B
(k)
j

Mii
. (3)

To avoid the conditional execution caused by the
j 6= i condition (which cannot be done efficiently with
current fragment processing architectures), we do the
full matrix-vector product:

B(k+1) = B(k) + E − diag(M)−1MB(k) . (4)

The matrix diag(M)−1 is the inverse of the matrix
containing only the diagonal elements of M . (For con-
stant elements, as are typically used, diag(M) = I,
and the denominator also drops out of (3).)

We used one texel per matrix element. The radios-
ity system is computed per wavelength of light, so
an RGB texture can simultaneously represent a red,
green, and blue matrix. When solving a single-channel
luminance (as opposed to RGB) matrix system, one
can pack the vectors and matrices into all four color
channels, such that four elements of a vector (or four
columns of one row of a row-major matrix) can be
accessed in a single texture lookup. We have found
this organization works best for matrix-vector prod-
ucts, whereas a block-channel packing (where e.g. the
upper-left submatrix is stored in a texture’s red chan-
nel) works better for single-channel matrix-matrix
products8.

Each pass operates on a block of the matrix-vector
product, where the block size is dictated by the num-
ber of pixel shader instructions available per pass.
For example, our GeForce FX implementation uses
a block size of 254 elements, since each four-element
texel requires four instructions (two texture fetches,
a multiply-add, and an update to the texture coordi-
nates), and the GeForce FX pixel shader supports a
maximum of 1024 instructions (there are a few instruc-
tions of overhead for each pass). Thus for an N -patch
radiosity solution, each Jacobi iteration takes dN/254e
passes.

3.1. Results

We tested the solver on a simple Cornell box with-
out any occluders, since form factor complexity should
not significantly affect solution time. Figure 2 demon-
strates the solution, which was solved and displayed
(without interpolation) entirely on the graphics card,
using precomputed form factors. The vector E and
the matrix M were formed by a CPU preprocess, and
loaded as a 1-D and 2-D texture, respectively. A pixel
shader performed the Jacobi iteration to solve for the
unknown radiosities B which were also stored as a 1-D

texture. The iterations can be observed by displaying
the scene using texture coordinates based on the 1-D
radiosity texture, though a 1-D texture prevents bilin-
ear interpolation of the displayed radiosities.

Figure 2: A simple radiosity scene solved and dis-
played completely on the GPU.

In order to smoothly interpolate the displayed ra-
diosities, the 1-D radiosity texture B would need to be
resampled into a 2-D displayed radiosity texture. An
easy way to perform this resampling is to create an
atlas of the scene, such as the meshed atlas described
in Section 2.3, and render the texture image of the
atlas using 1-D texture coordinates corresponding to
each vertex’s index in the radiosity vector.

As Figure 3 shows, our GPU Jacobi radiosity im-
plementation takes about twice as many iterations
to converge as does a Gauss-Seidel solution on the
CPU. Moreover, each Jacobi iteration of our GPU
solver (29.7 iterations/sec. on a NVIDIA GeForce FX
5900 Ultra) takes longer to run than a Gauss-Seidel
iteration on the CPU (40 iterations/sec. on an AMD
Athlon 2800+). This corresponds to 141 MFLOPS/s
and 190 MFLOPS/s for the GPU and CPU, respec-
tively (the floating point operations for indexing on
the GPU are not included in this number).

We found, however, that the CPU implementation
is limited by memory bandwidth, while the GPU im-
plementation is only using a fraction (perhaps as lit-
tle as 10%) of its available bandwidth. This difference
can be observed by comparing the super-linear CPU
curve to the linear GPU curve in Figure 4. We believe
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Figure 3: Gauss-Seidel converges faster than Jacobi
iteration. Error is measured as the mean squared error
of the residual MB − E.

Figure 4: Though the CPU currently outperforms
the GPU on this matrix radiosity example, the CPU
is memory bandwidth bound and its performance de-
grades on larger matrices, whereas the GPU is com-
pute bound and its performance scales linearly.

the GPU curve overtakes the CPU curve for matri-
ces larger than 2000 elements, but we were limited
by a maximum single texture resolution of 2048. As
computation speeds have historically increased faster
than memory bandwidth, we also expect the GPU will
readily outperform the CPU in the near future.

4. Subsurface Scattering

We base our subsurface scattering scheme on the
method derived by Jensen et al.13. The standard ren-
dering equation using a BRDF approximation has

been used for many years to model light transport
and the reflectance of surfaces. However, the BRDF
formulation assumes that light entering a material at
a point also leaves the material at the same point. For
many real-world surface this approximation is suffi-
cient, but for numerous translucent materials (skin,
milk, marble, etc..), much of their appearance comes
from internal scattering of light. To account for sub-
surface scattering, the BRDF is replaced with a more
general model known as the BSSRDF (bidirectional
surface scattering reflectance distribution function).
The amount of radiance leaving a point xo due to sub-
surface scattering can be expressed as

Lo(xo, ~ωo) =∫
A

∫
Ω

S(xi, ~ωi; xo, ~wo)Li(xi, ~ωi)(~ni · ~ωi)d~ωidA(xi).
(5)

Integration is performed over the surface A at points
xi and all incident light directions. The term S is the
BSSRDF, which relates the amount of outgoing radi-
ance at point xo in direction ~ωo, given that there is
incoming radiance at some other surface point xi in
direction ~ωo.

Jensen et. al. noted that single scattering for many
common materials only accounts for a small percent-
age of the outgoing radiance of a material12. Also,
light tends to become heavily scattered when it en-
ters materials, removing the relationship between in-
cident and exitant light directions. This simplifies the
BSSRDF to a four dimensional function Rd known
as the diffuse BSSRDF. Reformulating the subsurface
scattering equation (5) to only account for subsurface
scattering we have

Lo(xo, ~ωo) =
1

π
Ft(η, ~ωo)B(xo) (6)

B(xo) =

∫
xi∈S

E(xi)Rd(xi, xo)dA(xi) (7)

E(xi) =

∫
Ω

Li(xi, ~ωi)Ft(η, ~ωi)|~ni · ~ωi|d~ωi (8)

where Rd(xi, xo) is the diffuse subsurface scattering
reflectance. It encodes geometric information and also
the volumetric material properties anywhere in the ob-
ject dealing with light transport from xi to xo. For
Rd we use the dipole approximation model detailed
by Jensen et. al. 12, and also used in Lensch 15. Also
found in Jensen et. al. are the scattering and absorp-
tion coefficients: σ′s, σa for common materials that are
used in this model. For brevity we have omitted the
details here.

Lensch et. al. noted this strong similarity between
the radiosity formula and the formula in (8). This
equation may be solved by discretizing the scene into
patches.
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4.1. Real-Time Subsurface Approximation
Algorithm

We start by discretizing our object into a collection of
N patches where Pi and Pj are patches on the surface
S. We can reformulate (8) into its discretized form as
follows:

Bi =

N∑
j=1

FijEj (9)

which resembles a single transport step of radiosity
transport (1). The multiple diffuse scattering through-
put factor Fij is expressed as:

Fij =
1

Ai

∫
xi∈Pi

∫
xj∈Pj

Rd(xj , xi)dxjdxi. (10)

For a static model, we can precompute the Fij fac-
tors between all pairs of patches. Using (9), the ra-
diosity due to diffuse multiple scattering now reduces
to a simple inner product for each patch resulting in
O(N2) operations to compute the incident scattered
irradiance for all patches.

A simple way to reduce the number of interactions
is to turn to a clustering strategy like that used to
solve the N-body problem and hierarchical radiosity10.
This is particularly applicable to subsurface scattering
since the amount of scattered radiance drops rapidly
as it travels further through the media. This implies
that patches that are far away from the patch whose
scattered radiosity we are computing may be clustered
together and be replaced by a single term to approxi-
mate the interaction.

4.2. A Three Pass GPU Method

We now formalize a solution the diffuse subsurface
scattering equation (9) as a three pass GPU scheme
(as shown in Fig. 5) preceded by a pre-computation
phase. By assuming that our geometry is not deform-
ing we are able to precompute all of our throughput
factors Fij between interacting surfaces.

Our first pass to the GPU computes the amount
of light incident on every patch of our model, and
scales this by the Fresnel term, storing the radiosity
that each patch emits internal to the object. This map
forms our radiosity map.

Our second pass acts as a gathering phase evaluat-
ing equation (9). For every patch/texel the transmit-
ted radiosity is gathered and scaled by the precom-
puted throughput factors and stored into a scattered
irradiance map.

Pass 1:
Illuminate

and Fresnel

Pass 2:
Follow Links

and Accumulate

Pass 3:
Fresnel and

Display

Figure 5: Three passes for rendering subsurface scat-
tering on the GPU.

In our third and final pass we render our geom-
etry to the screen using the standard OpenGL light-
ing model. The contribution from subsurface scattered
light is added in by applying the scattered irradiance
texture map to the surface of the object scaled by the
Fresnel term.

Pass 1 Pass 2 Pass 3

Figure 6: Pass one plots triangles using their tex-
ture coordinates (left), interpolating vertex colors set
to their direct illumination scaled by a Fresnel trans-
mission term. Pass two transfers these radiances (cen-
ter) via precomputed scattering links implemented as
dependent texture lookups into a MIP-map of the pre-
vious pass result (left). Pass three scales the resulting
radiances by a Fresnel transmission factor and texture
maps the result onto the original model.

4.2.1. Pre-computation Phase

We start by forming a hierarchical disjoint face clus-
tering and texture atlas parameterization of our mesh
with a method previously developed for real-time pro-
cedural solid texturing4. Every texel in our texture at-
las corresponds to a patch on the surface of our model.
This parameterization method is ideal for a GPU solu-
tion to the subsurface scattering problem for a number
of reasons. First, it provides a natural face cluster hier-
archy necessary for a hierarchical approach. Secondly,
it works directly with the GPU rasterization rules al-
lowing the GPU to perform surface computation in
a seam-free manner. Thirdly, it is MIP-mappable, al-
lowing the GPU to compute fast average and sums
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over the surface hierarchy. Lastly, by using a param-
eterization scheme as a domain to store and compute
our surface samples, the number of surface samples
is independent of both the tessellation of our geome-
try, and the resolution of the screen we are rendering
to. This marks a difference between earlier interactive
subsurface scattering approaches where vertex to ver-
tex interactions were used to discretize the scattering
equation.

Full evaluation of equation (9) of patch to patch
throughput factors would require P 2 interactions,
where P is the number of patches (and also texels in
our texture atlas). Each interaction forms a link. Since
all of our patches are in texture space, we need only
store a u, v location and a throughput factor for each
link. By adding an LOD term into the link structure
we can access any level in the MIP-map surface hierar-
chy. Based on our computation and space restrictions
we assign some maximum number of links L that we
store for each patch Pb in the base level of our texture
map.

For a non-adaptive approach we can choose some
level l in the hierarchy. We then build all links from
patches Pb to Pl where Pb are the patches at the lowest
level in the hierarchy, and Pl are patches at level l in
the hierarchy.

An adaptive top-down approach for the construc-
tion of links may be done similar to that of hierar-
chical radiosity. For every patch in the lowest level of
our hierarch Pb, we start by placing the root patch Pr

of our hierarchy onto a priority queue (with highest
throughput factor at the top). We then recursively re-
move the patch at the top of the queue, compute the
throughput factors from Pb to its four children, and
insert the four children into the priority queue. This
process is repeated until the queue size grows to the
threshold number of links desired.

Once L adaptive links for each patch/texel in our
atlas have been created, we store the result into L
textures maps that are

√
Pb ×

√
Pb in size. We use

an fp16 (16-bit floating point) texture format sup-
ported on the GeForceFX to pack the link informa-
tion: u, v, Fij ,LOD into the four color channels to be
used during pass two of our rendering stage. To reduce
storage in favor of more links, we opted to reduce our
form factor to a single scalar. Form factors per color
channel may be supported at a cost of space and band-
width.

In the case of a non-adaptive approach, the link lo-
cations and LOD are the same for every patch Pb,
we therefore store this information in constant regis-
ters on the graphics card during the second pass. The
throughput factors, however, vary per-link. We store
the form factor information into L/4 texture maps

where each texel holds four throughput factors (cor-
responding to 4 links) in the rgbα channels.

4.2.2. Pass 1: Radiosity Map

Given our face cluster hierarchy and MIP-mappable
parameterization, we must first compute the Ej ’s for
the patches in our scene. To do this, we start by com-
puting a single incident irradiance for every texel in
our texture atlas, thereby evaluating lighting incident
on all sides of the model. We scale the result of the
incident illumination by the Fresnel term, storing the
result in the texture atlas. Each texel now holds the
amount of irradiance that is transferred through the
interface to the inside of the model. This step is similar
to the illumination map used in Lensch et al.15.

To accomplish this efficiently on the GPU, we use
the standard OpenGL lighting model in a vertex pro-
gram on the GPU. Using the OpenGL render-to-
texture facility, we send our geometry down the graph-
ics pipeline. The vertex program computes the lighting
on the vertices scaled by the Fresnel term placing it in
the color channel and swaps the texture coordinates
for the vertices on output. The radiosity stored in the
color channel is then linearly interpolated as the trian-
gle gets rendered into the texture atlas. Our method
does not prevent the use of more advanced lighting
models and techniques for evaluating the incident ir-
radiance on the surface the object.

As an alternative to computing our transmitted ra-
diosity in a vertex program, we could perform the com-
putation entirely in a fragment program per-texel. In
addition to higher accuracy, this approach may have
improved performance for high triangle count models.
A geometry image (e.g. every texel stores surface posi-
tion) and a normal map may be precomputed for our
object and stored as textures on the GPU. Render-
ing the radiosity map would only entail sending a sin-
gle quadrilateral down the graphics pipeline texture
mapped with the geometry image and normal map.
The lighting model and Fresnel computation can take
place directly in the fragment shader.

We use the automatic MIP-mapping feature avail-
able in recent OpenGL version to compute the aver-
age radiosity at all levels of our surface hierarchy. The
radiosity map is then used in the next pass of this
process.

4.2.3. Pass 2: Scattered Irradiance Map

This pass involves evaluating equation (9) for every
texel in our texture atlas. We render directly to the
texture atlas, by sending a single quadrilateral to the
GPU. In a fragment program, for each texel, we tra-
verse the L links stored during the pre-computation
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phase. Texture lookups are performed to get the link
information. Using the u,v and LOD link information
a dependent texture lookup is performed on the mip-
mapped Radiosity Map. The result of this is scaled
by the links form factor. All links are traversed for a
given texel and the accumulated radiosities form the
incident scattered irradiance for the texel.

This pass can be the most costly of the three passes
depending on the number of links chosen. For our
adaptive approach, 2*L texture lookups must be per-
formed in the fragment shader. For our non-adaptive
scheme we were able to pack four links into a single
texture lookup resulting in 1.25 ∗ L lookups.

4.2.4. Pass 3: Final Rendering

Pass three begins with the scattered irradiance map
resulting from pass two. This pass multiplies the scat-
tered irradiance texture with a texture of inverted
Fresnel terms to get a texture of external radiosities
on the outside of the translucent object’s surface. This
texture product is further modulated by direct illu-
mination resulting from a standard OpenGL lighting
pass, evaluated either per-vertex or per-fragment. This
results in the final rendering of the translucent object.

4.3. Subsurface Scattering Results

Figure 7 shows the result of our subsurface scattering
algorithm running on a GeForce FX card. To achieve
real-time performance we are running with either a
5122 or 10242 texture atlas with 16 links per texel.
We initially tried to use our adaptive approach for as-
signing links but found that the adaptivity when using
such a course number of links led to visible discontinu-
ities during rendering along the mip-map boundaries.
As we increased the number of links, the seams dimin-
ished due to the improved approximation.

Precomputation of the links was performed entirely
on the CPU and took approximately nine seconds for
the 10242 resolution.

Model res. fps Pass 1 Pass 2 Pass 3

Head 5122 61.10 11% 82% 7%
Dolphin 5122 30.35 43% 43% 14%
Bunny 5122 30.33 37% 34% 28%

Head 10242 15.40 13% 85% 2%
Dolphin 10242 15.09 8% 85% 7%
Bunny 10242 12.05 18% 68% 14%

Table 1: Subsurface scattering performance on a
GeForce FX 5900.

We tested the algorithm using an NVidia GeForce

(a) (a)

Figure 7: Without subsurface scattering (a), and
with subsurface scattering (b) using σ′s = 2.21, σa =
0.0012, 16 links, 40fps Nvidia GeForceFX 5800.

FX 5900 on three models. The ”head” model with
7,232 faces, a ”dolphin” model with 21,952 faces and
the ”bunny” model with 69,451 faces. The results of
the GPU subsurface scattering algorithm is shown in
Table 1. At the 10242 texture resolution, Pass 2 domi-
nates, and since this pass is a texture-to-texture pass,
the use of a texture atlas has effectively decoupled the
total shading cost from the tesselation complexity.

5. Conclusion

We have examined the implementation of matrix ra-
diosity on the GPU and used it as an example to ex-
amine the performance of the GPU on scientific appli-
cations, specifically those involving linear systems.

Our GPU subsurface scattering result is much more
successful, yielding full real-time (61 Hz) performance
on a present day GPU. Our implementation is novel
compared to other real-time subsurface scattering re-
sults that are implemented primarily on the CPU.
Moreover, our subsurface scattering method is based
on a multiresolution meshed atlas, and this multireso-
lution approach applied to a surface cluster hierarchy
is also novel.

The key to our multiresolution surface approach to
subsurface multiple diffuse scattering is the assign-
ments of gathering links. These directional links are
formed between clusters at different levels in the hier-
archy, and a directed link indicates the irradiance over
one cluster is gathered from the scattered radiosity of
another cluster.

These links are similar to the links used for hier-
archical radiosity. Hierarchical radiosity would follow
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these links to gather radiosities from other clusters
at appropriate levels in the radiosity MIP-map, and
radiosities formed at one level would be averaged or
subdivided to form radiosities at other MIP-map lev-
els. But hierarchical radiosity gains its greatest speed
and accuracy improvement from its ability to dynam-
ically re-allocate these links based on changes in the
cluster-to-cluster form factors. The implementation of
this dynamic link reassignment on the GPU is of great
interest but appears quite challenging, and forms the
primary focus of our future work.
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Abstract 
We compress storage and accelerate performance of precomputed 
radiance transfer (PRT), which captures the way an object shad-
ows, scatters, and reflects light.   PRT records over many surface 
points a transfer matrix.  At run-time, this matrix transforms a 
vector of spherical harmonic coefficients representing distant, 
low-frequency source lighting into exiting radiance.  Per-point 
transfer matrices form a high-dimensional surface signal that we 
compress using clustered principal component analysis (CPCA), 
which partitions many samples into fewer clusters each approxi-
mating the signal as an affine subspace.  CPCA thus reduces the 
high-dimensional transfer signal to a low-dimensional set of per-
point weights on a per-cluster set of representative matrices.  
Rather than computing a weighted sum of representatives and 
applying this result to the lighting, we apply the representatives to 
the lighting per-cluster (on the CPU) and weight these results per-
point (on the GPU).  Since the output of the matrix is lower-
dimensional than the matrix itself, this reduces computation.  We 
also increase the accuracy of encoded radiance functions with a 
new least-squares optimal projection of spherical harmonics onto 
the hemisphere.  We describe an implementation on graphics 
hardware that performs real-time rendering of glossy objects with 
dynamic self-shadowing and interreflection without fixing the 
view or light as in previous work.  Our approach also allows 
significantly increased lighting frequency when rendering diffuse 
objects and includes subsurface scattering. 
Keywords: Graphics Hardware, Illumination, Monte Carlo Techniques, 
Rendering, Shadow Algorithms. 

1. Introduction 
Global illumination effects challenge real-time graphics, espe-
cially in area lighting environments that require integration over 
many light source samples.  We seek to illuminate an object from 
a dynamic, low-frequency lighting environment in real time, 
including shadowing, interreflection, subsurface scattering, and 
complex (anisotropic) reflectance. 
These effects can be measured as radiance passing through spheri-
cal shells about the surface point p  in Figure 1.  Source radiance 
originates from an infinite sphere (environment map).  
Transferred incident radiance passes through an infinitesimal 
hemisphere, and equals the source radiance decreased by self-
shadowing and increased by interreflection.  Exiting radiance 
passes outward through an infinitesimal hemisphere, and results 
from the BRDF times the transferred incident radiance, plus 
subsurface scattering.  
The spherical harmonic (SH) basis provides a compact, alias-
avoiding representation for functions of radiance over a sphere or 
hemisphere [Cabral et al. 1987][Sillion et al. 1991][Westin et al. 
1992][Ramamoorthi and Hanrahan 2001]. Low-frequency source 
illumination, which small vectors (e.g. N=25) of SH coefficients 

approximate well [Ramamoorthi and Hanrahan 2001][Sloan et al. 
2002], is exactly the situation in which integration over the light 
becomes the bottleneck for traditional rendering methods. 
Sloan et al. [2002] precompute the radiance transfer of an object 
in terms of low-order SHs.  For a diffuse object, exiting radiance 
results from dotting a 25-vector, representing the source radiance, 
with a 25-element radiance transfer vector precomputed and stor-
ed at each sample point p.  By storing this transfer vector per-
vertex, real-time self-shadowing and interreflection results from a 
simple vertex shader.  For a glossy object, [Sloan et al. 2002] 
represents radiance transfer as a linear operator converting a 25D 
source radiance vector into a 25D transferred radiance vector, via 
a 625-element transfer matrix that varies for each p.  This glossy 
transfer matrix was too big for graphics hardware. The CPU 
implementation ran at interactive rates (~4 Hz) and could achieve 
real-time frame rates only for a constant view or lighting, hamper-
ing its usefulness for applications like 3D games. 
Our method lifts these restrictions, rendering the same glossy 
objects more than 10-20 times faster.  For simpler diffuse transfer, 
the method allows higher frequency lighting (i.e., higher-order SH 
projections) for the same computational cost.  As in [Lehtinen and 
Kautz 2003], we precompute and store per-vertex the source-to-
exiting radiance transfer matrix, instead of the source-to-incident 
transfer [Sloan et al. 2002]. This also allows us to include the 
precomputed contribution of the object's subsurface scattering of 
distant environmental light. 
To get real-time performance, we treat the transfer vectors or 
matrices stored at each vertex as a surface signal and partition 
them into a few (128-256) clusters.  Principal component analysis 
(PCA) approximates the points in each cluster as a low-
dimensional affine subspace (mean plus up to n′=8 PCA vectors).  
We call this approach clustered principal component analysis 
(CPCA).  For glossy transfer, CPCA reconstructs a good ap-
proximation of its N×N matrix at each point by storing only the 
index of its cluster and a few ( 2n N N� �¢ ) scalar coordinates of 

Figure 1: Radiance transfer at p from source to transferred incident to 
exit. 
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projection onto the cluster’s PCA vectors. CPCA reduces not only 
signal storage (n′ rather than N2 scalars per point) but also the run-
time computation.  Instead of multiplying an N×N transfer matrix 
by an N-dimensional light vector at each p, we precompute this 
multiplication in each cluster for each of its PCA vectors and 
accumulate weighted versions of the n′ resulting N-vectors.  
CPCA on diffuse transfer provides a similar savings in storage 
and computation.  
We describe two technical contributions which may have wider 
applicability.  The first is a very general signal approximation 
method using CPCA. Though used before in machine learning 
applications [Kambhatla and Leen 1994][Kambhatla and Leen 
1997][Tipping and Bishop 1999], it is new to computer graphics.  
To increase spatial coherence, we augment the method by redis-
tributing points to clusters according to an “overdraw” metric.  
The second contribution is the use of the optimal least-squares 
projection of the SH basis onto the hemisphere, which signifi-
cantly reduces error compared to approaches used in the past 
[Sloan et al. 2002][Westin et al. 1992]. 

2. Related Work 
Various representations encapsulate precomputed or acquired 
global illumination.  Light fields [Gortler et al. 1996][Levoy and 
Hanrahan 1996] record radiance samples as they pass through a 
pair of viewing planes whereas surface light fields [Chen et al. 
2002][Miller et al. 1998][Nishino et al. 1999][Wood et al. 2000] 
record 4D exiting radiance sampled over an object’s surface.  
Both techniques support arbitrary views but fix lighting relative to 
the object.   
Precomputed radiance transfer (PRT) [Sloan et al. 2002] param-
eterizes transferred incident radiance in terms of low-frequency 
source lighting,  allowing changes to lighting as well as view-
point.  We build on PRT and its generalization to anisotropic 
BRDFs [Kautz et al. 2002], but speed up performance and reduce 
error in three ways:  we record exiting radiance instead of trans-
ferred incident, use least-squares optimal projection of 
hemispherical functions, and compress using CPCA.  We also 
extend PRT to include subsurface scattering.  In parallel work, 
Lehtinen and Kautz [2003] approximate PRT using PCA.  Our 
CPCA decoding reduces approximation error and maps well to the  
GPU, resulting in 2-3 times better performance. 
Other illumination precomputation methods also support dynamic 
lighting.  Matusik et al. [2002] handle limited, non-real-time 
lighting change with a surface reflectance field measured over a 
sparsely sampled directional light basis, stored on the visual hull 
of an acquired object.  Hakura et al. [2000] support real-time 
lighting change with parameterized textures, but constrain view-
ing and lighting changes to a 2D subspace (e.g. a 1D circle of 
viewpoints × 1D swing angle of a hanging light source).  [Sloan et 
al. 2002] compares PRT to many other precomputed approaches 
for global illumination. 
Precomputed illumination datasets are huge, motivating compres-
sion. Light fields were compressed using vector quantization 
(VQ) and entropy coding [Levoy and Hanrahan 1996], and reflec-
tance fields using block-based PCA [Matusik et al. 2002].  
Surface light fields have been compressed with the DCT [Miller 
et al. 1998], an eigenbasis (PCA) [Nishino et al. 1999], and 
generalizations of VQ or PCA to irregular sampling patterns 
[Wood et al. 2000].  Our CPCA compression strategy improves 
[Wood et al. 2000] by hybridizing VQ and PCA in a way that 
reduces error better than either by itself.   Unlike [Chen et al. 
2002] which compresses a 4D surface light field over each 1-ring 

mesh neighborhood, our clustering is free to group any number of 
samples that can be approximated well together regardless of their 
surface location.  Our purpose is real-time rendering with graphics 
hardware, not minimizing storage space.  For example, we avoid 
entropy coding for which current graphics hardware is ill-suited. 
Jensen et al. [2002] simulate translucent materials using a diffu-
sion approximation of subsurface scattering accelerated by 
decoupling the computation of irradiance from a hierarchical 
evaluation of the diffusion approximation.  This paper also ex-
perimentally validated when the multiple scattering term 
dominated.   Two recent paper exploit this property and imple-
ment interactive rendering techniques based on the idea.  Lensch 
et al. [2002] combine spatially varying filters in texture space 
with vertex-to-vertex transfer to model near and far subsurface 
transport.  Global shadowing and interreflection effects are 
ignored and only ~5Hz frame rate is obtained.  Hao et al. [2003] 
precompute subsurface scattering for a directional light basis.   
We model smooth, distant lighting environments and include a 
glossy term to approximate single scattering. 
Like PRT, Westin et al. [1992] also use matrices which transform 
lighting into exiting radiance, both expressed in the SH basis.  
Their matrices encode local effects for BRDF synthesis, not 
spatially-varying global transport for real-time rendering.  They 
devise a SH projection of hemispherical functions, which we 
improve via least-squares in the appendix. 
Lensch et al. [2001] use a similar clustering procedure to recon-
struct a spatially-varying BRDF from images.   They fit 
parameters of a BRDF model in each cluster using nonlinear 
optimization and approximate using a linear combination of the 
resulting models, one per cluster.   We use an independent affine 
basis per cluster. 

3. Radiance Transfer Signal Representation 
For diffuse surfaces, PRT encodes a transfer vector, tp, per surface 
point p [Sloan et al. 2002].  The i-th component of this vector 
represents the linear contribution of source lighting basis function 
yi(s) to the exiting radiance of p.  For glossy surfaces, we make 
several modifications to the glossy transfer matrix defined in 
[Sloan et al. 2002]. 

3.1 Transferred Incident vs. Exiting Radiance Transfer 
PRT in [Sloan et al. 2002] represents transferred incident radi-
ance (Figure 1).  It is derived from a Monte Carlo simulation 
illuminating geometry by the SH basis functions.  This decouples 
the way an object shadows itself from its reflectance properties, 
and allows different BRDFs to be substituted at run-time.  Here 
we seek to approximate the transfer signal to reduce computation.  
To measure approximation error properly, we must know the 
BRDF.  For example, a smooth BRDF weights low-frequency 
components of transferred radiance more than high-frequency 
components.   
To measure signal errors properly, we include BRDF scaling by 
encoding the exiting radiance transfer matrix at p, Mp.  Its com-
ponent, Mp,ij, represents the linear influence of source lighting 
basis function j to exiting radiance basis function i.  It can be 
numerically integrated over light directions s and view directions 
v over the hemisphere H={(x,y,z) | z ≥ 0 and x2+y2+z2=1} via 

( ), ( ) , ( ) ( , )p ij i p j z
v s

M y v T s y s B v s s ds dv
H HŒ Œ

= Ú Ú  

where Tp represents transport effects like shadowing, B is the 
BRDF, y are the SH basis functions, and sz is the “cosine” factor 
(z component of s). For simple shadowing, Tp = yj(s) qp(s) where 
qp(s) is 0 if the object occludes itself in direction s and 1 other-
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wise.  For general transport where lighting is specified in a global 
frame, Mp = B Rp Tp where Tp is the glossy transfer matrix defined 
in [Sloan et al. 2002], Rp is an SH rotation aligning p’s normal to 
the z axis and its tangents to x and y, and B is the BRDF matrix   

( ) ( ) ( , )ij i j z
v s

B y v y s B v s s ds dv
H HŒ Œ

= Ú Ú    

Rp is a N×N rotation matrix; its computation is outlined in [Kautz 
et al. 2002]. 
We also add a view-independent subsurface scattering term to the 
transport, precomputed using the hierarchical diffusion approxi-
mation of [Jensen and Buhler 2002] but parameterized by the SH 
basis for lighting.  The result affects only the y0 (constant) basis 
function of exiting radiance. 
3.2 Representing Radiance over the Hemisphere 
Exit and transferred radiance at a surface point are actually func-
tions over a hemisphere, not a sphere.  For the SH basis, there is 
complete freedom in evaluating the function on the “opposite” 
hemisphere when projecting it to the SH basis.  Transfer in [Sloan 
et al. 2002] and the formulas above in Section 3.1 implicitly zero 
the opposite hemisphere by integrating only over the hemisphere.  
Westin et al. [1992] used a reflection technique.  It is also possi-
ble to use other bases such as Zernike polynomials lifted to the 
hemisphere [Koenderink et al. 1996]. 
Our approach uses the least-squares optimal projection of the SH 
basis onto the hemisphere described in the Appendix.  The tech-
nique represents any SH-bandlimited spherical function restricted 
to the hemisphere without error.  In contrast, zero-hemisphere 
projection incurs 35% worst-case and 20% average-case RMS 
error integrated over the hemisphere for all unit-power spherical 
signals formed by linear combinations of the 5th order SH basis.   
The odd reflection technique [Westin et al. 1992] is even worse.  
Beyond theoretical results, we also see visibly better accuracy on 
our experimental objects using optimal projection (see Figure 7). 
Given a vector b which projects a hemispherical function into the 
SH basis by zeroing out the opposite hemisphere, the optimal 
hemispherical projection is simply A-1 b where A is defined in the 
appendix.  Therefore, the optimally projected exiting radiance 
transfer matrix is given by 
 1 1

p p pM A B A R T- -=  (1) 

projecting first transferred radiance, Rp Tp, and then exiting radi-
ance.  Figure 7 compares results with and without this least-
squares “boost” by A-1 to reduce error in transferred and exiting 
radiance. 

3.3 Clustered PCA (CPCA) Approximation  
We have an n-dimensional signal xp sampled at points p over a 
surface.  Each xp represents exiting radiance as a linear operator 
on a light vector, and takes the form of vectors for diffuse surfaces 
(e.g., n=N=25) or matrices for glossy surfaces (e.g., n=N2=625).  
To approximate this signal, we partition its samples into a number 
of clusters each of which is approximated by an affine subspace.  
More precisely, the points in a cluster are approximated by 

1 2
0 1 2

n
p p p p p nx x x w x w x w x� " ¢

¢ª = + + + +  
where the n′+1 n-vectors x0, x1, …, xn′ are constant over the cluster 
and the n′ scalar weights 1 2, , , n

p p pw w w ¢" vary for each point p on 
the surface.  To reduce signal dimensionality, n n�¢ .  The vector 
x0 is called the cluster mean, and the vectors xi, i ≥ 1 are called the 
cluster PCA vectors.  Together, the cluster’s mean and PCA 
vectors are called its representative vectors. 
CPCA (called “VQPCA” in [Kambhatla and Leen 1994] 
[Kambhatla and Leen 1997] and “local PCA” or “piecewise PCA” 
in the machine learning literature under the general title of “mix-
tures of linear subspaces”) generalizes PCA (single cluster, n′ > 0) 
and VQ (many clusters, n′ = 0).  VQ approximates a signal as a 
piecewise constant while PCA assumes it is globally linear.  
CPCA exploits the local linearity of our radiance transfer signal 
by breaking it down into clusters, approximating each with a 
separate affine subspace. 

4. Compressing Surface Signals with CPCA 
We review CPCA, beginning with the simplest approach and then 
describing several enhancements that further reduce error. 

4.1 VQ Followed by Static PCA 
The simplest CPCA method is to first cluster the points using VQ, 
and then compute a PCA fit in each of the resulting clusters 
[Kambhatla and Leen 1994]. 
VQ Clustering  The LBG algorithm [Linde et al. 1980] performs 
the initial clustering.  Given a desired number of clusters, the 
algorithm starts with clusters generated by random points from the 
signal and then classifies each point into the cluster having mini-
mum distance to its representative.  Each cluster representative is 
then updated to the mean of all its points, and the algorithm iter-
ated until no points are switched or an iteration count is reached. 
Per-Cluster PCA  We first compute the cluster mean, x0.  We 
then compute a mk×n matrix of residuals after subtracting the 
mean, C = [xp1-x0, xp2-x0, …, xpnk-x0]T, where mk is the number of 
points in cluster k.  Computing an SVD yields C = U D VT where 
U and VT are rotation matrices and D is a diagonal matrix whose 
elements are sorted in decreasing order.  The first n′ rows of V 
(columns of VT) are the cluster PCA vectors.  A point pj’s projec-
tion weights (n′-vector 

jpw ) are given by the first n′ columns of 
row j of UD (they are also given simply by the dot product of xpj-
x0 with each of the PCA vectors).   This provides a least-squares 
optimal linear approximation of C from combinations of n′ fixed 
vectors.  Total squared error over all cluster points is given by 

 
2 2

2 2
01 1 1 1

k k

j j j

m n m n
p p i p ij i n j i

x x D x x D� ¢

= = + = =¢
- = = - -Â Â Â Â  

The SVD of C can be directly computed using the LAPACK 
routine dgesvd.  To reduce matrix size and so computation, we 
instead convert to normal form.  When mk ≥ n, we compute the 
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Figure 2: CPCA error analysis using static PCA.  Each curve represents 
how squared error varies with various numbers of clusters (1, 2, 4, …,
16k) using a given number of principal components in each cluster (n′ = 0, 
1, 2, 4, 8, and 16).  The signal approximated was a 25D shadowed diffuse 
transfer vector over a bird statue model from [Sloan et al. 2002] having 
48668 sample points.  20 VQ iterations were used, followed by PCA in
each cluster. 
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n×n matrix CTC and its eigenvalues (which are the squares of C’s 
singular values) and eigenvectors (which are equal to C’s right 
singular vectors VT and thus the needed PCA vectors).  When mk 
< n, we compute the mk×mk matrix CCT.  Its eigenvalues are still 
the squares of C’s singular values, but its eigenvectors are C’s left 
singular vectors, U, from which the right can be derived via VT = 
UT D-1 C.   The LAPACK routine dsyevx computes eigenpairs of 
symmetric matrices like CTC and CCT, and saves computation  
because it can return just the n′ eigenpairs having the largest 
eigenvalues, while dgesvd returns all singular values. 
Experimental Results  Figure 2 shows results for this approach 
on an example diffuse transfer signal (25D) over a bird statue 
model.   Using straight VQ (n′=0), errors are only gradually 
reduced as storage increases.  Increasing the number of PCA 
vectors per cluster provides an approximation that is worse at 
small numbers of clusters but eventually crosses below the previ-
ous curve as the number of clusters increases. 
The graphs use a simple cost metric measuring total storage for 
the approximated signal: 

mp n′ + mc (n′ + 1) n 
where mp is the number of surface samples and mc is the number 
of clusters.  The first term represents the per-point weight data 
whereas the second represents the per-cluster representative data.  
This simple model correlates well with actual rendering cost. 

4.2 Iterative PCA  
The previous section clusters using distance to the cluster mean 

2
0px x- as the classification metric, but as observed in 

[Kambhatla and Leen 1997], the distance that matters is approxi-
mation error, 2

p px x�- .  Iterative PCA [Kambhatla and Leen 
1997] exploits this observation by classifying points in the cluster 
that minimizes approximation error rather than distance to the 
mean.  Also, after every point classification step (instead of only 
once at the end of the whole clustering process) it computes a 
PCA of the cluster’s current point members to update the affine 
subspace model.   
This approximation error at a point xp is computed via 

( )222
0 01

( )
n

p p p p ii
x x x x x x x� i¢

=
- = - - -Â . 

To avoid local minima having high error, we introduce additional 
PCA vectors one by one, from zero to n′, and do several iterations 
(typically 10-20) of the generalized LBG algorithm for that 
number of vectors before adding another. 

Figure 3 and Figure 4 demonstrate the large error reduction from 
iterative over static PCA.  Typically, iterative PCA performs as 
well as static having 1-4 additional PCA vectors per cluster, but 
the encoding cost is significantly higher. 

4.3 Per-Cluster Adaptation of Number of PCA Vectors 
Neither static nor iterative CPCA distribute error homogenously – 
some clusters usually have much more error than others.  Without 
increasing the overall amount of per-point data, we can reduce 
error by allowing clusters with high error to use more PCA 
vectors and clusters with less error to use fewer.   Adaptation like 
this was used in [Meinicke and Ritter 2001] to avoid local overfit-
ting. 
The squared singular value Di

2 in a cluster represents how much 
total squared error is reduced by the addition of PCA vector i to 
that cluster.  But clusters do not contain the same number of 
points; adding an additional PCA vector in a cluster with more 
points is more expensive than in a cluster with fewer points 
because an additional weight must be stored per point.  So we 
rank PCA vectors by Di

2/mk which represents the rate at which 
per-point squared error will be reduced by the addition of PCA 
vector i in cluster k containing mk points.   We sort this quantity in 
decreasing order over all PCA vectors in all clusters, and add 
PCA vectors according to this order (greatest error-reduction rate 
first), until it reaches its total budget of PCA vectors.  
The overall algorithm starts with the CPCA result from the previ-
ous section (constant number of PCA vectors per cluster). 
Additional adaptation iterations then perform the following steps: 

1) classify each point to the cluster having minimum 
approximation error, using the cluster’s current n′, 

2) update cluster representatives using PCA (see Section 4.1),  
3) redistribute the number of PCA vectors over all clusters by 

sorting over Di
2/mk and adding vectors (vector i from cluster 

k) in decreasing order until Σmk reaches its budget.  Record 
the number of PCA vectors allocated in each cluster. 
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Figure 3: Comparison of error for three CPCA encoding methods.  As in 
Figure 2, the signal encoded is 25D diffuse transfer over a bird model.  
256 clusters were used. 

  

 
(a) static [17.7] (b) iterative [4.28] (c) adaptive [2.54] 

Figure 4: Per-point error distribution for three CPCA methods.  A linear 
blue-cyan-green-yellow-red error scale is used.  Rendered images are 
shown in the second row.  The signal is that for Figure 3 with  n′=3.  Total 
squared error of the 25D signal over all 48k vertices is written in brackets.
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As shown in Figure 3 and Figure 4, adaptation reduces error, 
typically producing error as low as non-adaptive PCA with an 
additional vector.   

5. Cluster Coherence Optimization 
The clusters from the previous section ignore where samples lie 
on the object’s surface – clusters can have ragged boundaries or 
contain multiple components.  This leads to rendering inefficiency 
because triangles whose vertices are in different clusters are 
drawn multiple times.  For each triangle, this overdraw is defined 
as the number of unique clusters its vertices belong to.  Overdraw 
summed over all mesh triangles represents the number of triangles 
sent to the graphics hardware for rendering (see details in Section 
6). We reduce overdraw with two techniques.   
The first technique seeks for each vertex a better cluster that 
reduces overdraw without significantly increasing approximation 
error.  This greedy search tries reclassifying the vertex’s signal in 
its neighboring vertices’ clusters, and computes the resulting 
overdraw reduction and error increase. The technique then sorts 
all vertices by overdraw reduction divided by error increase, and 
reclusters each vertex in decreasing order of this quotient until 
reaching a given error increase budget, such as 5-10% of the 
initial error.  Vertex reclassification requires recomputation of the 
quotient for the vertex and its neighbors. Figure 5(b) shows 
reclassification results. 
The second technique, called superclustering, allows the graphics 
hardware to draw a group of clusters as a single unit,  It reduces 
overdraw because triangles straddling clusters from the same 
supercluster need not be drawn more than once (see Section 6).  
Superclustering also ensures that primitive batches are large 
enough to maximize performance; the number of clusters in a 
supercluster is limited by the number of registers available in the 
graphics hardware.  Unlike reclassification, superclustering does 
not increase approximation error.  
We form superclusters greedily, initializing them to be the clus-
ters, then repeatedly merging neighboring superclusters in order 
of overdraw reduction. Two superclusters neighbor each other 
when at least one triangle has vertices from both.  Figure 5(c) 
demonstrates how well greedy superclustering reduces overdraw. 

6. Rendering Using CPCA-Encoded Transfer  
To shade a glossy surface at point p using CPCA-encoded trans-
fer, we use a modified version of  [Kautz et al. 2002], via 

( ) ( )( ) ( )T T
p p p p py v B R T l y v M l=  

Here, the column-vector l results of projecting source lighting (in 
a global coordinate frame) into the SH basis.  The matrix Tp 
converts this source lighting to transferred incident radiance 
(accounts for self-shadowing and inter-reflection).  The rotation 
matrix Rp aligns the global coordinate system to a local frame 
defined by p’s normal and tangent directions.  The BRDF matrix 
B converts local incident radiance into exit.  Finally, y is a col-
umn-vector (yT is a row-vector) of SH basis functions evaluated at 
the view direction at p, vp, expressed in the local frame.   y and l 
are N-vectors and B, R, and T are N×N matrices. A fifth-order SH 
projection, N=25, is accurate when the lighting and BRDF are 
low-frequency. 
One can compute the source lighting vector l in various ways 
[Sloan et al. 2002].  We can dynamically rotate a predefined 
environment to simulate rigid rotations of the object.  Graphics 
hardware can sample radiance near the object which is then SH-
projected.  Simple light sources like circles can be projected 
analytically.  Spatial variation in l captures local lighting effects 
but complicates the rendering process. 
The approach in [Kautz et al. 2002] recorded the spatially varying 
signal T′p = Rp Tp and evaluated the matrix-vector product fp=T′p l 
on the CPU.  It then evaluated B′(vp) = y(vp) B using N texture 
maps indexed by the view vector vp, and finally computed a dot 
product of these two vectors.  Texture maps B′ in [Kautz et al. 
2002] were evaluated per-vertex on the CPU because the hard-
ware was unable to interpolate 25D vectors fp over a triangle nor 
perform the 25D dot product in a pixel shader.  Though the latest 
graphics hardware now makes it possible to interpolate such large 
vectors, transfer matrices remain too large to be manipulated on 
the GPU.  Fortunately, the affine approximation used by CPCA 
solves this problem. 
Using CPCA, we encode the entire matrix chain Mp converting 
source lighting to exiting radiance.  This produces the approxima-
tion  

1 2
0 1 2

n
p p p p nM M w M w M w M� " ¢

¢= + + +  
Multiplying pM� by l then yields exiting radiance projected into the 
SH basis, ep, via 

( ) ( ) ( ) ( )1 2
0 1 2

n
p p p p p ne M l M l w M l w M l w M l� " ¢

¢= = + + + +  
We precompute the matrix/vector products for each cluster on the 
CPU, resulting in n′+1 fixed N-vectors, and accumulate them as a 
sum scaled by the per-point weights, i

pw , on the GPU.  For small 
n′ < N, this reduces computation and makes the vertex data small 
enough for vertex shaders on current graphics cards.  For exam-
ple, for N=25 and n′=5, we save more than a factor of 4.  
Finally, we evaluate the exiting radiance function at vp by dotting 
the vector y(vp) with ep .  We evaluate y at vp using a texture map 
in the same way as [Kautz et al. 2002] evaluated yT(vp) B, but we 
can now perform this evaluation and dot product in a pixel shader. 
Diffuse surfaces simplify the computation but CPCA achieves a 
similar reduction.  In this case, pt li  computes shading where tp is 
an N-dimensional transfer vector and l is the lighting’s SH projec-
tion as before.  Using CPCA, we encode tp as an affine 
combination of per-cluster representatives and precompute in each 
cluster the dot product of the light with these vectors.  The final 
shade is a weighted combination of n′+1 scalar values it li which 
are constant over a cluster, via 

   
(a) original 

mean overdraw: 2.03 
(b) reclassification 

1.79 
(c) recl.+supercluster 

1.60 
Figure 5: Overdraw reduction using cluster coherence optimization on 
256 clusters of a 625D glossy transfer signal with n′=8 and a reclassifi-
cation error “budget” of 10% of the original error.  Triangle color 
indicates overdraw: red = 3, yellow = 2, and green = 1. 
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This saves computation when n′ < N.  In fact, the per-vertex 
computation does not depend on N at all!  So we can use higher-
order projections (e.g., N=36 up to N=100) as long as the ap-
proximation error remains acceptable for small n′ (Figure 6).  
Unlike [Sloan et al. 2002], real-time rendering is now possible 
with such high-order lighting, since the transfer vector is no 
longer stored on the GPU.  

6.1 Non-Square Matrices   
Mp need not be square.  In an Nr×Nl matrix, more columns, Nl, 
provide for greater lighting frequency and thus longer, sharper 
shadows.  More rows, Nr, provide for more specular BRDFs.  
Interestingly, Nl has little effect on the run-time cost with CPCA, 
since the transformation of source lighting is done per-cluster to 
produce vectors whose dimensionality only depends on Nr.   
Increasing Nl does increase the entropy of the transfer signal, 
making it harder to encode and likely to require more representa-
tives per cluster. 
Non-square transfer matrices are useful in another way.  Exiting 
radiance is a hemispherical function, so we can use the optimal 
least-squares projection derived in the Appendix to represent Mp. 
Fifth order optimal projection of the output of Mp can be done 
with little error using Nr=24 basis functions – one of the 25 bases 
is nearly redundant (see Appendix).   

6.2 Implementation Notes   
We first describe the simple case of no superclustering.  We 
decompose the mesh into chunks of geometry for each cluster, 
where a chunk contains all faces containing at least one vertex 
from that cluster.  Since this also includes vertices from other 
clusters, we store a per-vertex bit, αp, indicating whether the 
vertex p is a cluster member.  Pseudocode for rendering is  

Draw the mesh into the zbuffer only (rgb=0) 
Set the blending mode to add 
Foreach cluster 
 Compute n′+1 per-cluster constants (Mi l or it li ) on CPU 
 Load per-cluster constants to graphics hardware 
 DrawCluster 

DrawCluster sends the cluster’s geometry to the GPU and runs a 
vertex shader computing the linear combination of the i

pw  with 
the per-cluster constants.  If αp = 0, the i

pw ’s are also set to zero 
so that blending vertices from other clusters does not effect the 
result.  In other words, we blend using a linear partition of unity 

over each triangle face that straddles multiple clusters. 
Generalizing to superclusters is not much more complicated.  We 
compute the per-cluster constants for all clusters in the superclus-
ter and load them into hardware registers.  Every vertex in a 
supercluster records a cluster index, used by the vertex shader as 
an index register to look up its cluster’s constants. 
For diffuse transfer, the vertex shader produces the final shaded 
result.  Glossy transfer is more complex – its vertex shader re-
quires normal and tangent vectors to transform the global view 
vector into the local frame at p to obtain vp.  Rasterization interpo-
lates the resulting view vector vp and exiting radiance vector ep 
over the pixels of each triangle.  The pixel shader uses the local 
view vector to index a map of SH basis functions, y(vp), and then 
dots this result with ep.  We use a parabolic hemispherical 
parameterization [Heidrich and Seidel 1999] for the SH map, 
sampled at 32×32.   Since ep contains more components than 
current rasterization hardware can interpolate, we perform three 
separate passes for glossy transfer – one per color channel.  
Diffuse and glossy transfer also differ in their per-cluster state.  
For each of the n′+1 representative vectors, the per-cluster con-
stant is a scalar color, it li , for diffuse transfer regardless of the 
value of Nl.  For glossy transfer, this state is a colored Nr-vector, 

iM l .  Current graphics hardware (ATI 9700, Nvidia GeForce 4) 
supports ~256 registers accessible by vertex shaders where each 
register contains 4 channels.  For nonadaptive PCA, glossy 
transfer requires ms (n′ + 1) Nr/4 registers where ms is the number 
of clusters per supercluster.  This assumes three pass rendering, 
one per color channel, and packs 4 components of an Nr-vector 
into each register.  Diffuse transfer requires less state: only ms (n′ 
+ 1) registers per supercluster to compute all three color channels 
by packing an rgb color per register.   
Though the programmable resources of GPUs have increased 
greatly, they are not yet sufficient to feasibly render adaptive PCA 
(Section 4.3), which requires data-dependent looping. 

7. Results 
Figure 10 compares rendering quality of various transfer encod-
ings on an example bird model with a glossy anisotropic BRDF.  
We experimentally picked a number of clusters for VQ (n′=0) and 
a number of representative vectors for pure PCA (mc=1) such that 
rendering performance matched that from CPCA with n′=8, 
mc=256.  For CPCA, we used iterative PCA encoding from 
Section 4.2.  We applied superclustering (Section 4.3) to both VQ 
and CPCA to the extent permitted by hardware register limits (it is 

unnecessary for pure PCA since there is only 
one cluster).  Example images, encoding error, 
and rendering rates appear in the figure for all 
three methods as well as the uncompressed 
original.  Methods used before in computer 
graphics [Nishino et al. 1999][Wood et al. 2000] 
perform poorly: pure PCA is smooth but has 
high error; VQ reduces error but has obvious 
cluster artifacts. Our CPCA result (third column) 
is very faithful to the uncompressed image on 
the far right. 
Figure 11 shows the effect on encoding accuracy 
of varying the per-cluster number of representa-
tive vectors (n′).  The two rows show results on 
two models, one smooth (bird, bottom) and one 
bumpier (Buddha, top).  Each column corre-
sponds to a different n′.  The signal encoded 
represents glossy transfer for an anisotropic 

  
Order 10, static, n′=1 

SE=15.293 
Order 10, iter, n′=1 

SE=8.83 
Order 10, iter, n′=2 

SE=2.23 
Order 10, iter, n′=4 

SE=0.432 
Order 5 

Uncompressed 

Figure 6: Higher-order lighting for diffuse transfer (simple two-polygon scene).  The left four 
columns show CPCA-encoded results for 10th order lighting (N=100) using various numbers of 
representatives (n′) and mc=64.  The rightmost column shows uncompressed  5th order lighting 
(N=25) used in [Sloan et al. 2002].  Note how shadows are sharpened at higher order and how 
iterative PCA adapts cluster shapes to the transfer signal better than static PCA (leftmost two 
columns).  CPCA with  n′=4 provides an accurate approximation that can be rendered in real-time. 
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BRDF, including multiple bounce interreflections for the 
Buddha model, but only shadowing for the bird model. With 
about 8 cluster PCA vectors, we obtain very accurate results 
that can be rendered quickly. Rendering results using uncom-

pressed transfer 
data (without 
CPCA encod-
ing) is shown in 
the far right 

column.  CPCA speeds up rendering by more than a factor of 
10 compared to uncompressed rendering [Sloan et al. 2002] 
with little visual loss.  
Interestingly, though the Buddha model has higher error per 
transfer sample than the bird model, error is masked by its 
high-frequency spatial variation.  The Buddha’s n′=4 result 
looks quite accurate, whereas the bird’s has cluster artifacts 
visible in the shadowed neck area.  Error on the Buddha 
reveals itself in the neck/chin shadow and the pedestal shadow 
between the feet. 
Figure 9 and Figure 8 show the quality of real-time rendering 
results achieved by our method.  The transfer signal for Figure 9 
represents the sum of a diffuse subsurface scattering term and a 
isotropic glossy term.  The result is a realistically rendered Bud-
dha that includes shadowing, translucency, and glossiness effects 
that respond to changes in lighting or view in real-time.   
Figure 8 includes models from [Sloan et al. 2002] which could be 
rendered quickly only by fixing the light with respect to the object 
(allowing view change), or fixing the view (allowing light move-
ment).  We now render these models with visually identical 
quality in real-time without constraints.  For comparison, uncom-
pressed rendering using 25×25 matrices gives a frame rate of 
2.9Hz for the head model, and 2.7Hz for the buddha model, a 
factor of 20× and 16× slower than rendering with CPCA-encoded 
16×25 matrices. (For 16×25 matrices, the uncompressed render-
ing speeds are 5.2Hz and 4.7Hz.)  This comparison is fair because 
16×25 matrices with least squares optimal projection (Equation 
(1)) produce results almost indistinguishable from 25×25 matrices 
with the zero-hemisphere projection (see Figure 7).  A Radeon 
9800 runs 20% faster with CPCA while uncompressed rendering 
is 1% faster, showing that CPCA scales well with the GPU. 
Table 1 compares encoding results, highlighting the preprocessing 
times and error values for static PCA (Section 4.1) vs. iterative 
PCA (Section 4.2).  Iterative encoding is expensive, but it often 
reduces error significantly (see rows for bird model, for example).  
For the Buddha model, transfer signals tend to be more spatially 
incoherent, so error reduction from iterative encoding is less 
dramatic.  Using more clusters (increasing mc) could help matters, 
but we have done little experimentation with this parameter. 
We also measured the effectiveness of cluster coherence optimiz-
ation (Section 5).  Using a 5% error threshold, which has little 
effect on visual quality, this table shows overdraw/frame rate (in 
Hz) using reclassification alone (“rec”), superclustering alone 
(“sc”), and both together (“sc+rec”).  Results are for anisotropic 
glossy transfer (“gloss-anis” from Table 1).   We achieve a 15-
20% increase in rendering speed on these examples. 

8. Conclusions and Future Work 
We have shown that CPCA-encoded transfer provides real-time 
rendering of global transport effects for a variety of geometric 
models and material characteristics, including glossy/anisotropic 
BRDFs and translucency. Though they depend on prerecorded 
transfer data over specific models, these effects are new to real-

time graphics.  CPCA is an effective and very general technique 
for approximating high-dimensional signals (e.g., transfer matri-
ces) over low-dimensional manifolds (e.g., 3D surfaces).  It 
reduces error better than VQ or PCA for the same storage and 
yields data granularity in the approximation that better suits GPU 
implementation.  Rather than grouping arbitrarily based on blocks 
in an image or polygons on a mesh, CPCA adapts cluster size and 
shape to the nature of the signal.   Since the transfer signal is a 
linear operator on a light vector, representing a cluster containing 
many samples as a low-dimensional affine subspace not only 
reduces storage but converts a matrix/vector multiply per point 
into a weighted combination of a few pre-computed vectors.  This 
is the key to our real-time performance. 
In future work, we are interested in using CPCA compression to 
precompute transfer on deformable models, perhaps by constrain-
ing the number of degrees of freedom.  We also believe CPCA 
can be used for surface signals other than radiance transfer of 
distant source lighting, including simpler signals like surface light 
fields and more complex ones like transfer for spatially varying 
illumination.  CPCA could be enhanced by an automatic search 
over the number of clusters variable (mc), at the cost of additional 
encoding time.  Finally, we are interested in combining our 
transfer technique, which is specialized for low-frequency light-
ing, with others handling high-frequency lighting. 
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9. Appendix: Hemispherical SH Projection 
9.1 Least-Squares Optimal Projection 
Let f(s) be a function over the hemisphere s=(x,y,z), sŒH. We approxi-
mate f as a linear combination of SH basis functions yi(s) restricted to H 
where these basis functions are no longer orthogonal.  So we seek 

f(s) ≈ Σi ci yi(s) 
such that this approximation has minimum squared error over H.   We call 
this vector c the least-squares optimal hemispherical projection of f.   
To derive the coefficients ci of this projection, we minimize squared error  

E = ∫H (f(s) - Σi ci yi(s))2 ds 
This is an unconstrained minimization problem with the ci forming the 
degrees of freedom.  So we take ∂E/∂ck and set it to 0: 
 ∂E/∂ck = ∫H 2 (f(s) - Σi ci yi(s)) yk(s) ds = 0   

fi   Σi ci ∫H  yi(s) yk(s) ds = ∫H f(s) yk(s) ds 
This reduces to Ac=b or c=A-1 b where A is the symmetric matrix  

Aik = ∫H  yi(s) yk(s) ds 
and b is the vector of integrals over the hemisphere of f(s) multiplied by 
the SH basis functions 

bk  = ∫H  f(s) yk(s) ds 
Alternatively, b can be thought of as the standard SH projection of a 
spherical extension of f which returns 0 when evaluated on the other half 
of the sphere, called the zero-hemisphere hemispherical projection.  Note 
that A can be inverted once regardless of the function f(s).  Note also that  
A is the identity matrix when integrating over the entire sphere. 
Readers familiar with biorthogonal bases used for wavelets will find this 
familiar; y(s) is the primal basis and A-1 y(s) forms its dual basis. 
For 5th order SH projection (25 basis functions), the matrix A is nearly 
singular – its smallest singular value is 6.59×10-6 whereas its largest 
singular value is 1 (for comparison, the second smallest singular value is 
3.10×10-4).   We can therefore discard one of the SH basis functions, since 
at least one is very well approximated as a linear combination of the others 
when restricted to a single hemisphere.  A simple analysis shows that 
discarding the l=1,m=0 SH basis function (i.e., the SH basis function that 
is linear in z) has the smallest squared error, 1.48×10-5, when approxi-
mated as a linear combination of the other basis functions. 

9.2 Error Analysis of Various Projections 
We first compare the difference between the zero-hemisphere and least-
squares optimal projections.  The integral, ∫H (Σi ci yi(s))2 ds,  of the 
squared value of an approximated function specified by its least-squares 

optimal coefficient vector c is given by cT A c.  If, as 
before, b is the zero-hemisphere hemispherical 
projection of f, then c = A-1 b is the optimal least-
squares hemispherical projection of f.  The squared 
difference between these two projections integrated 
over H is 
E1=(c-b)T A (c-b)=  cT [(A - I)T A (A - I)] c = cT Q1 c 
where I is the identity matrix.  E1 attains a maximum 
value of 0.125 and an average value of 0.0402 over 
all signals formed by linear combinations of up to 
5th order SH basis functions having unit squared 
integral over the sphere; i.e., over all unit-length 
25D vectors c. Worst- and average-case errors are 
derived as the largest and average singular value of 
the symmetric matrix Q1. These are large differences 
as a fraction of the original unit-length signal; using 
the RMS norm enlarges them still more via a square 
root.  Optimal projection represents any element of 
this function space without error. 
Another way of restricting the SH basis to the 
hemisphere ([Westin et al. 1992]) is to reflect f’s 
value about z to form a function defined over the 
whole sphere, via  
 

(a) Zero-hemisphere,  
16×25 

(b) Optimal Least-Squares, 
16×25 

(c) Original signal,  
25×25 (zero-hemisphere from [Sloan

et al. 2002]) 

Figure 7: Projection comparison for glossy transfer matrices.  Note the increased fidelity of the 
optimal least-squares projection (b) compared to zero-hemisphere (a) especially at the silhouettes 
(blue and red from colored light sources) where the Fresnel factor in the BRDF has high energy. 
Essentially, using optimal least-squares matches accuracy of a 25×25 matrix from [Sloan et al. 
2002] via a 16×25 matrix (compare b and c). 
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{ ( , , ), if 0( , , ) ( , , ), otherwiseodd
f x y z zf x y z f x y z

≥= − −  

We can then derive a hemispherical projection of f as the coefficient 
vector given by the standard SH projection of fodd.  We call this method the 
odd reflection hemispherical projection.  It is easy to see that a spherical 
function given by its SH coefficient vector c and then restricted to the z ≥ 
0 hemisphere yields a projection coefficient of 2ci for the odd SH basis 
functions, for which yi(x,y,z) = yi(x,y,-z), and 0 for the even SH basis 
functions, for which yi(x,y,z) = yi(x,y,z) (all SH basis functions are either 
odd or even in z).  
We analyze reflection projection in terms of squared error in the same way 
as for zero-hemisphere projection.  Since the projection should have a 
comparable number (i.e, at least 25) of nonzero projection coefficients, we 
use SH basis functions up to order 8, which includes 28 odd (and thus 
nonzero) basis functions and 36 even ones, for a total of 64.  Using this 
projection method for the same 5th order function space of interest, 
represented by the coefficient vector c, yields error E2 defined as 

E2 = cT [ (D*A – I)T A  (D*A – I) ] c  = cT Q2 c 
where D* is a 64×64 diagonal matrix which scales odd basis functions by 
2 and even ones by 0, and A is the symmetric matrix defined previously 
but now for up to 8th order (64×64).  Using an SVD of the upper left 
25×25 block of the symmetric matrix Q2, the worst case error over all 
unit-length 25D vectors c is given by its largest singular value and equals 
0.145.  The average squared error is given by the average singular value of 
the upper-left block of Q2 and equals 0.044.  In other words, odd reflection 
is worse than zero-hemisphere projection in both worst-case and average-
case, even though it has more projection coefficients. 
A similar analysis can be applied to even reflection, by projecting the even 
reflection extension of f defined as 

{ ( , , ), if 0( , , ) ( , , ), otherwiseeven
f x y z zf x y z f x y z

≥= −  

For 7th order SH basis functions, 28 are even and thus produce nonzero 
coefficients.  An error measure for even reflection is identical to E2 except 
that its diagonal matrix D* scales by 2 the even basis functions and zeroes 
the odd.  This projection provides worst-case error over all unit-length 
signals c of 0.022 and average-case error of 0.0036; still significant but far 
less than either the zero-hemisphere or odd reflection projections.   
Interestingly, even reflection using a smaller 5th order basis with only 15 
relevant basis functions provides 0.193 worst-case and 0.030 average-case 
error – better average-case error than zero-hemisphere projection with 
many fewer coefficients. 

 

 

So even reflection is better than zero-hemisphere which in turn is better 
than odd reflection to approximate functions over the hemisphere.  This 
can be understood because odd reflection produces a discontinuous 
spherical extension, while even reflection is continuous.  Zeroing out the 
hemisphere is at least continuous for a portion of its basis functions – the 
odd ones.  [Westin et al. 1992] also included scaling of the SH basis 
function by z, so that scaled odd reflection provides a continuous spherical 
extension.   But such scaling yields high approximation error unless f 
roughly decreases as z→0 and f(x,y,0)=0.  This is not generally true of our 
exiting radiance functions. 
 

 

 
Figure 9: Translucent+glossy Buddha in two lighting envi-
ronments.  These images were rendered at 27Hz. 

 

 
(a) Head, 58.5Hz (b) Buddha, 42.8Hz 

Figure 8: Glossy phong models.  We get a performance speedup of 16-
20x over the method in [Sloan et al. 2002] without noticeable degrada-
tion, by encoding with CPCA and using least-squares optimal 
projection to reduce matrix rows from 25 to 16. 
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PCA, mc =1, n′=20 

45.7Hz, SE=101304 
VQ, mc=1792, n′=0 

41.8Hz, SE=14799 
CPCA, mc=256, n′=8 

45.5Hz, SE=294.4 
Uncompressed 

3.7Hz, SE=0 

Figure 10: VQ vs. PCA vs. CPCA quality results for matched rendering performance.  The transfer signal encoded was a 24×25 (600D) glossy transfer 
matrix for an anisotropic BRDF.  CPCA achieves much better visual and quantitative accuracy than VQ and pure PCA.  Rendering frame rates and error 
measurements are listed below each of the four columns.  CPCA was encoded using the iterative method of Section 4.2. 

 

 

     
40.4Hz, SE= 40353.5 36.4Hz, SE=21077.5 24.2Hz, SE=8524.1 18.7Hz, SE= 4413.01 3.3Hz, SE=0 

58.9Hz, SE=9510.75 57.1Hz, SE=2353.09 45.5Hz, SE=294.421 31.9Hz, SE=66.7495 3.7Hz, SE=0 

CPCA, n′=2 CPCA, n′=4 CPCA, n′=8 CPCA, n′=12 uncompressed 
Figure 11: Varying the number of representatives per cluster (n′).  Signal is glossy 24×25 transfer with anisotropic BRDF, mc=256. 
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