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This chapter explains NVIDIA’s Cg Programming Language for programmable graphics 
hardware.  Cg provides broad shader portability across a range of graphics hardware 
functionality (supporting programmable GPUs spanning the DirectX 8 and DirectX 9 
feature sets).  Shaders written in Cg can be used with OpenGL or Direct3D; Cg is API-
neutral and does not tie your shader to a particular 3D API or platform.  For example, 
Direct3D programmers can re-compile Cg programs with Microsoft’s HLSL language 
implementation.  Cg supports all versions of Windows (including legacy NT 4.0 and 
Windows 95 versions), Linux, Apple’s OS X for the Macintosh, and Sony’s upcoming 
PlayStation 3. 

Collected in this chapter are the following articles: 

•  Cg in Two Pages:  As the title indicates, this article summaries Cg in just two 
pages, including one vertex and one fragment program example. 
 

•  Cg: A system for programming graphics hardware in a C-like language:  This 
longer SIGGRAPH 2002 paper explains the design rationale for Cg. 
 

•  A Follow-up Cg Runtime Tutorial for Readers of The Cg Tutorial:  This article 
presents a complete but simple ANSI C program that uses OpenGL, GLUT, and 
the Cg runtime to render a bump-mapped torus using Cg vertex and fragment 
shaders from Chapter 8 of The Cg Tutorial.  It’s easier than you think to integrate 
Cg into your application; this article explains how! 
 

•  Comparison Tables for HLSL, OpenGL Shading Language, and Cg:  Are you 
looking for a side-by-side comparison of the various features of the several 
different hardware-accelerated shading languages available to you today? 
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Cg in Two Pages 
Mark J. Kilgard 

NVIDIA Corporation 
Austin, Texas 

January 16, 2003 
 

1. Cg by Example 
Cg is a language for programming GPUs. Cg programs look a lot 
like C programs. Here is a Cg vertex program: 
void simpleTransform(float4 objectPosition : POSITION,

float4 color : COLOR,
float4 decalCoord : TEXCOORD0,
float4 lightMapCoord : TEXCOORD1,

out float4 clipPosition : POSITION,
out float4 oColor : COLOR,
out float4 oDecalCoord : TEXCOORD0,
out float4 oLightMapCoord : TEXCOORD1,

uniform float brightness,
uniform float4x4 modelViewProjection)

{
clipPosition = mul(modelViewProjection, objectPosition);
oColor = brightness * color;
oDecalCoord = decalCoord;
oLightMapCoord = lightMapCoord;

}

1.1 Vertex Program Explanation 
The program transforms an object-space position for a vertex by a 
4x4 matrix containing the concatenation of the modeling, viewing, 
and projection transforms. The resulting vector is output as the 
clip-space position of the vertex. The per-vertex color is scaled by 
a floating-point parameter prior to output. Also, two texture 
coordinate sets are passed through unperturbed. 
Cg supports scalar data types such as float but also has first-class 
support for vector data types. float4 represents a vector of four 
floats. float4x4 represents a matrix. mul is a standard library 
routine that performs matrix by vector multiplication. Cg provides 
function overloading like C++; mul is an overloaded function so it 
can be used to multiply all combinations of vectors and matrices. 
Cg provides the same operators as C. Unlike C however, Cg 
operators accept and return vectors as well as scalars. For example, 
the scalar, brightness, scales the vector, color, as you would 
expect. 
In Cg, declaring a parameter with the uniform modifier indicates 
that its value is initialized by an external source that will not vary 
over a given batch of vertices. In this respect, the uniform modifier 
in Cg is different from the uniform modifier in RenderMan but 
used in similar contexts. In practice, the external source is some 
OpenGL or Direct3D state that your application takes care to load 
appropriately. For example, your application must supply the 
modelViewProjection matrix and the brightness scalar. The Cg 
runtime library provides an API for loading your application state 
into the appropriate API state required by the compiled program. 
The POSITION, COLOR, TEXCOORD0, and TEXCOORD1 identifiers 
following the objectPosition, color, decalCoord, and 
lightMapCoord parameters are input semantics. They indicate how 
their parameters are initialized by per-vertex varying data. In 
OpenGL, glVertex commands feed the POSITION input semantic; 
glColor commands feed the COLOR semantic; glMultiTexCoord 
commands feed the TEXCOORDn semantics. 

The out modifier indicates that clipPosition, oColor, 
oDecalCoord, and oLightMapCoord parameters are output by the 
program. The semantics that follow these parameters are therefore 
output semantics. The respective semantics indicate the program 
outputs a transformed clip-space position and a scaled color. Also, 
two sets of texture coordinates are passed through. The resulting 
vertex is feed to primitive assembly to eventually generate a 
primitive for rasterization.  
Compiling the program requires the program source code, the 
name of the entry function to compile (simpleTransform), and a 
profile name (vs_1_1). 

The Cg compiler can then compile the above Cg program into the 
following DirectX 8 vertex shader: 
vs.1.1
mov oT0, v7
mov oT1, v8
dp4 oPos.x, c1, v0
dp4 oPos.y, c2, v0
dp4 oPos.z, c3, v0
dp4 oPos.w, c4, v0
mul oD0, c0.x, v5

The profile indicates for what API execution environment the 
program should be compiled. This same program can be compiled 
for the DirectX 9 vertex shader profile (vs_2_0), the multi-vendor 
OpenGL vertex program extension (arbvp1), or NVIDIA-
proprietary OpenGL extensions (vp20 & vp30). 

The process of compiling Cg programs can take place during the 
initialization of your application using Cg. The Cg runtime 
contains the Cg compiler as well as API-dependent routines that 
greatly simplify the process of configuring your compiled program 
for use with either OpenGL or Direct3D. 

1.2 Fragment Program Explanation 
In addition to writing programs to process vertices, you can write 
programs to process fragments. Here is a Cg fragment program: 
float4 brightLightMapDecal(float4 color : COLOR,

float4 decalCoord : TEXCOORD0,
float4 lightMapCoord : TEXCOORD1,

uniform sampler2D decal,
uniform sampler2D lightMap) : COLOR

{
float4 d = tex2Dproj(decal, decalCoord);
float4 lm = tex2Dproj(lightMap, lightMapCoord);
return 2.0 * color * d * lm;

}

The input parameters correspond to the interpolated color and two 
texture coordinate sets as designated by their input semantics. 
The sampler2D type corresponds to a 2D texture unit. The Cg 
standard library routine tex2Dproj performs a projective 2D 
texture lookup. The two tex2Dproj calls sample a decal and light 
map texture and assign the result to the local variables, d and lm, 
respectively.  
The program multiplies the two textures results, the interpolated 
color, and the constant 2.0 together and returns this RGBA color. 
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The program returns a float4 and the semantic for the return value 
is COLOR, the final color of the fragment. 

The Cg compiler generates the following code for 
brightLightMapDecal when compiled with the arbfp1 multi-
vendor OpenGL fragment profile: 
!!ARBfp1.0
PARAM c0 = {2, 2, 2, 2}; TEMP R0; TEMP R1; TEMP R2;
TXP R0, fragment.texcoord[0], texture[0], 2D;
TXP R1, fragment.texcoord[1], texture[1], 2D;
MUL R2, c0.x, fragment.color.primary;
MUL R0, R2, R0;
MUL result.color, R0, R1;
END

This same program also compiles for the DirectX 8 and 9 profiles 
(ps_1_3 & ps_2_x) and NVIDIA-proprietary OpenGL extensions 
(fp20 & fp30). 

2. Other Cg Functionality 
2.1 Features from C 
Cg provides structures and arrays, including multi-dimensional 
arrays. Cg provides all of C’s arithmetic operators (+, *, /, etc.). Cg 
provides a boolean type and boolean and relational operators (||, 
&&, !, etc.). Cg provides increment/decrement (++/--) operators, 
the conditional expression operator (?:), assignment expressions 
(+=, etc.), and even the C comma operator. 

Cg provides user-defined functions (in addition to pre-defined 
standard library functions), but recursive functions are not allowed. 
Cg provides a subset of C’s control flow constructs (do, while, 
for, if, break, continue); other constructs such as goto and 
switch are not supported in current the current Cg implementation 
but the necessary keywords are reserved. 
Like C, Cg does not mandate the precision and range of its data 
types. In practice, the profile chosen for compilation determines 
the concrete representation for each data type. float, half, and 
double are meant to represent continuous values, ideally in 
floating-point, but this can depend on the profile. half is intended 
for a 16-bit half-precision floating-point data type. (NVIDIA’s 
CineFX architecture provides such a data type.) int is an integer 
data type, usually used for looping and indexing. fixed is an 
additional data type intended to represent a fixed-point continuous 
data type that may not be floating-point. 
Cg provides #include, #define, #ifdef, etc. matching the C 
preprocessor. Cg supports C and C++ comments. 

2.2 Additional Features Not in C 
Cg provides built-in constructors (similar to C++ but not user-
defined) for vector data types: 
float4 vec1 = float4(4.0, -2.0, 5.0, 3.0);

Swizzling is a way of rearranging components of vector values and 
constructing shorter or longer vectors. Example: 
float2 vec2 = vec1.yx; // vec2 = (-2.0, 4.0)
float scalar = vec1.w; // scalar = 3.0
float3 vec3 = scalar.xxx; // vec3 = (3.0, 3.0, 3.0)

More complicated swizzling syntax is available for matrices. 
Vector and matrix elements can also be accessed with standard 
array indexing syntax as well. 
Write masking restricts vector assignments to indicated 
components. Example: 
vec1.xw = vec3; // vec1 = (3.0, -2.0, 5.0, 3.0)

Use either .xyzw or .rgba suffixes swizzling and write masking. 

The Cg standard library includes a large set of built-in functions 
for mathematics (abs, dot, log2, reflect, rsqrt, etc.) and texture 
access (texCUBE, tex3Dproj, etc.). The standard library makes 
extensive use of function overloading (similar to C++) to support 
different vector lengths and data types. There is no need to use 
#include to obtain prototypes for standard library routines as in C; 
Cg standard library routines are automatically prototyped. 
In addition to the out modifier for call-by-result parameter 
passing, the inout modifier treats a parameter as both a call-by-
value input parameter and a call-by-result output parameter.  
The discard keyword is similar to return but aborts the 
processing without returning a transformed fragment. 

2.3 Features Not Supported 
Cg has no support currently for pointers or bitwise operations 
(however, the necessary C operators and keywords are reserved for 
this purpose). Cg does not (currently) support unions and function 
variables. 
Cg lacks C++ features for “programming in the large” such as 
classes, templates, operator overloading, exception handling, and 
namespaces. 
The Cg standard library lacks routines for functionality such as 
string processing, file input/output, and memory allocation, which 
is beyond the specialized scope of Cg. 
However, Cg reserves all C and C++ keywords so that features 
from these languages could be incorporated into future 
implementations of Cg as warranted.  

3. Profile Dependencies 
When you compile a C or C++ program, you expect it to compile 
without regard to how big (within reason) the program is or what 
the program does. With Cg, a syntactically and semantically correct 
program may still not compile due to limitations of the profile for 
which you are compiling the program. 
For example, it is currently an error to access a texture when 
compiling with a vertex profile. Future vertex profiles may well 
allow texture accesses, but existing vertex profiles do not. Other 
errors are more inherent. For example, a fragment profile should 
not output a parameter with a TEXCOORD0 semantic. Other errors 
may be due to exceeding a capacity limit of current GPUs such as 
the maximum number of instructions or the number of texture units 
available. 
Understand that these profile dependent errors do not reflect 
limitations of the Cg language, but rather limitations of the current 
implementation of Cg or the underlying hardware limitations of 
your target GPU. 

4. Compatibility and Portability 
NVIDIA's Cg implementation and Microsoft's High Level Shader 
Language (HLSL) are very similar as they were co-developed. 
HLSL is integrated with DirectX 9 and the Windows operating 
system. Cg provides support for multiple APIs (OpenGL, Direct X 
8, and Direct X 9) and multiple operating systems (Windows, 
Linux, and Mac OS X). Because Cg interfaces to multi-vendor 
APIs, Cg runs on GPUs from multiple vendors. 

5. More Information 
Read the The Cg Tutorial: The Definitive Guide to Programmable 
Real-Time Graphics (ISBN 0321194969) published by Addison-
Wesley. 
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Cg: A system for programming graphics hardware in a C-like language

William R. Mark∗ R. Steven Glanville† Kurt Akeley† Mark J. Kilgard†

The University of Texas at Austin∗ NVIDIA Corporation†

Abstract

The latest real-time graphics architectures include programmable
floating-point vertex and fragment processors, with support for
data-dependent control flow in the vertex processor. We present
a programming language and a supporting system that are designed
for programming these stream processors. The language follows
the philosophy of C, in that it is a hardware-oriented, general-
purpose language, rather than an application-specific shading
language. The language includes a variety of facilities designed
to support the key architectural features of programmable graphics
processors, and is designed to support multiple generations of
graphics architectures with different levels of functionality. The
system supports both of the major 3D graphics APIs: OpenGL and
Direct3D. This paper identifies many of the choices that we faced as
we designed the system, and explains why we made the decisions
that we did.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;
D.3.4 [Programming Languages]: Processors – Compilers and code
generation I.3.1 [Computer Graphics]: Hardware Architecture—
Graphics processors; I.3.6 [Computer Graphics]: Methodology and
Techniques—Languages

1 Introduction

Graphics architectures are now highly programmable, and support
application-specified assembly language programs for both vertex
processing and fragment processing. But it is already clear that
the most effective tool for programming these architectures is a
high level language. Such languages provide the usual benefits
of program portability and improved programmer productivity,
and they also make it easier develop programs incrementally and
interactively, a benefit that is particularly valuable for shader
programs.

In this paper we describe a system for programming graphics
hardware that supports programs written in a new C-like language
named Cg. The Cg language is based on both the syntax and
the philosophy of C [Kernighan and Ritchie 1988]. In particular,
Cg is intended to be general-purpose (as much as is possible
on graphics hardware), rather than application specific, and is
a hardware-oriented language. As in C, most data types and
operators have an obvious mapping to hardware operations, so
that it is easy to write high-performance code. Cg includes a

∗Formerly at NVIDIA, where this work was performed.
email: billmark@cs.utexas.edu, {steveg,kakeley,mjk}@nvidia.com

variety of new features designed to efficiently support the unique
architectural characteristics of programmable graphics processors.
Cg also adopts a few features from C++ [Stroustrup 2000] and
Java [Joy et al. 2000], but unlike these languages Cg is intended
to be a language for “programming in the small,” rather than
“programming in the large.”

Cg is most commonly used for implementing shading algorithms
(Figure 1), but Cg is not an application-specific shading language
in the sense that the RenderMan shading language [Hanrahan and
Lawson 1990] or the Stanford real-time shading language (RTSL)
[Proudfoot et al. 2001] are. For example, Cg omits high-level
shading-specific facilities such as built-in support for separate
surface and light shaders. It also omits specialized data types
for colors and points, but supports general-purpose user-defined
compound data types such as structs and arrays.

As is the case for almost all system designs, most features
of the Cg language and system are not novel when considered
individually. However, when considered as a whole, we believe
that the system and its design goals are substantially different from
any previously-implemented system for programming graphics
hardware.

The design, implementation, and public release of the Cg system
has occurred concurrently with the design and development of
similar systems by 3Dlabs [2002], the OpenGL ARB [Kessenich
et al. 2003], and Microsoft [2002b]. There has been significant
cross-pollination of ideas between the different efforts, via both
public and private channels, and all four systems have improved
as a result of this exchange. We will discuss some of the remaining
similarities and differences between these systems throughout this
paper.

This paper discusses the Cg programmer interfaces (i.e. Cg
language and APIs) and the high-level Cg system architecture.
We focus on describing the key design choices that we faced and
on explaining why we made the decisions we did, rather than
providing a language tutorial or describing the system’s detailed
implementation and internal architecture. More information about
the Cg language is available in the language specification [NVIDIA
Corp. 2003a] and tutorial [Fernando and Kilgard 2003].

Figure 1: Screen captures from a real-time Cg demo running on
an NVIDIA GeForceTMFX. The procedural paint shader makes the
car’s surface rustier as time progresses.

2 Background

Off-line rendering systems have supported user-programmable
components for many years. Early efforts included Perlin’s
pixel-stream editor [1985] and Cook’s shade-tree system [1984].
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Today, most off-line rendering systems use the RenderMan
shading language, which was specifically designed for procedural
computation of surface and light properties.

In real-time rendering systems, support for user programmability
has evolved with the underlying graphics hardware. The UNC
PixelFlow architecture [Molnar et al. 1992] and its accompanying
PFMan procedural shading language [Olano and Lastra 1998] and
rendering API [Leech 1998] demonstrated the utility of real-time
procedural shading capabilities. Commercial systems are only now
reaching similar levels of flexibility and performance.

For many years, mainstream commercial graphics hardware
was configurable, but not user programmable (e.g. RealityEngine
[Akeley 1993]). SGI’s OpenGL shader system [Peercy et al.
2000] and Quake III’s shading language [Jaquays and Hook 1999]
targeted the fragment-processing portion of this hardware using
multipass rendering techniques, and demonstrated that mainstream
developers would use higher-level tools to program graphics
hardware.

Although multipass rendering techniques can map almost any
computation onto hardware with just a few basic capabilities
[Peercy et al. 2000], to perform well multipass techniques require
hardware architectures with a high ratio of memory bandwidth to
arithmetic units. But VLSI technology trends are driving systems
in the opposite direction: arithmetic capability is growing faster
than off-chip bandwidth [Dally and Poulton 1998].

In response to this trend, graphics architects began to incorporate
programmable processors into both the vertex-processing and
fragment-processing stages of single-chip graphics architectures
[Lindholm et al. 2001]. The Stanford RTSL system [Proudfoot
et al. 2001] was designed for this type of programmable graphics
hardware. Earlier real-time shading systems had focused on
fragment computations, but RTSL supports vertex computations as
well. Using RTSL, a user writes a single program, but may specify
whether particular computations should be mapped to the vertex
processor or the fragment processor by using special data-type
modifiers.

The most recent generation of PC graphics hardware (DirectX 9
or DX9 hardware, announced in 2002), continues the trend of
adding additional programmable functionality to both the fragment
and the vertex processors (Figure 2). The fragment processor adds
flexible support for floating-point arithmetic and computed texture
coordinates [Mitchell 2002; NVIDIA Corp. 2003b]. Of greater
significance for languages and compilers, the vertex processor
in some of these architectures departs from the previous SIMD
programming model, by adding conditional branching functionality
[NVIDIA Corp. 2003c]. This branching capability cannot be easily
supported by RTSL for reasons that we will discuss later.

Per-Vertex
Operations

Programmable Programmable

Primitive
Assembly and
Rasterization

Framebuffer
Operations and

Storage

Per-Fragment
Operations

Figure 2: Current graphics architectures (DX9-class architectures)
include programmable floating-point vertex and fragment proces-
sors.

Despite these advances in PC graphics architectures, they
cannot yet support a complete implementation of C, as the SONY
PlayStation 2 architecture does for its vertex processor that resides
on a separate chip [Codeplay Corporation 2003].

Thus, by early 2001, when our group at NVIDIA began to
experiment with programming languages for graphics hardware,
it was clear that developers would need a high-level language
to use future hardware effectively, but that each of the existing
languages had significant shortcomings. Microsoft was interested
in addressing this same problem, so the two companies collaborated

on the design of a new language. NVIDIA refers to its
implementation of the language, and the system that supports it,
as Cg. In this paper, we consider the design of the Cg language and
the design of the system that surrounds and supports it.

3 Design Goals

The language and system design was guided by a handful of high-
level goals:

• Ease of programming.
Programming in assembly language is slow and painful, and
discourages the rapid experimentation with ideas and the
easy reuse of code that the off-line rendering community has
already shown to be crucial for shader design.

• Portability.
We wanted programs to be portable across hardware from
different companies, across hardware generations (for DX8-
class hardware or better), across operating systems (Windows,
Linux, and MacOS X), and across major 3D APIs (OpenGL
[Segal and Akeley 2002] and DirectX [Microsoft Corp.
2002a]). Our goal of portability across APIs was largely
motivated by the fact that GPU programs, and especially
“shader” programs, are often best thought of as art assets –
they are associated more closely with the 3D scene model
than they are with the actual application code. As a result, a
particular GPU program is often used by multiple applications
(e.g. content-creation tools), and on different platforms (e.g.
PCs and entertainment consoles).

• Complete support for hardware functionality.
We believed that developers would be reluctant to use a high-
level language if it blocked access to functionality that was
available in assembly language.

• Performance.
End users and developers pay close attention to the perfor-
mance of graphics systems. Our goal was to design a language
and system architecture that could provide performance equal
to, or better than, typical hand-written GPU assembly code.
We focused primarily on interactive applications.

• Minimal interference with application data.
When designing any system layered between applications
and the graphics hardware, it is tempting to have the system
manage the scene data because doing so facilitates resource
virtualization and certain global optimizations. Toolkits such
as SGI’s Performer [Rohlf and Helman 1994] and Electronic
Arts’s EAGL [Lalonde and Schenk 2002] are examples of
software layers that successfully manage scene data, but their
success depends on both their domain-specificity and on the
willingness of application developers to organize their code
in conforming ways. We wanted Cg to be usable in existing
applications, without the need for substantial reorganization.
And we wanted Cg to be applicable to a wide variety of
interactive and non-interactive application categories. Past
experience suggests that these goals are best achieved by
avoiding management of scene data.

• Ease of adoption.
In general, systems that use a familiar programming model
and can be adopted incrementally are accepted more rapidly
than systems that must be adopted on an all-or-nothing basis.
For example, we wanted the Cg system to support integration
of a vertex program written in Cg with a fragment program
written in assembly language, and vice-versa.

• Extensibility for future hardware.
Future programmable graphics architectures will be more
flexible than today’s architectures, and they will require
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additional language functionality. We wanted to design a
language that could be extended naturally without breaking
backward compatibility.

• Support for non-shading uses of the GPU.
Graphics processors are rapidly becoming sufficiently flexible
that they can be used for tasks other than programmable
transformation and shading (e.g. [Boltz et al. 2003]). We
wanted to design a language that could support these new uses
of GPUs.

Some of these goals are in partial conflict with each other.
In cases of conflict, the goals of high performance and support
for hardware functionality took precedence, as long as doing so
did not fundamentally compromise the ease-of-use advantage of
programming in a high-level language.

Often system designers must preserve substantial compatibility
with old system interfaces (e.g. OpenGL is similar to IRIS GL). In
our case, that was a non-goal because most pre-existing high level
shader code (e.g. RenderMan shaders) must be modified anyway to
achieve real-time performance on today’s graphics architectures.

4 Key Design Decisions

4.1 A “general-purpose language”, not a
domain-specific “shading language”

Computer scientists have long debated the merits of domain-
specific languages vs. general-purpose languages. We faced the
same choice – should we design a language specifically tailored
for shading computations, or a more general-purpose language
intended to expose the fundamental capabilities of programmable
graphics architectures?

Domain-specific languages have the potential to improve
programmer productivity, to support domain-specific forms of
modularity (such as surface and light shaders), and to use domain-
specific information to support optimizations (e.g. disabling lights
that are not visible from a particular surface). Most of these
advantages are obtained by raising the language’s abstraction level
with domain-specific data types, operators, and control constructs.

These advantages are counterbalanced by a number of disadvan-
tages that typically accompany a language based on higher-level
abstractions. First, in contrast to a low-level language such as
C, the run-time cost of language operators may not be obvious.
For example, the RenderMan system may compute coordinate
transformations that are not explicitly requested. Second, the
language’s abstraction may not match the abstraction desired by
the user. For example, neither RenderMan nor RTSL can easily
support OpenGL’s standard lighting model because the OpenGL
model uses separate light colors for the diffuse and specular light
terms. Finally, if the domain-specific language abstraction does not
match the underlying hardware architecture well, the language’s
compiler and runtime system may have to take complete control of
the underlying hardware to translate between the two abstractions.

These issues – when considered with our design goals of high
performance, minimal management of application data, and support
for non-shading uses of GPU’s – led us to develop a hardware-
focused general-purpose language rather than a domain-specific
shading language.

We were particularly inspired by the success of the C language in
achieving goals for performance, portability, and generality of CPU
programs that were very similar to our goals for a GPU language.
One of C’s designers, Dennis Ritchie, makes this point well [Ritchie
1993]:

“C is quirky, flawed, and an enormous success.
While accidents of history surely helped, it evidently

satisfied a need for a system implementation language
efficient enough to displace assembly language, yet
sufficiently abstract and fluent to describe algorithms
and interactions in a wide variety of environments.”

These reasons, along with C’s familiarity for developers, led us
to use C’s syntax, semantics, and philosophy as the initial basis
for Cg’s language specification. It was clear, however, that we
would need to extend and modify C to support GPU architectures
effectively.

Using C as the basis for a GPU language has another advantage:
It provides a pre-defined evolutionary path for supporting future
graphics architectures, which may include CPU-like features such
as general-purpose indirect addressing. Cg reserves all C and C++
keywords so that features from these languages can be incorporated
into future implementations of Cg as needed, without breaking
backward compatibility.

As will become evident, Cg also selectively uses ideas from
C++, Java, RenderMan, and RTSL. It has also drawn ideas from
and contributed ideas to the contemporaneously-developed C-like
shading languages from 3Dlabs (hereafter 3DLSL), the OpenGL
ARB (GLSL), and Microsoft (HLSL).

4.2 A program for each pipeline stage

The user-programmable processors in today’s graphics architec-
tures use a stream-processing model [Herwitz and Pomerene 1960;
Stephens 1997; Kapasi et al. 2002], as shown earlier in Figure
2. In this model, a processor reads one element of data from
an input stream, executes a program (stream kernel) that operates
on this data, and writes one element of data to an output stream.
For example, the vertex processor reads one untransformed vertex,
executes the vertex program to transform the vertex, and writes the
resulting transformed vertex to an output buffer. The output stream
from the vertex processor passes through a non-programmable
part of the pipeline (including primitive assembly, rasterization,
and interpolation), before emerging as a stream of interpolated
fragments that form the input stream to the fragment processor.

Choosing a programming model to layer on top of this stream-
processing architecture was a major design question. We initially
considered two major alternatives. The first, illustrated by RTSL
and to a lesser extent by RenderMan, is to require that the user write
a single program, with some auxiliary mechanism for specifying
whether particular computations should be performed on the vertex
processor or the fragment processor. The second, illustrated by the
assembly-level interfaces in OpenGL and Direct3D, is to use two
separate programs. In both cases, the programs consume an element
of data from one stream, and write an element of data to another
stream.

The unified vertex/fragment program model has a number of
advantages. It encapsulates all of the computations for a shader
in one piece of code, a feature that is particularly comfortable
for programmers who are already familiar with RenderMan. It
also allows the compiler to assist in deciding which processor
will perform a particular computation. For example, in RTSL,
if the programmer does not explicitly specify where a particular
computation will be performed, the compiler infers the location
using a set of well-defined rules. Finally, the single-program model
facilitates source code modularity by allowing a single function to
include related vertex and fragment computations.

However, the single-program model is not a natural match for
the underlying dual-processor architecture. If the programmable
processors omit support for branch instructions, the model can be
effective, as RTSL demonstrated. But if the processors support
branch instructions, the single-program model becomes very
awkward. For example, this programming model allows arbitrary
mixing of vertex and fragment operations within data-dependent
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loops, but the architecture can support only fragment operations
within fragment loops, and only vertex operations within vertex
loops. It would be possible to define auxiliary language rules
that forbid intermixed loop operations, but we concluded that the
result would be an unreasonably confusing programming model
that would eliminate many of the original advantages of the
single-program model.

As a result, we decided to use a multi-program model for Cg.
Besides eliminating the difficulties with data-dependent control
flow, this model’s closer correspondence to the underlying GPU
architecture makes it easier to for users to estimate the performance
of code, and allows the use of a less-intrusive compiler and
runtime system. The multi-program model also allows applications
to choose the active vertex program independently from the
active fragment program. This capability had been requested by
application developers.

A language for expressing stream kernels

After we made the decision to use a multi-program model for
Cg, we realized that we had the opportunity to both simplify and
generalize the language by eliminating most of the distinctions
between vertex programs and fragment programs. We developed
a single language specification for writing a stream kernel (i.e.
vertex program or fragment program), and then allowed particular
processors to omit support for some capabilities of the language.
For example, although the core language allows the use of texture
lookups in any program, the compiler will issue an error if the
program is compiled for any of today’s vertex processors since
today’s vertex processors don’t support texture lookups. We will
explain this mechanism in more detail later, in our discussion
of Cg’s general mechanism for supporting different graphics
architectures.

The current Cg system can be thought of as a specialized
stream processing system [Stephens 1997]. Unlike general stream
processing languages such as StreamIt [Thies et al. 2002] or
Brook [Buck and Hanrahan 2003], the Cg system does not
provide a general mechanism for specifying how to connect stream
processing kernels together. Instead, the Cg system relies on
the established graphics pipeline dataflow of GPUs. Vertex data
sent by the application is processed by the vertex kernel (i.e. the
vertex program). The results of the vertex program are passed
to primitive assembly, rasterization, and interpolation. Then the
resulting interpolated fragment parameters are processed by the
fragment kernel (i.e. the fragment program) to generate data used
by the framebuffer-test unit to update the fragment’s corresponding
pixel. Cg’s focus on kernel programming is similar to that of
Imagine KernelC [Mattson 2001]. However, if the Cg language
is considered separately from the rest of the Cg system, it is only
mildly specialized for stream-kernel programming and could be
extended to support other parallel programming models.

A data-flow interface for program inputs and outputs

For a system with a programming model based on separate vertex
and fragment programs, a natural question arises: Should the
system allow any vertex program to be used with any fragment
program? Since the vertex program communicates with the
fragment program (via the rasterizer/interpolator), how should the
vertex program outputs and fragment program inputs be defined to
ensure compatibility? In effect, this communication constitutes a
user-defined interface between the vertex program and the fragment
program, but the interface is a data-flow interface rather than a
procedural interface of the sort that C programmers are accustomed
to. A similar data-flow interface exists between the application
and inputs to the vertex program (i.e. vertex arrays map to vertex
program input registers).

When programming GPUs at the assembly level, the interface
between fragment programs and vertex programs is established at
the register level. For example, the user can establish a convention
that the vertex program should write the normal vector to the
TEXCOORD3 output register, so that it is available to the fragment
program (after being interpolated) in its TEXCOORD3 input register.
These registers may be physical registers or virtual registers (i.e.
API resources that are bound to physical registers by the driver), but
in either case the binding names must be chosen from a predefined
namespace with predefined data types.

Cg and HLSL support this same mechanism, which can be
considered to be a modified bind-by-name scheme in which a
predefined auxiliary namespace is used instead of the user-defined
identifier name. This approach provides maximum control over the
generated code, which is crucial when Cg is used for the program
on one side of the interface but not for the program on the other
side. For example, this mechanism can be used to write a fragment
program in Cg that will be compatible with a vertex program
written in assembly language.

Cg (but not HLSL) also supports a bind-by-position scheme.
Bind-by-position requires that data be organized in an ordered list
(e.g. as a function-parameter list, or a list of structure members),
with the outputs in a particular position mapping to inputs in that
same position. This scheme avoids the need to refer to a predefined
auxiliary namespace.

GLSL uses a third scheme, pure bind-by-name, that is not
supported by either Cg or HLSL. In the pure bind-by-name
scheme, the binding of identifiers to actual hardware registers
must be deferred until after the vertex program and fragment
program have been paired, which may not happen until link
time or run time. In contrast, the bind-by-position approach
allows the binding to be performed at compile time, without any
knowledge of the program at the other side of the interface. For
this reason, performance-oriented languages such as C that are
designed for separate compile and link steps have generally chosen
bind-by-position instead of bind-by-name.

4.3 Permit subsetting of language

Striking a balance between the often-conflicting goals of portability
and comprehensive support for hardware functionality was a major
design challenge. The functionality of GPU processors is growing
rapidly, so there are major differences in functionality between the
different graphics architectures that Cg supports. For example,
DX9-class architectures support floating-point fragment arithmetic
while most DX8-class architectures do not. Some DX9-class
hardware supports branching in the vertex processor while other
DX9-class hardware does not. Similarly, on all recent architectures
the vertex processor and fragment processor support different
functionality.

We considered a variety of possible approaches to hiding or
exposing these differences. When minor architectural differences
could be efficiently hidden by the compiler, we did so. However,
since performance is important in graphics, major architectural
differences cannot reasonably be hidden by a compiler. For
example, floating-point arithmetic could be emulated on a
fixed-point architecture but the resulting performance would be so
poor that the emulation would be worthless for most applications.

A different approach is to choose a particular set of capabilities,
and mandate that any implementation of the language support all
of those capabilities and no others. If the only system-design goal
had been to maximize portability, this approach would have been
the right one. GLSL currently follows this approach, although it
specifies a different set of capabilities for the vertex and fragment
processor. However, given our other design goals, there was no
reasonable point at which we could set the feature bar. We wanted
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both to support the existing installed base of DX8-class hardware,
and to provide access to the capabilities of the latest hardware. It
could be argued that the presence of significant feature disparities
is a one-time problem, but we disagree – feature disparities will
persist as long as the capabilities of graphics hardware continue to
improve, as we expect will happen.

Our remaining choice was to expose major architectural
differences as differences in language capabilities. To minimize the
impact on portability, we exposed the differences using a subsetting
mechanism. Each processor is defined by a profile that specifies
which subset of the full Cg specification is supported on that
processor. Thus, program compatibility is only compromised for
programs that use a feature that is not supported by all processors.
For example, a program that uses texture mapping cannot be
compiled with any current vertex profile. The explicit existence
of this mechanism is one of the major differences between Cg and
GLSL, and represents a significant difference in design philosophy.
However, hardware vendors are free to implement subsets and
supersets of GLSL using the OpenGL extension mechanism,
potentially reducing the significance of this difference in practice.

The NVIDIA Cg compiler currently supports 18 different
profiles, representing vertex and fragment processors for the
DirectX 8, DirectX 9, and OpenGL APIs, along with various
extensions and capability bits representing the functionality of
different hardware. Although one might be concerned that this
profile mechanism would make it difficult to write portable Cg
programs, it is surprisingly easy to write a single Cg program that
will run on all vertex profiles, or on all DX9-class fragment profiles.
With care, it is even possible to write a single Cg program that will
run on any fragment profile; the extra difficulty is caused by the
idiosyncratic nature of DX8-class fragment hardware.

4.4 Modular system architecture

Any system has a variety of modules connected by internal and
external interfaces. Taken as a whole, these constitute the system
architecture. Cg’s system architecture (Figure 3) includes much
more than the language itself. More specifically, it includes an
API that applications can use to compile and manage Cg programs
(the Cg runtime), and several modules layered on top of existing
graphics APIs.

Cg’s architecture is more modular than that of the SGI, GLSL
and RTSL systems but similar to that of HLSL. The architecture
provides a high degree of flexibility for developers in deciding
which parts of the system to use. For example, it is easy to use
the complete Cg system to program the fragment processor while
relying on the OpenGL API’s conventional fixed-function routines
to control the vertex processor. The modular nature of the system
does makes it difficult to implement some optimizations that would
cross module boundaries; this tradeoff is a classic one in systems
design.

Metaprogramming systems (e.g. [McCool et al. 2002]), which
use operator overloading to embed one language within another,
have a very different system architecture. In metaprogramming
systems, there is no clear boundary between the host CPU language,
the embedded GPU language, and the mechanism for passing data
between the two. This tight integration has some advantages, but
we chose a more modular, conventional architecture for Cg. The
two classes of system architectures are sufficiently different that we
do not attempt to compare them in detail in this paper.

4.4.1 No mandatory virtualization

The most contentious system design question we faced was
whether or not to automatically virtualize hardware resources using
software-based multi-pass techniques. Current hardware limits the
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Figure 3: Cg system architecture

number of instructions, live temporary registers, bound textures,
program inputs, and program outputs used by a program. Thus,
without software-assisted virtualization a sufficiently complex
program will exceed these limits and fail to compile. The limits
on instruction count and temporary register count are potentially
the most serious because the consumption of these resources is
not clearly defined in a high-level language and may depend on
compiler optimizations.

The SGI and RTSL systems demonstrated that it is possible to
use multi-pass techniques to virtualize some resources for pre-DX8
hardware [Peercy et al. 2000; Proudfoot et al. 2001] and for later
hardware [Chan et al. 2002]. However, we consider it to be im-
possible to efficiently, correctly, and automatically virtualize most
DX8 architectures because the architectures use high-precision data
types internally, but do not provide a high-precision framebuffer to
store these data types between passes.

Despite the apparent advantages of automatic virtualization, we
do not require it in the Cg language specification, and we do
not support it in the current release of the Cg system. Several
factors led to this decision. First, virtualization is most valuable on
hardware with the fewest resources – DX8-class hardware in this
case – but we had already concluded that effective virtualization
of this hardware was impossible. Second, the resource limits
on newer DX9-class hardware are set high enough that most
programs that exceed the resource limits would run too slowly
to be useful in a real-time application. Finally, virtualization
on current hardware requires global management of application
data and hardware resources that conflicted with our design goals.
More specifically, the output from the vertex processor must be
fed to the fragment processor, so multi-pass virtualization requires
the system to manage simultaneously the vertex program and the
fragment program, as well as all program parameters and various
non-programmable graphics state. For example, when RTSL
converts a long fragment program into multiple passes, it must also
generate different vertex processor code for each pass.

Although Cg’s language specification does not require virtualiza-
tion, we took care to define the language so that it does not preclude
virtualization. As long as the user avoids binding inputs and outputs
to specific hardware registers, the language itself is virtualizable.
For example, Cg adopts RTSL’s approach of representing textures
using identifiers (declared with special sampler types), rather than
texture unit numbers, which are implicitly tied to a single rendering
pass. Virtualization is likely to be useful for applications that can
tolerate slow frame rates (e.g. 1 frame/sec), and for non-rendering
uses of the GPU. Future hardware is likely to include better support
for resource virtualization, at which point it would be easier for
either the hardware driver or the Cg system to support it.

Of the systems contemporary with Cg, HLSL neither requires
nor implements virtualization, and GLSL requires it only for
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resources whose usage is not directly visible in the language (i.e.
instructions and temporary registers).

4.4.2 Layered above an assembly language interface

High level languages are generally compiled to a machine/assembly
language that runs directly on the hardware. The system designers
must decide whether or not to expose this machine/assembly
language as an additional interface for system users. If this interface
is not exposed, the high level language serves as the only interface
to the programmable hardware.

With a separate assembly language interface, the system is
more modular. The compiler and associated run-time system may
be distributed separately from the driver, or even shipped with
the application itself. Users can choose between running the
compiler as a command-line tool, or invoking it through an API
at application run time. By providing access to the assembly code,
the system allows users to tune their code by studying the compiler
output, by manually editing the compiler output, or even by writing
programs entirely in assembly language. All of these capabilities
can be useful for maximizing performance, although they are less
important if the compiler optimizes well.

In contrast, if the high-level language is the only interface to
the hardware then the compiler must be integrated into the driver.
This approach allows graphics architects to change the hardware
instruction set in the future. Also, by forcing the user to compile via
the driver, the system can guarantee that old applications will use
compiler updates included in new drivers. However, the application
developer loses the ability to guarantee that a particular pre-tested
version of the compiler will be used. Since optimizing compilers
are complex and frequently exhibit bugs at higher optimization
levels, we considered this issue to be significant. Similarly, if
the developer cannot control the compiler version, there is a risk
that a program’s use of non-virtualized resources could change and
trigger a compilation failure where there was none before.

These and other factors led us to layer the Cg system above the
low-level graphics API, with an assembly language serving as the
interface between the two layers. RTSL and HLSL take this same
approach, while GLSL takes the opposite approach of integrating
the high-level language into the graphics API and driver.

4.4.3 Explicit program parameters

All input parameters to a Cg program must be explicitly
declared using non-static global variables or by including the
parameters on the entry function’s parameter list. Similarly, the
application is responsible for explicitly specifying the values for
the parameters. Unlike GLSL, the core Cg specification does not
include pre-defined global variables such as gl ModelViewMatrix that
are automatically filled from classical graphics API state. Such
pre-defined variables are contrary to the philosophy of C and are
not portable across 3D APIs with different state. We believe that
even in shading programs all state used by vertex and fragment
programs ought to be programmer-defined rather than mediated by
fixed API-based definitions. However, pre-defined variables can be
useful for retrofitting programmability into old applications, and for
that reason some Cg profiles support them.

At the assembly language level, program inputs are passed
in registers or, in some cases, named parameters. In either
case, the parameter passing is untyped. For example, in the
ARB vertex program assembly language each program parameter
consists of four floating-point values. Because the Cg system is
layered on top of the assembly-language level, developers may pass
parameters to Cg programs in this manner if they wish.

However, Cg also provides a set of runtime API routines that
allow parameters to be passed using their true names and types.
GLSL uses a similar mechanism. In effect, this mechanism

allows applications to pass parameters using Cg semantics rather
than assembly-language semantics. Usually, this approach is
easier and less error-prone than relying on the assembly-level
parameter-passing mechanisms. These runtime routines make use
of a header provided by the Cg compiler on its assembly language
output that specifies the mapping between Cg parameters and
registers (Figure 4). There are three versions of these runtime
libraries – one for OpenGL, one for DirectX 8, and one for
DirectX 9. Separate libraries were necessary to accommodate
underlying API differences and to match the style of the respective
APIs.

#profile arbvp1
#program simpleTransform
#semantic simpleTransform.brightness
#semantic simpleTransform.modelViewProjection
#var float4 objectPosition : $vin.POSITION : POSITION : 0 : 1
#var float4 color : $vin.COLOR : COLOR : 1 : 1
. . .
#var float brightness : : c[0] : 8 : 1
#var float4x4 modelViewProjection : : c[1], 4 : 9 : 1

Figure 4: The Cg compiler prepends a header to its assembly code
output to describe the mapping between program parameters and
registers.

5 Cg Language Summary

Although this paper is not intended to be a tutorial on the Cg
language, we describe the language briefly. This description
illustrates some of our design decisions and facilitates the
discussions later in this paper.

5.1 Example program

Figure 5 shows a Cg program for a vertex processor. The program
transforms an object-space position for a vertex by a four-by-four
matrix containing the concatenation of the modeling, viewing, and
projection transforms. The resulting vector is output as the clip-
space position of the vertex. The per-vertex color is scaled by a
floating-point parameter prior to output. Also, a texture coordinate
set is passed through without modification.

void simpleTransform(float4 objectPosition : POSITION,
float4 color : COLOR,
float4 decalCoord : TEXCOORD0,

out float4 clipPosition : POSITION,
out float4 oColor : COLOR,
out float4 oDecalCoord : TEXCOORD0,

uniform float brightness,
uniform float4x4 modelViewProjection)

{
clipPosition = mul(modelViewProjection, objectPosition);
oColor = brightness * color;
oDecalCoord = decalCoord;

}
Figure 5: Example Cg Program for Vertex Processor

Cg supports scalar data types such as float but also has first-class
support for vector and matrix data types. The identifier float4
represents a vector of four floats, and float4x4 represents a matrix.
The mul function is a standard library routine that performs matrix
by vector multiplication. Cg provides function overloading like
C++; mul is overloaded and may be used to multiply various
combinations of vectors and matrices.
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Cg provides the same operators as C. Unlike C, however, Cg
operators accept and return vectors as well as scalars. For example,
the scalar, brightness, scales the vector, color, as you would expect.

In Cg, declaring a vertex program parameter with the uniform
modifier indicates that its value will not vary over a batch
of vertices. The application must provide the value of such
parameters. For example, the application must supply the
modelViewProjection matrix and the brightness scalar, typically by
using the Cg runtime library’s API.

The POSITION, COLOR, and TEXCOORD0 identifiers following the
objectPosition, color, and decalCoord parameters specify how these
parameters are bound to API resources. In OpenGL, glVertex
commands feed POSITION; glColor commands feed COLOR; and
glMultiTexCoord commands feed TEXCOORDn.

The out modifier indicates that clipPosition, oColor, and oDecalCoord
parameters are output by the program. The identifier following the
colon after each of these parameters specifies how the output is fed
to the primitive assembly and rasterization stages of the graphics
pipeline.

5.2 Other Cg functionality

Cg provides structures and arrays, including multi-dimensional
arrays; all of C’s arithmetic operators (+, *, /, etc.); a boolean
type and boolean and relational operators (||, &&, !, etc.);
increment/decrement (++/- -) operators; the conditional expression
operator (?:); assignment expressions (+=, etc.); and even the C
comma operator.

Cg supports programmer-defined functions (in addition to pre-
defined standard library functions), but recursive functions are not
allowed. Cg provides only a subset of C’s control flow constructs:
(do, while, for, if, break, and continue). Other constructs, such as goto
and switch, are not supported in the current Cg implementation, but
the necessary keywords are reserved.

Cg provides built-in constructors for vector data types (similar to
C++ but not user-definable): e.g. float4 a = float4(4.0, -2.0, 5.0, 3.0);

Swizzling is a way of rearranging components of vector values
and constructing shorter or longer vectors. For example:

float2 b = a.yx; // b = (-2.0, 4.0)
Cg does not currently support pointers or bitwise operations. Cg

lacks most C++ features for “programming in the large” such as
full classes, templates, operator overloading, exception handling,
and namespaces. Cg supports #include, #define, #ifdef, etc. matching
the C preprocessor.

6 Design Issues

6.1 Support for hardware

By design, the C language is close to the level of the hardware
– it exposes the important capabilities of CPU hardware in the
language. For example, it exposes hardware data types (with
extensions such as long long if necessary) and the existence of
pointers. As a result, the C language provides performance
transparency – programmers have straightforward control over
machine-level operations, and thus the performance of their code.

When designing Cg, we followed this philosophy. The
discussion below is organized around the characteristics of GPU
hardware that led to differences between Cg and C.

6.1.1 Stream processor

The stream processing model used by the programmable processors
in graphics architectures is significantly different from the purely
sequential programming model used on CPUs. Much of the
new functionality in Cg (as compared to C) supports this stream

programming model. In particular, a GPU program is executed
many times – once for each vertex or fragment. To efficiently
accommodate this repeated execution, the hardware provides two
kinds of inputs to the program. The first kind of input changes
with each invocation of the program and is carried in the incoming
stream of vertices or fragments. An example is the vertex
position. The second kind of input may remain unchanged for many
invocations of the program; its value persists until a new value is
sent from the CPU as an update to the processor state. An example
is the modelview matrix. At the hardware level, these two types of
inputs typically reside in different register sets.

A GPU language compiler must know the category to which
an input belongs before it can generate assembly code. Given the
hardware-oriented philosophy of Cg, we decided that the distinction
should be made in the Cg source code. We adapted RenderMan’s
terminology for the two kinds of inputs: a varying input is carried
with the incoming stream of data, while a uniform input is updated
by an explicit state change. Consistent with the general-purpose
stream-processor orientation of Cg, this same terminology is used
for any processor within the GPU (i.e. vertex or fragment), unlike
the scheme used in GLSL, which uses different terminology
(and keywords) for varying-per-vertex and varying-per-fragment
variables.

Cg uses the uniform type qualifier differently than RenderMan. In
RenderMan, it may be used in any variable declaration and specifies
a general property of the variable, whereas in Cg it may only be
applied to program inputs and it specifies initialization behavior for
the variable. In the RenderMan interpretation, all Cg temporary
variables would be considered to be varying, and even a uniform
input variable becomes varying once it has been rewritten within
the program. This difference reflects the difference in the processor
models assumed by RenderMan and Cg: RenderMan is designed
for a SIMD processor, where many invocations of the program are
executing in lockstep and temporary results can be shared, while Cg
is designed for a stream processor in which each invocation of the
program may execute asynchronously from others, and no sharing
of temporary results is possible.

Computations that depend only on uniform parameters do not
need to be redone for every vertex or fragment, and could be
performed just once on the CPU with the result passed as a new
uniform parameter. RTSL can perform this optimization, which
may add or remove uniform parameters at the assembly language
level. The current Cg compiler does not perform this optimization;
if it did, applications would be required to pass uniform parameters
through the Cg runtime system rather than passing them directly
through the 3D API because the original inputs might no longer
exist at the 3D API level. This optimization is an example of a
global optimization that crosses system modules. We expect that
the Cg system will support optimizations of this type in the future,
but only when the application promises that it will pass all affected
parameters using the Cg runtime API.

6.1.2 Data types

The data types supported by current graphics processors are
different from those supported by standard CPUs, thus motivating
corresponding adjustments in the Cg language.

Some graphics architectures support just one numeric data type,
while others support multiple types. For example, the NVIDIA
GeForce FX supports three different numeric data types in its
fragment processor – 32-bit floating-point, 16-bit floating-point,
and 12-bit fixed-point. In general, operations that use the
lower-precision types are faster, so we wanted to provide some
mechanism for using these data types. Several alternatives were
possible. The first was to limit the language to a single float data
type, and hope that the compiler could perform interval and/or
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precision analysis to map some computations to the lower-precision
types. This strategy is at odds with the philosophy of C, and has not
proven to be successful in the past. The second alternative (used in
GLSL) was to specify precision using hints, rather than first-class
data types. This approach makes it impossible to overload functions
based on the data types, a capability that we considered important
for supporting high-performance library functions. The third
alternative, used by Cg, is to include multiple numeric data types
in the language. Cg includes float, half, and fixed data types.

Just as C provides some flexibility in the precision used for its
different data types, the core Cg specification provides profiles with
flexibility to specify the format used for each of the data types,
within certain ranges. For example, in a profile that targets an
architecture with just one floating-point type, half precision may
be the same as float precision. For a few types (e.g. fixed and
sampler), profiles are permitted to omit support when appropriate.
In particular, the sampler types are used to represent textures,
and thus are of no use in profiles that do not support texture
lookups. However, to allow source code and data structures
targeted at different profiles to be mixed in a single source file,
the Cg specification requires that all profiles support definitions
and declarations of all Cg data types, and to support corresponding
assignment statements. The first two requirements are necessary
because of a quirk of C syntax: correct parsing of C requires that
the parser know whether an identifier was previously defined as a
type or as a variable. The third requirement makes it easier to share
data structures between different profiles.

In 3D rendering algorithms, three- and four-component vector
and four-by-four matrix operations are common. As a result,
most past and present graphics architectures directly support
four-component vector arithmetic (see e.g. [Levinthal et al. 1987;
Lindholm et al. 2001]). C’s philosophy of exposing hardware data
types suggests that these vector data types should be exposed, and
there is precedent for doing so in both shading languages [Levinthal
et al. 1987; Hanrahan and Lawson 1990] and in extensions to C
[Motorola Corp. 1999]. Despite these precedents, we initially tried
to avoid exposing these types by representing them indirectly with
C’s arrays-of-float syntax. This strategy failed because it did not
provide a natural mechanism for programmers or the compiler to
distinguish between the architecture’s vectors (now float4 x), and an
indirectly addressable array of scalars (now float x[4]). These two
types must be stored differently and support different operations
because current graphics architectures are restricted to 128-bit
granularity for indirect addressing. Thus, Cg and GLSL include
vector data types and operators, up to length four.

It would be possible to take the opposite approach to supporting
short vector hardware, by omitting short vector data types from the
language, and relying on the compiler to automatically combine
scalar operations to form vectorized assembly code [Larsen and
Amarasinghe 2000; Codeplay Corporation 2003]. This approach
requires sophisticated compiler technology to achieve acceptable
vectorization and obscures from the programmer the difference
between code that will run fast and code that will not. At best, this
fully automatic approach to vectorization can only hope to match
the performance of languages such as Cg that allow both manual
and automatic vectorization.

As a convenience for programmers, Cg also supports built-in
matrix types and operations, up to size four by four. This
decision was a concession to the primary use of Cg for rendering
computations.

Current graphics processors do not support integer data types,
but they do support boolean operations using condition codes and
predicated instructions. Thus, we initially decided to omit support
for the C int data type, but to add a bool data type for conditional
operations. This change was partly inspired by the bool type in
the latest C++ standard. We adjusted the data types expected by

C’s boolean operators and statements accordingly, so that most
common C idioms work with no change. Because some graphics
hardware supports highly-efficient vector operations on booleans,
we extended C’s boolean operations (&&, ||, ?:, etc.) to support bool
vectors. For example, the expression bool2(true,false) ? float2(1,1) :
float2(0,0) yields float2(1,0). Later, for better compatibility with C, we
restored the int type to the Cg specification, but retained the bool type
for operations that are naturally boolean and thus can be mapped to
hardware condition-code registers.

6.1.3 Indirect addressing

CPUs support indirect addressing (i.e. pointer dereferencing)
for reads or writes anywhere in memory. Current graphics
processors have very limited indirect addressing capability –
indirect addressing is available only when reading from the uniform
registers, or sampling textures. Unfortunately, programs written
in the C language use pointers frequently because C blurs the
distinction between pointer types and array types.

Cg introduces a clear distinction between these two types, both
syntactically and semantically. In particular, an array assignment in
Cg semantically performs a copy of the entire array. Of course, if
the compiler can determine that a full copy is unnecessary, it may
(and often does) omit the copy operation from the generated code.
Cg currently forbids the use of pointer types and operators, although
we expect that as graphics processors become more general, Cg will
re-introduce support for pointer types using the C pointer syntax.

To accommodate the limitations of current architectures, Cg
permits profiles to impose significant restrictions on the declaration
and use of array types, particularly on the use of computed
indices (i.e. indirect addressing). However, these restrictions take
the form of profile-dependent prohibitions, rather than syntactic
changes to the language. Thus, these prohibitions can be relaxed
or removed in the future, allowing future Cg profiles to support
general array operations without syntactic changes. In contrast,
3DLSL used special syntax and function calls (e.g. element) for
the array operations supported by current architectures, although
its descendent GLSL switched to C-like array notation.

The lack of hardware support for indirect addressing of a
read/write memory makes it impossible to implement a runtime
stack to hold temporary variables, so Cg currently forbids recursive
or co-recursive function calls. With this restriction, all temporary
storage can be allocated statically by the compiler.

Read/write parameters to a C function must be declared
using pointer types. We needed a different mechanism in Cg,
and considered two options. The first was to adopt the C++
call-by-reference syntax and semantics, as 3DLSL did. However,
call-by-reference semantics are usually implemented using indirect
addressing, to handle the case of parameter aliasing by the calling
function. On current architectures it is possible for a compiler
to support these semantics without the use of indirect addressing,
but this technique precludes separate compilation of different
functions (i.e. compile and link), and we were concerned that this
technique might not be adequate on future architectures. Instead,
we decided to support call-by-value-result semantics, which can be
implemented without the use of indirect addressing. We support
these semantics using a notation that is new to C/C++ (in and
out parameter modifiers, taken from Ada), thus leaving the C++
& notation available to support call-by-reference semantics in the
future. GLSL takes this same approach.

6.1.4 Interaction with the rest of the graphics pipeline

In current graphics architectures, some of the input and output
registers for the programmable processors are used to control the
non-programmable parts of the graphics pipeline, rather than to
pass general-purpose data. For example, the vertex processor must
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store a position vector in a particular output register, so that it
may be used by the rasterizer. Likewise, if the fragment processor
modifies the depth value, it must write the new value to a particular
output register that is read by the framebuffer depth-test unit. We
could have chosen to pre-define global variables for these inputs
and outputs, but instead we treat them as much as possible like
other varying inputs and outputs. However, these inputs and outputs
are only available by using the language’s syntax for binding a
parameter to a register, which is optional in other cases. To ensure
program portability, the Cg specification mandates that certain
register identifiers (e.g. POSITION) be supported as an output by all
vertex profiles, and that certain other identifiers be supported by all
fragment profiles.

6.1.5 Shading-specific hardware functionality

The latest generation of graphics hardware includes a variety
of capabilities specialized for shading. For example, although
texture sampling instructions can be thought of as memory-read
instructions, their addressing modes and filtering are highly
specialized for shading. The GeForce FX fragment processor also
includes built-in discrete-differencing instructions [NVIDIA Corp.
2003b], which are useful for shader anti-aliasing.

We chose to expose these capabilities via Cg’s standard library
functions, rather than through the language itself. This approach
maintains the general-purpose nature of the language, while
supporting functionality that is important for shading. Thus, many
of Cg’s standard library functions are provided for more than
just convenience – they are mechanisms for accessing particular
hardware capabilities that would otherwise be unavailable.

In other cases, such as the lit function, library functions represent
common shading idioms that may be implemented directly in the
language, but can be more easily optimized by the compiler and
hardware if they are explicitly identified.

Although we do not discuss the details of the Cg standard library
in this paper, significant care went into its design. It supports
a variety of mathematical, geometric, and specialized functions.
When possible, the definitions were chosen to be the same as those
used by the corresponding C standard library and/or RenderMan
functions.

6.2 User-defined interfaces between modules

The RenderMan shading language and RTSL include support for
separate surface and light shaders, and the classical fixed-function
OpenGL pipeline does too, in a limited manner. However, these
shaders don’t actually execute independently; computing the color
of any surface point requires binding the light shaders to the
surface shader either explicitly or implicitly. In RenderMan and
fixed-function OpenGL, the binding is performed implicitly by
changing the current surface or light shaders. In RTSL, the
application must explicitly bind the shaders at compile time.

Considered more fundamentally, this surface/light modularity
consists of built-in surface and light object types that communicate
across a built-in interface between the two types of objects. In this
conceptual framework, a complete program is constructed from one
surface object that invokes zero or more light objects via the built-in
interface. There are several subtypes of light objects corresponding
to directional, positional, etc. lights. Light objects of different
subtypes contain different data (e.g. positional lights have a “light
position” but directional lights do not).

It would have run contrary to the C-like philosophy of Cg
to include specialized surface/light functionality in the language.
However, the ability to write separate surface and light shaders
has proven to be valuable, and we wanted to support it with more
general language constructs.

The general-purpose solution we chose is adopted from Java
and C#.1 The programmer may define an interface, which specifies
one or more function prototypes.2 For example, an interface may
define the prototypes for functions used to communicate between a
surface shader and a light shader. An interface may be treated as
a generic object type so that one routine (e.g. the surface shader)
may call a method from another object (e.g. an object representing
a light) using the function prototypes defined in the interface. The
programmer implements the interface by defining a struct (i.e. class)
that contains definitions for the interface’s functions (i.e. methods).
This language feature may be used to create programmer-defined
categories of interoperable modules; Figure 6 shows how it may be
used to implement separate surface and light shaders, although it is
useful for other purposes too. GLSL and HLSL do not currently
include any mechanism – either specialized or general-purpose –
that provides equivalent functionality.

All current Cg language profiles require that the binding of
interfaces to actual functions be resolvable at Cg compile time. This
binding may be specified either in the Cg language (as would be
done in Java), or via Cg runtime calls prior to compilation. Future
profiles could relax the compile-time binding requirement, if the
corresponding graphics instruction sets include an indirect jump
instruction.

6.3 Other language design decisions

6.3.1 Function overloading by types and by profile

Our decision to support a wide variety of data types led us to
conclude that we should support function overloading by data type.
In particular, most of Cg’s standard library functions have at least
twelve variants for different data types, so following C’s approach
of specifying parameter types in function name suffixes would have
been unwieldly.

Cg’s function overloading mechanism is similar to that of C++,
although Cg’s matching rules are less complex. For simple cases,
Cg’s matching rules behave intuitively. However, since matching
is performed in multiple dimensions (base type, vector length,
etc.) and implicit type promotion is allowed, it is still possible
to construct complex cases for which it is necessary to understand
the matching rules to determine which overloaded function will be
chosen.

Cg also permits functions to be overloaded by profile. Thus, it is
possible to write multiple versions of a function that are optimized
for different architectures, and the compiler will automatically
chose the version for the current profile. For example, one version
of a function might use standard arithmetic operations, while a
second version uses a table lookup from a texture (Figure 7).
This capability is useful for writing portable programs that include
optimizations for particular architectures. Some wildcarding of
profiles is supported – for example, it is possible to specify
just vertex and fragment versions of a function, rather than
specifying a version for every possible vertex and fragment profile.
The overloading rules cause more-specific profile matches to be
preferred over less-specific matches, so program portability can be
ensured by defining one lowest-common-denominator version of
the function.

1Unlike the other Cg features described in this paper, this capability is
not yet supported in a public release (as of April 2003). It is currently being
implemented and will be supported in a future Cg release.

2C++ provides a similar capability via pure virtual base classes. We
chose Java’s approach because we consider it to be cleaner and easier to
understand.
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// Declare interface to lights
interface Light {

float3 direction(float3 from);
float4 illuminate(float3 p, out float3 lv);

};

// Declare object type (light shader) for point lights
struct PointLight : Light {

float3 pos, color;
float3 direction(float3 p) { return pos - p; }
float3 illuminate(float3 p, out float3 lv) {

lv = normalize(direction(p));
return color;

}
};

// Declare object type (light shader) for directional lights
struct DirectionalLight : Light {

float3 dir, color;
float3 direction(float3 p) { return dir; }
float3 illuminate(float3 p, out float3 lv) {

lv = normalize(dir);
return color;

}
};

// Main program (surface shader)
float4 main(appin IN, out float4 COUT,

uniform Light lights[]) {
...
for (int i=0; i < lights.Length; i++) { // for each light

Cl = lights[i].illuminate(IN.pos, L); // get dir/color
color += Cl * Plastic(texcolor, L, Nn, In, 30); // apply

}
COUT = color;

}

Figure 6: Cg’s interface functionality may be used to implement
separate surface and light shaders. The application must bind the
light objects to the main program prior to compilation. In this
example, the application would perform the binding by making Cg
runtime API calls to specify the size and contents of the lights array,
which is a parameter to main.

6.3.2 Constants are typeless

In C, if x is declared as float, then the expression 2.0*x is evaluated
at double precision. Often, this type promotion is not what the user
intended, and it may cause an unintended performance penalty. In
our experience, it is usually more natural to think of floating-point
constants as being typeless.

This consideration led us to change the type promotion rules
for constants. In Cg, a constant is either integer or floating-point,
and otherwise has no influence on type promotion of operators.
Thus, if y is declared as half, the expression 2.0*y is evaluated at half
precision. Users may still explicitly assign types to constants with
a suffix character (e.g. 2.0f), in which case the type promotion rules
are identical to those in C. Internally, the new constant promotion
rules are implemented by assigning a different type (cfloat or cint)
to constants that do not have an explicit type suffix. These types
always take lowest precedence in the operator type-promotion rules.

These new rules are particularly useful for developing a shader
using float variables, then later tuning the performance by selectively
changing float variables to half or fixed. This process does not require
changes to the constants used by the program.

6.3.3 No type checking for textures

The Cg system leaves the responsibility for most texture man-
agement (e.g. loading textures, specifying texture formats, etc.)

uniform samplerCUBE norm cubemap;

// For ps 1 1 profile, use cubemap to normalize
ps 1 1 float3 mynormalize(float3 v) {

return texCUBE(norm cubemap, v.xyz).xyz;
}

// For ps 2 0 profile, use stdlib routine to normalize
ps 2 0 float3 mynormalize(float3 v) {

return normalize(v);
}

Figure 7: Function overloading by hardware profile facilitates the
use of optimized versions of a function for particular hardware
platforms.

with the underlying 3D API. Thus, the Cg system has very little
information about texture types – e.g. is a particular texture an RGB
(float3) texture, or an RGBA (float4) texture? Since compile-time
type checking is not possible in this situation, the user is responsible
for insuring that Cg texture lookups are used in manner that
is consistent with the way the application loads and binds the
corresponding textures at run time. Stronger type checking would
be possible by integrating the Cg system more tightly with the 3D
API.

6.4 Runtime API

As described earlier, the Cg runtime API is composed of two
parts. The first part is independent of the 3D API and provides
a procedural interface to the compiler and its output. The second
part is layered on top of the 3D API and is used to load and bind
Cg programs, to pass uniform and varying parameters to them, and
to perform miscellaneous housekeeping tasks. These interfaces are
crucial for system usability since they provide the primary interface
between the application and the Cg system. In this section, we
discuss a few of the more interesting questions that arose in the
design of the runtime API.

6.4.1 Compound types are exploded to cross API

Cg programs may declare uniform parameters with compound types
such as structures and arrays. Typically, the application passes
the values of these parameters to the Cg program by using the Cg
runtime API. Unfortunately, most operating systems do not specify
and/or require a standard binary format for compound data types.
For example, a data structure defined in a FORTRAN program does
not have the same memory layout as the equivalent data structure
defined in a C program. Thus, it is difficult to define a natural
binary format for passing compound data structures across an API.
This problem has plagued API designers for a long time; OpenGL
finessed one aspect of it by specifying 2D matrices in terms of 1D
arrays.

There are several possible approaches to this issue. The first
is to choose a particular binary format, presumably the one used
by the dominant C/C++ compiler on the operating system. This
approach makes it difficult to use the API from other languages, and
invites cross-platform portability issues (e.g. between 32-bit and
64-bit machines). The second is to use Microsoft’s .NET common
type system [Microsoft Corp. 2003], which directly addresses this
problem, but would have restricted the use of the Cg APIs to the
.NET platform. We chose a third approach, which is to explode
compound data structures into their constituent parts to pass them
across the API. For example, a struct consisting of a float3 and a float
must be passed using one API call for the float3, and a second API
call for the float. Although this approach imposes some overhead,
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it is not generally a performance bottleneck when it is used for
passing uniform values.

6.4.2 Cg system can shadow parameter values

The Cg runtime can manage many Cg programs (both vertex and
fragment) at once, each with its own uniform parameters. However,
GPU hardware can only hold a limited number of programs and
parameters at a time. Thus, the values of the active program’s
uniform parameters may be lost when a new program is loaded
into the hardware. The Cg runtime can be configured to shadow
a program’s parameters, so that the parameter values persist when
the active program is changed. Note that some, but not all, OpenGL
extensions already implement this type of shadowing in the driver.

7 CgFX

The Cg language and runtime do not provide facilities for managing
the non-programmable parts of the graphics pipeline, such as the
framebuffer tests. Since many graphics applications find it useful
to group the values for this non-programmable state with the
corresponding GPU programs, this capability is supported with a
set of language and API extensions to Cg, which we refer to as
CgFX. We do not discuss CgFX in detail in this paper, but we will
briefly summarize its additional capabilities to avoid confusion with
the base Cg language. CgFX can represent and manage:

• Functions that execute on the CPU, to perform setup
operations such as computing the inverse-transpose of the
modelview matrix

• Multi-pass rendering effects

• Configurable graphics state such as texture filtering modes
and framebuffer blend modes

• Assembly-language GPU programs

• Multiple implementations of a single shading effect

8 System Experiences

NVIDIA released a beta version of the Cg system in June 2002,
and the 1.0 version of the system in December 2002. Windows and
Linux versions of the system and its documentation are available for
download [NVIDIA Corp. 2003a]. The system is already widely
used.

The modularity of the system has proven to be valuable. From
online forums and other feedback, it is clear that some developers
use the full system, some use just the off-line compiler, and some
use Cg for vertex programs but assembly language for fragment
programs. We know that some users examine the assembly
language output from the compiler because they complain when
the compiler misses optimization opportunities. In some cases,
these users have hand-tuned the compiler’s assembly-code output
to improve performance, typically after they have reached the point
where their program produces the desired visual results.

To the best of our knowledge, our decision to omit automatic
virtualization from the system has not been a serious obstacle for
any developer using DX9-class hardware for an application that
requires real-time frame rates. In contrast, we have heard numerous
complaints about the resource limits in DX8 fragment hardware, but
we still believe that we would not have been able to virtualize DX8
hardware well enough to satisfy developers.

Researchers are already using Cg to implement non-rendering
algorithms on GPUs. Examples include fluid dynamics simulations
and reaction-diffusion simulations (Figure 8).

Figure 8: Cg has been used to compute physical simulations
on GPUs. Mark Harris at the University of North Carolina
has implemented a Navier-Stokes fluid simulation (left) and a
reaction-diffusion simulation (right).

9 Conclusion

The Cg language is a C-like language for programming GPUs.
It extends and restricts C in certain areas to support the
stream-processing model used by programmable GPUs, and to
support new data types and operations used by GPUs.

Current graphics architectures lack certain features that are
standard on CPUs. Cg reflects the limitations of these architectures
by restricting the use of standard C functionality, rather than by
introducing new syntax or control constructs. As a result, we
believe that Cg will grow to support future graphics architectures,
by relaxing the current language restrictions and restoring C
capabilities such as pointers that it currently omits.

If one considers all of the possible approaches to designing a
programming language for GPUs, it is remarkable that the recent
efforts originating at three different companies have produced such
similar designs. In part, this similarity stems from extensive
cross-pollination of ideas among the different efforts. However,
we believe that a more significant factor is the de-facto agreement
by the different system architects on the best set of choices for
a contemporary GPU programming language. Where differences
remain between between the contemporary systems, they often
stem from an obvious difference in design goals, such as support
for different 3D APIs.

We hope that this paper’s discussion of the tradeoffs that we
faced in the design of Cg will help users to better understand Cg
and the other contemporary GPU programming systems, as well
as the graphics architectures that they support. We also hope that
this distillation of our experiences will be useful for future system
architects and language designers, who will undoubtedly have to
address many of the same issues that we faced.
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A Follow-up Cg Runtime Tutorial 
for Readers of The Cg Tutorial* 

Mark J. Kilgard 
NVIDIA Corporation 

Austin, Texas 

April 20, 2005 

When Randy and I wrote The Cg Tutorial,† we wanted a book that would convey our 
intense enthusiasm for programmable graphics using Cg,‡ short for C for Graphics.  We 
focused our tutorial on the language itself:  What is the Cg language and how do you 
write Cg programs for programmable graphics hardware? 

We chose our language focus for a couple of different reasons. 

First off, the language is where all the power and new concepts are.  Once you interface 
Cg into your graphics application, it’s the Cg language that really matters.  For a 
conventional CPU programming language, explaining the Cg runtime is somewhat akin 
to explaining how to edit programs and how to run the compiler.  Obviously, you’ve got 
to learn these tasks, but there’s nothing profound about using an editor or compiler.  
Likewise, there’s nothing deep about the Cg runtime either; it’s a fairly straightforward 
programming interface. 

Second, how you interface Cg to your application is a matter of personal design and 
depends on the nature of your application and your choice of application programming 
language, operating system, and 3D programming interface.  While Randy and I are 
happy to explain Cg and show how to program your graphics hardware with it, you are 
the person best able to interface Cg into your application code. 

Third, the language shares its design, syntax, and semantics with Microsoft’s DirectX 9 
High-Level Shader Language (HLSL).  This means you can chose whether to use 
Microsoft’s HLSL runtime (ideal for developers focused on DirectX for the Windows 

                                                 

* You have permission to redistribute or make digital or hard copy of this article for non-commercial or 
educational use. 

† The Cg Tutorial by Randima (Randy) Fernando and Mark J. Kilgard is published by Addison-Wesley 
(ISBN 0321194969, 336 pages).  The book is now available in Japanese translation (ISBN4-939007-55-3). 

‡ Cg in Two Pages (http://xxx.lanl.gov/ftp/cs/papers/0302/0302013.pdf) by Mark J. Kilgard is a short 
overview of the Cg language.  Cg: A System for Programming Graphics Hardware in a C-like Language 
(http://www.cs.utexas.edu/users/billmark/papers/Cg) by Bill Mark, Steve Glanville, Kurt Akeley, and Mark 
J. Kilgard is a SIGGRAPH 2003 paper explaining Cg’s design in 12 pages. 
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platform) or the Cg runtime—supplied by NVIDIA—for those of you who want to 
support a broad range of operating systems and 3D programming interfaces (such as 
Linux, Apple’s OS X, and OpenGL).  Because The Cg Tutorial focuses on the Cg 
language, all the concepts and syntax explained in the book apply whether you choose to 
use the Cg or HLSL implementation when it comes time to actually write your shader 
programs.  Since there’s been some confusion about this point, understand that The Cg 
Tutorial examples in the book compile with either language implementation.  We hope 
The Cg Tutorial is an instructive book about both Cg and HLSL. 

To avoid all the mundane details necessary to interface Cg programs to a real application, 
The Cg Tutorial includes an accompanying CD-ROM* with a software framework so you 
can examine and modify the various Cg programs in the book and see the rendering 
results without worrying about the mundane details of writing a full application, loading 
models and textures, and interfacing Cg to your application.  Still, the book does provide 
a brief appendix describing the Cg runtime programming interface for both OpenGL and 
Direct3D. 

Follow-up: A Complete Cg Demo 

Still, there’s not a complete basic example that shows how everything fits together.  With 
that in mind, this article presents a complete graphics demo written in ANSI C that 
renders a procedurally-generated bump-mapped torus.  The demo’s two Cg programs are 
taken directly from the book’s Chapter 8 (Bump Mapping).  While the Cg programs are 
reprinted at the end of the article, please consult The Cg Tutorial for an explanation of the 
programs and the underlying bump mapping background and mathematics. 

The demo renders with OpenGL and interfaces with the window system via the cross-
platform OpenGL Utility Toolkit (GLUT).†  To interface the application with the Cg 
programs, the demo calls the generic Cg and OpenGL-specific CgGL runtime routines. 

OpenGL, GLUT, and the Cg and CgGL runtimes are supported on Windows, OS X, and 
Linux so the demo source code compiles and runs on all these operating systems.  The 
demo automatically selects the most appropriate profile for your hardware.  Cg supports 
multi-vendor OpenGL profiles (namely, arbvp1 and arbfp1) so the demo works on 
GPUs from ATI, NVIDIA, or any other OpenGL implementation, such as Brian Paul’s 
open source Mesa library, that exposes the multi-vendor ARB_vertex_program and 
ARB_fragment_program OpenGL extensions. 
                                                 

* You can download the latest version of the software accompanying The Cg Tutorial from 
http://developer.nvidia.com/object/cg_tutorial_software.html for either Windows or Linux.  For best 
results, make sure you have the latest graphics drivers, latest Cg toolkit, and latest version of The Cg 
Tutorial examples installed. 

† Documentation, source code, and pre-compiled GLUT libraries are available from 
http://www.opengl.org/developers/documentation/glut.html  
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I verified the demo works on DirectX 9-class hardware including ATI’s Radeon 9700 and 
similar GPUs, NVIDIA’s GeForce FX products, and the GeForce 6 Series.  The demo 
even works on older NVIDIA DirectX 8-class hardware such as GeForce3 and GeForce4 
Ti GPUs.   

So this article’s simple Cg-based demo handles multiple operating systems, two different 
GPU hardware generations (DirectX 8 & DirectX 9), and hardware from the two major 
GPU vendors (and presumably any other OpenGL implementation exposing OpenGL’s 
standard, multi-vendor vertex and fragment program extensions) with absolutely no 
GPU-dependent or operating system-dependent code. 

To further demonstrate the portability possible by writing shaders in Cg, you can also 
compile the discussed Cg programs with Microsoft’s HLSL runtime with no changes to 
the Cg programs. 

This unmatched level of shader portability is why the Cg language radically changes how 
graphics applications get at programmable shading hardware today.  With one high-level 
language, you can write high-performance, cross-platform, cross-vendor, and cross-3D 
API shaders.  Just as you can interchange images and textures stored as JPEG, PNG, and 
Targa files across platforms, you can now achieve a similar level of interoperability with 
something as seemingly hardware-dependent as a hardware shading algorithm. 

Demo Source Code Walkthrough 

The demo, named cg_bumpdemo, consists of the following five source files: 

1. cg_bumpdemo.c—ANSI C source code for the demo. 
2. brick_image.h—Header file containing RGB8 image data for a mipmapped 

128x128 normal map for a brick pattern. 
3. nmap_image.h—Header file containing RGB8 image data for a normalization 

vector cube map with 32x32 faces. 
4. C8E6v_torus.cg—Cg vertex program to generate a torus from a 2D mesh of 

vertices. 
5. C8E4f_specSurf.cg—Cg fragment program for surface-local specular and 

diffuse bump mapping. 

Later, we will go through cg_bumpdemo.c line-by-line. 

To keep the demo self-contained and maintain the focus on how the Cg runtime loads, 
compiles, and configures the Cg programs and then renders with them, this demo uses 
static texture image data included in the two header files. 

The data in these header files are used to construct OpenGL texture objects for a brick 
pattern normal map 2D texture and a “vector normalization” cube map.  These texture 
objects are sampled by the fragment program.  
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The data in the two headers files consists of hundreds of comma-separated numbers (I’ll 
save you the tedium of publishing all the numbers in this article…).  Rather than static 
data compiled into an executable, a typical application would read normal map textures 
from on-disk image files or convert a height-field image file to a normal map.  Likewise, 
a “normalization vector” cube map is typically procedurally generated rather than loaded 
from static data. 

The two Cg files each contain a Cg entry function with the same name as the file.  These 
functions are explained in Chapter 8 (Bump Mapping) of The Cg Tutorial.  These files 
are read by the demo when the demo begins running.  The demo uses the Cg runtime to 
read, compile, configure, and render with these Cg programs.  

Rather than rehash the background, theory, and operation of these Cg programs, you 
should consult Chapter 8 of The Cg Tutorial.  Pages 200 to 204 explain the construction 
of the brick pattern normal map.  Pages 206 to 208 explain the construction and 
application of a normalization cube map.  Pages 208 to 211 explains specular bump 
mapping, including the C8E4f_specSurf fragment program.  Pages 211 to 218 explain 
texture-space bump mapping.  Pages 218 to 224 explain the construction of the per-vertex 
coordinate system needed for texture-space bump mapping for the special case of an 
object (the torus) that is generated from parametric equations by the C8E6v_torus vertex 
program. 

For your convenience and so you can map Cg parameter names used in the C source file 
to their usage in the respective Cg programs,  the complete contents of C8E6v_torus.cg 
and C8E4f_specSurf.cg are presented in Appendix A and Appendix B at the end of this 
article (the Cg programs are short, so why not). 

On to the C Code 

Now, it’s time to dissect cg_bumpdemo.c line-by-line as promised (we’ll skip comments 
in the source code if the comments are redundant with the discussion below). 

To help you identify which names are external to the program, the following words are 
listed in boldface within the C code:  C keywords; C standard library routines and 
macros; OpenGL, GLU, and GLUT routines, types, and enumerants; and Cg and CgGL 
runtime routines, types, and enumerants. 

Initial Declarations 

#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <GL/glut.h>
#include <Cg/cg.h>
#include <Cg/cgGL.h>
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The first three includes are basic ANSI C standard library includes.  We’ll be using sin, 
cos, printf, exit, and NULL.  We rely on the GLUT header file to include the necessary 
OpenGL and OpenGL Utility Library (GLU) headers. 

The <Cg/cg.h> header contains generic routines for loading and compiling Cg programs 
but does not contain routines that call the 3D programming interface to configure the Cg 
programs for rendering.  The generic Cg routines begin with a cg prefix; the generic Cg 
types begin with a CG prefix; and the generic Cg macros and enumerations begin with a 
CG_ prefix. 

The <Cg/cgGL.h> contains the OpenGL-specific routines for configuring Cg programs 
for rendering with OpenGL.  The OpenGL-specific Cg routines begin with a cgGL prefix; 
the OpenGL-specific Cg types begin with a CGGL prefix; and the OpenGL-specific Cg 
macros and enumerations begin with a CGGL_ prefix. 

Technically, the <Cg/cgGL.h> header includes <Cg/cg.h> so we don’t have to explicitly 
include <Cg/cg.h> but we include both to remind you that we’ll be calling both generic 
Cg routines and OpenGL-specific Cg routines. 

/* An OpenGL 1.2 define */
#define GL_CLAMP_TO_EDGE 0x812F

/* A few OpenGL 1.3 defines */
#define GL_TEXTURE_CUBE_MAP 0x8513
#define GL_TEXTURE_BINDING_CUBE_MAP 0x8514
#define GL_TEXTURE_CUBE_MAP_POSITIVE_X 0x8515

We will use these OpenGL enumerants later when initializing our “normalization vector” 
cube map.  We list them here explicitly since we can’t count on <GL/gl.h> (included by 
<GL/glut.h> above) to have enumerants added since OpenGL 1.1 because Microsoft 
still supplies the dated OpenGL 1.1 header file. 

Next, we’ll list all global variables we plan to use.  We use the my prefix to indicate 
global variables that we define (to make it crystal clear what names we are defining 
rather than those names defined by header files).  When we declare a variable of a type 
defined by the Cg runtime, we use the myCg prefix to remind you that the variable is for 
use with the Cg runtime. 
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Cg Runtime Variables 

static CGcontext myCgContext;
static CGprofile myCgVertexProfile,

myCgFragmentProfile;
static CGprogram myCgVertexProgram,

myCgFragmentProgram;
static CGparameter myCgVertexParam_lightPosition,

myCgVertexParam_eyePosition,
myCgVertexParam_modelViewProj,
myCgVertexParam_torusInfo,
myCgFragmentParam_ambient,
myCgFragmentParam_LMd,
myCgFragmentParam_LMs,
myCgFragmentParam_normalMap,
myCgFragmentParam_normalizeCube,
myCgFragmentParam_normalizeCube2;

These are the global Cg runtime variables the demo initializes uses.  We need a single Cg 
compilation context named myCgContext.  Think of your Cg compilation context as the 
“container” for all the Cg handles you manipulate.  Typically your program requires just 
one Cg compilation context. 

We need two Cg profile variables, one for our vertex program profile named 
myCgVertexProfile and another for our fragment program profile named 
myCgFragmentProfile.  These profiles correspond to a set of programmable hardware 
capabilities for vertex or fragment processing and their associated execution 
environment.  Profiles supported by newer GPUs are generally more functional than 
older profiles.  The Cg runtime makes it easy to select the most appropriate profile for 
your hardware as we’ll see when we initialize these profile variables. 

Next we need two Cg program handles, one for our vertex program named 
myCgVertexProgram and another for our fragment program named 
myCgFragmentProgram.  When we compile a Cg program successfully, we use these 
handles to refer to the corresponding compiled program. 

We’ll need handles to each of the uniform input parameters used by our vertex and 
fragment programs respectively.  We use these handles to match the uniform input 
parameters in the Cg program text with the opaque OpenGL state used to maintain the 
corresponding Cg program state.  Different profiles can maintain Cg program state with 
different OpenGL state so these Cg parameter handles abstract away the details of how a 
particular profile manages a particular Cg parameter. 

The myCgVertexParam_ prefixed parameter handles end with each of the four uniform 
input parameters to the C8E6v_torus vertex program in Appendix A.  Likewise, the 
myCgFragmentParam_ prefixed parameter handles end with each of the six uniform input 
parameters to the C8E4v_specSurf fragment program in Appendix B. 
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In a real program, you’ll probably have more Cg program handles than just two.  You 
may have hundreds depending on how complicated the shading is in your application.  
And each program handle requires a Cg parameter handle for each input parameter.  This 
means you probably won’t want to use global variables to store these handles.  You’ll 
probably want to encapsulate your Cg runtime handles within “shader objects” that may 
well combine vertex and fragment Cg programs and their parameters within the same 
object for convenience.  Keep in mind that this demo is trying to be very simple. 

Other Variables 

static const char *myProgramName = "cg_bumpdemo",
*myVertexProgramFileName = "C8E6v_torus.cg",
*myVertexProgramName = "C8E6v_torus",
*myFragmentProgramFileName = "C8E4f_specSurf.cg",
*myFragmentProgramName = "C8E4f_specSurf";

We need various string constants to identify our program name (for error messages and 
the window name), the names of the file names containing the text of the vertex and 
fragment Cg programs to load, and the names of the entry functions for each of these 
files. 

In Appendix A, you’ll find the contents of the C8E6v_torus.cg file and, within the file’s 
program text, you can find the entry function named C8E6v_torus.  In Appendix B, 
you’ll find the contents of the C8E4f_specSurf.cg file and, within the file’s program 
text, you can find the entry function name C8E4f_specSurf.  

static float myEyeAngle = 0,
myAmbient[4] = { 0.3f, 0.3f, 0.3f, 0.3f }, /* Dull white */
myLMd[4] = { 0.9f, 0.6f, 0.3f, 1.0f }, /* Gold */
myLMs[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; /* Bright white */

These are demo variables used to control the rendering of the scene.  The viewer rotates 
around the fixed torus.  The angle of rotation and a degree of elevation for the viewer is 
determined by myEyeAngle, specified in radians.  The other three variables provide 
lighting and material parameters to the fragment program parameters.  With these 
particular values, the bump-mapped torus has a “golden brick” look. 

Texture Data 

/* OpenGL texture object (TO) handles. */
enum {

TO_NORMALIZE_VECTOR_CUBE_MAP = 1,
TO_NORMAL_MAP = 2,

};

The TO_ prefixed enumerants provide numbers for use as OpenGL texture object names. 
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static const GLubyte
myBrickNormalMapImage[3*(128*128+64*64+32*32+16*16+8*8+4*4+2*2+1*1)] = {
/* RGB8 image data for mipmapped 128x128 normal map for a brick pattern */
#include "brick_image.h"
};

static const GLubyte
myNormalizeVectorCubeMapImage[6*3*32*32] = {
/* RGB8 image data for normalization vector cube map with 32x32 faces */
#include "normcm_image.h"
};

These static, constant arrays include the header files containing the data for the normal 
map’s brick pattern and the “normalization vector” cube map.  Each texel is 3 unsigned 
bytes (one for red, green, and blue).  While each byte of the texel format is unsigned, 
normal map components, as well as the vector result of normalizing an arbitrary direction 
vector, are logically signed values within the [-1,1] range.  To accommodate signed 
values with OpenGL’s conventional GL_RGB8 unsigned texture format, the unsigned [0,1] 
range is expanded in the fragment program to a signed [-1,1] range.  This is the reason for 
the expand helper function called by the C8E4f_specSurf fragment program (see 
Appendix B). 

The normal map has mipmaps so there is data for the 128x128 level, and then, each of the 
successively downsampled mipmap levels.  The “normalization vector” cube map has six 
32x32 faces. 

Error Reporting Helper Routine 

static void checkForCgError(const char *situation)
{

CGerror error;
const char *string = cgGetLastErrorString(&error);

if (error != CG_NO_ERROR) {
printf("%s: %s: %s\n",

myProgramName, situation, string);
if (error == CG_COMPILER_ERROR) {

printf("%s\n", cgGetLastListing(myCgContext));
}
exit(1);

}
}

Cg runtime routines report errors by setting a global error value.  Calling the 
cgGetLastErrorString routine both returns a human-readable string describing the last 
generated Cg error and writes an error code of type CGerror.  CG_NO_ERROR (defined to 
be zero) means there was no error.  As a side-effect, cgGetLastErrorString also resets 
the global error value to CG_NO_ERROR.  The Cg runtime also includes the simpler 
function cgGetError that just returns and then resets the global error code if you just 
want the error code and don’t need a human-readable string too. 
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The checkForCgError routine is used to ensure proper error checking throughout the 
demo.  Rather than cheap out on error checking, the demo checks for errors after 
essentially every Cg runtime call by calling checkForCgError.  If an error has occurred, 
the routine prints an error message including the situation string and translated Cg 
error value string, and then exits the demo. 

When the error returned is CG_COMPILER_ERROR that means there are compiler error 
messages too.  So checkForCgError then calls cgGetLastListing to get a listing of the 
compiler error messages and prints these out too.  For example, if your Cg program had a 
syntax error, you’d see the compiler’s error messages including the line numbers where 
the compiler identified problems. 

While “just exiting” is fine for a demo, real applications will want to properly handle any 
errors generated.  In general, you don’t have to be so paranoid as to call 
cgGetLastErrorString after every Cg runtime routine.  Check the runtime API 
documentation for each routine for the reasons it can fail; when in doubt, check for 
failures. 

Demo Initialization 

static void display(void);
static void keyboard(unsigned char c, int x, int y);

int main(int argc, char **argv)
{

const GLubyte *image;
unsigned int size, level, face;

The main entry-point for the demo needs a few local variables to be used when loading 
textures.  We also need to forward declare the display and keyboard GLUT callback 
routines for redrawing the demo’s rendering window and handling keyboard events.   

OpenGL Utility Toolkit Initialization 

glutInitWindowSize(400, 400);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
glutInit(&argc, argv);

glutCreateWindow(myProgramName);
glutDisplayFunc(display);
glutKeyboardFunc(keyboard);

Using GLUT, we request a double-buffered RGB color 400x400 window with a depth 
buffer.  We allow GLUT to take a pass parsing the program’s command line arguments.  
Then, we create a window and register the display and keyboard callbacks.  We’ll 
explain these callback routines after completely initializing GLUT, OpenGL, and Cg.  
That’s it for initializing GLUT except for calling glutMainLoop to start event processing 
at the very end of main. 
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OpenGL Rendering State Initialization 

glClearColor(0.1, 0.3, 0.6, 0.0); /* Blue background */
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(

60.0, /* Field of view in degree */
1.0, /* Aspect ratio */
0.1, /* Z near */
100.0); /* Z far */

glMatrixMode(GL_MODELVIEW);
glEnable(GL_DEPTH_TEST);

Next, we initialize basic OpenGL rendering state.  For better aesthetics, we change the 
background color to a nice sky blue.  We specify a perspective projection matrix and 
enable depth testing for hidden surface elimination. 

OpenGL Texture Object Initialization 

glPixelStorei(GL_UNPACK_ALIGNMENT, 1); /* Tightly packed texture data. */

By default, OpenGL’s assumes each image scanline is aligned to begin on 4 byte 
boundaries.  However, RGB8 data (3 bytes per pixel) is usually tightly packed to a 1 byte 
alignment is appropriate.  That’s indeed the case for the RGB8 pixels in our static arrays 
used to initialize our textures.  If you didn’t know about this OpenGL pitfall before, you 
do now.‡ 

Normal Map 2D Texture Initialization 

glBindTexture(GL_TEXTURE_2D, TO_NORMAL_MAP);
/* Load each mipmap level of range-compressed 128x128 brick normal

map texture. */
for (size = 128, level = 0, image = myBrickNormalMapImage;

size > 0;
size /= 2, image += 3*size*size, level++) {

glTexImage2D(GL_TEXTURE_2D, level,
GL_RGB8, size, size, 0, GL_RGB, GL_UNSIGNED_BYTE, image);

}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR);

We bind to the texture object for our brick pattern normal map 2D texture and load each 
of the 7 mipmap levels, starting with the 128x128 base level and working down to the 
1x1 level.  Each level is packed into the myBrickNormalMapImage array right after the 
                                                 

‡ Being aware of pitfalls such as this one can save you a lot of time debugging.  This and other OpenGL 
pitfalls are enumerated in my article “Avoiding 19 Common OpenGL Pitfalls” found here 
http://developer.nvidia.com/object/Avoiding_Common_ogl_Pitfalls.html  An earlier HTML version of the  
article (with just 16 pitfalls) is found here 
http://www.opengl.org/developers/code/features/KilgardTechniques/oglpitfall/oglpitfall.html  
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previous level.  So the 64x64 mipmap level immediately follows the 128x128 level, and 
so on.  OpenGL’s default minification filter is “nearest mipmap linear” (again, a weird 
default—it means nearest filtering within a mipmap level and then bilinear filtering 
between the adjacent mipmap levels) so we switch to higher-quality “linear mipmap 
linear” filtering. 

Normalize Vector Cube Map Texture Initialization 

glBindTexture(GL_TEXTURE_CUBE_MAP, TO_NORMALIZE_VECTOR_CUBE_MAP);
/* Load each 32x32 face (without mipmaps) of range-compressed "normalize

vector" cube map. */
for (face = 0, image = myNormalizeVectorCubeMapImage;

face < 6;
face++, image += 3*32*32) {

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, 0,
GL_RGB8, 32, 32, 0, GL_RGB, GL_UNSIGNED_BYTE, image);

}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S,

GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T,

GL_CLAMP_TO_EDGE);

Next, we bind the texture object for the “normalization vector” cube map1 intended to 
quickly normalize the 3D lighting vectors that are passed as texture coordinates.  The 
cube map texture has six faces but there’s no need for mipmaps.  Each face is packed into 
the myNormalizeVectorCubeMapImage array right after the prior face with the faces 
ordered in the order of the sequential texture cube map face OpenGL enumerants. 

Again, the default minification state is inappropriate (this time because we don’t have 
mipmaps) so GL_LINEAR is specified instead.  While the default GL_REPEAT wrap mode 
was fine for the brick pattern that we intend to tile over the surface of the torus, the 
GL_CLAMP_TO_EDGE wrap mode (introduced by OpenGL 1.2) keeps one edge of a cube 
map face from bleeding over to the other. 

GLUT and OpenGL are now initialized so it is time to begin loading, compiling, and 
configuring the Cg programs. 

Cg Runtime Initialization 

myCgContext = cgCreateContext();
checkForCgError("creating context");

                                                 

1 Using a “normalization vector” cube map allows our demo to work on older DirectX 8-class GPUs that 
lacked the shading generality to normalize vectors mathematically.  Ultimately as more capable GPUs 
become ubiquitous, use of normalization cube maps is sure to disappear in favor of normalizing a vector 
mathematically.  See Exercise 5. 
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Before we can do anything with the Cg runtime, we need to allocate a Cg compilation 
context with cgCreateContext.  Typically, your application just needs one Cg 
compilation context unless you have a multi-threaded application that requires using the 
Cg runtime concurrently in different threads.  Think of the Cg context as the context and 
container for all your Cg programs that are creating, loading (compiling), and configured 
by the Cg runtime. 

Cg Vertex Profile Selection 

myCgVertexProfile = cgGLGetLatestProfile(CG_GL_VERTEX);
cgGLSetOptimalOptions(myCgVertexProfile);
checkForCgError("selecting vertex profile");

We need a profile with which to compile our vertex program.  We could hard-code a 
particular profile (for example, the multi-vendor CG_PROFILE_ARBVP1 profile), but we are 
better off asking the CgGL runtime to determine the best vertex profile for our current 
OpenGL context by calling the cgGLGetLatestProfile routine.  (Keep in mind there’s a 
current OpenGL rendering context that GLUT created for us when we called 
glutCreateWindow.)  cgGLGetLatestProfile calls OpenGL queries to examine the 
current OpenGL rendering context.  Based on the OpenGL GL_EXTENSIONS string, this 
routine can decide what profiles are supported and then which hardware-supported 
profile offers the most functionality and performance.  The CG_GL_VERTEX parameter 
says to return the most appropriate vertex profile, but we can also pass CG_GL_FRAGMENT, 
as we will do later, to determine the most appropriate fragment profile. 

Cg supports a number of vertex profiles.  These are the vertex profiles currently 
supported by Cg 1.4 for OpenGL:  CG_PROFILE_VP40 corresponds to the vp40 vertex 
program profile for the NV_vertex_program3 OpenGL extension (providing full access 
to the vertex processing features of NVIDIA’s GeForce 6 Series GPUs such as vertex 
textures).  CG_PROFILE_VP30 corresponds to the vp30 vertex program profile for the 
NV_vertex_program2 OpenGL extension (providing full access to the vertex processing 
features of NVIDIA’s GeForce FX GPUs such as per-vertex dynamic branching).  
CG_PROFILE_ARBVP1 corresponds to the arbvp1 vertex program profile for the 
ARB_vertex_program OpenGL extension (a multi-vendor OpenGL standard, supported 
by both NVIDIA and ATI).  CG_PROFILE_VP20 corresponds to the vp20 vertex program 
profile for the NV_vertex_program and NV_vertex_program1_1 OpenGL extensions 
(for NVIDIA’s GeForce3, GeForce4 Ti, and later GPUs). 

While several GPUs can support the same profile, there may be GPU-specific techniques 
the Cg compiler can use to make the most of the available functionality and generate 
better code for your given GPU.  By calling cgGLSetOptimalOptions with the profile 
we’ve selected, we ask the compiler to optimize for the specific hardware underlying our 
OpenGL rendering context. 

For example, some vertex profiles such as CG_PROFILE_VP40 support texture fetches but 
typically support fewer texture image units than the hardware’s corresponding fragment-
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level texture functionality.  cgGLSetOptimalOptions informs the compiler what the 
hardware’s actual vertex texture image unit limit is. 

Vertex Program Creation and Loading 

myCgVertexProgram =
cgCreateProgramFromFile(

myCgContext, /* Cg runtime context */
CG_SOURCE, /* Program in human-readable form */
myVertexProgramFileName, /* Name of file containing program */
myCgVertexProfile, /* Profile to try */
myVertexProgramName, /* Entry function name */
NULL); /* No extra compiler options */

checkForCgError("creating vertex program from file");
cgGLLoadProgram(myCgVertexProgram);
checkForCgError("loading vertex program");

Now we try to create and load the Cg vertex program.  We use the optimal vertex profile 
for our OpenGL rendering context to compile the vertex program contained in the file 
named by myVertexProgramFileName.  As it turns out, the C8E6v_torus vertex program 
is simple enough that every Cg vertex profile mentioned in the last section is functional 
enough to compile the C8E6v_torus program. 

The cgCreateProgramFromFile call reads the file, parses the contents, and searches for 
the entry function specified by myVertexProgramName and, if found, creates a vertex 
program for the profile specified by myCgVertexProfile.  The 
cgCreateProgramFromFile routine is a generic Cg runtime routine so it just creates the 
program without actually translating the program into a form that can be passed to the 3D 
rendering programming interface.   

You don’t actually need a current OpenGL rendering context to call 
cgCreateProgramFromFile, but you do need a current OpenGL rendering context that 
supports the profile of the program for cgGLLoadProgram to succeed. 

It is the OpenGL-specific cgGLLoadProgram routine that translates the program into a 
profile-dependent form.  For example, in the case of the multi-vendor arbvp1 profile, this 
includes calling the ARB_vertex_program extension routine glProgramStringARB to 
create an OpenGL program object. 

We expect cgGLLoadProgram to “just work” because we’ve already selected a profile 
suited for our GPU and cgCreateProgramFromFile successfully compiled the Cg 
program into a form suitable for that profile. 
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Vertex Program Parameter Handles 

myCgVertexParam_lightPosition =
cgGetNamedParameter(myCgVertexProgram, "lightPosition");

checkForCgError("could not get lightPosition parameter");

myCgVertexParam_eyePosition =
cgGetNamedParameter(myCgVertexProgram, "eyePosition");

checkForCgError("could not get eyePosition parameter");

myCgVertexParam_modelViewProj =
cgGetNamedParameter(myCgVertexProgram, "modelViewProj");

checkForCgError("could not get modelViewProj parameter");

myCgVertexParam_torusInfo =
cgGetNamedParameter(myCgVertexProgram, "torusInfo");

checkForCgError("could not get torusInfo parameter");

Now that the vertex program is created and successfully loaded, we initialize all the Cg 
parameter handles.  Later during rendering in the display callback, we will use these 
parameter handles to update whatever OpenGL state the compiled program associates 
with each parameter. 

In this demo, we know a priori what the input parameter names are to keep things simple.  
If we had no special knowledge of the parameter names, we could use Cg runtime 
routines to iterate over all the parameter names for a given program (see the 
cgGetFirstParameter, cgGetNextParameter, and related routines—use these for 
Exercise 11 at the end of this article). 

Cg Fragment Profile Selection 

myCgFragmentProfile = cgGLGetLatestProfile(CG_GL_FRAGMENT);
cgGLSetOptimalOptions(myCgFragmentProfile);
checkForCgError("selecting fragment profile");

We select our fragment profile in the same manner we used to select our vertex profile.  
The only difference is we pass the CG_GL_FRAGMENT parameter when calling 
cgGLGetLatestProfile. 

Cg supports a number of fragment profiles.  These are the fragment profiles currently 
supported by Cg 1.4 for OpenGL:  CG_PROFILE_FP40 corresponds to the fp40 vertex 
program profile for the NV_fragment_program2 OpenGL extension (providing full 
access to the fragment processing features of NVIDIA’s GeForce 6 Series GPUs such as 
per-fragment dynamic branching).  CG_PROFILE_FP30 corresponds to the fp30 vertex 
program profile for the NV_fragment_program OpenGL extension (providing full access 
to the fragment processing features of NVIDIA’s GeForce FX GPUs).  
CG_PROFILE_ARBFP1 corresponds to the arbfp1 fragment program profile for the 
ARB_fragment_program OpenGL extension (a multi-vendor OpenGL standard, 
supported by both NVIDIA and ATI).  CG_PROFILE_FP20 corresponds to the fp20 vertex 
program profile for the NV_texture_shader, NV_texture_shader2,
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NV_register_combiners, and NV_register_combiners2 OpenGL extensions (for 
NVIDIA’s GeForce3, GeForce4 Ti, and later GPUs). 

As in the vertex profile case, cgGLSetOptimalOptions informs the compiler about 
specific hardware limits relevant to fragment profiles.  For example, when your OpenGL 
implementation supports the ATI_draw_buffers extension, the 
cgGLSetOptimalOptions informs the compiler of this fact so the compiler can know 
how many color buffers are actually available when compiling for fragment profiles that 
support output multiple color buffers.  Other limits such as the ARB_fragment_program 
limit on texture indirections are likewise queried so the compiler is aware of this limit.  
The maximum number of texture indirections the GPU can support may require the 
compiler to re-schedule the generated instructions around this limit.  Other profile limits 
include the number of texture image units available, the maximum number of temporaries 
and constants allowed, and the static instruction limit. 

Fragment Program Creation and Loading 

myCgFragmentProgram =
cgCreateProgramFromFile(

myCgContext, /* Cg runtime context */
CG_SOURCE, /* Program in human-readable form */
myFragmentProgramFileName, /* Name of file containing program */
myCgFragmentProfile, /* Profile to try */
myFragmentProgramName, /* Entry function name */
NULL); /* No extra compiler options */

checkForCgError("creating fragment program from file");
cgGLLoadProgram(myCgFragmentProgram);
checkForCgError("loading fragment program");

We create and load the fragment program in much the same manner as the vertex 
program. 

Fragment Program Parameter Handles 

myCgFragmentParam_ambient =
cgGetNamedParameter(myCgFragmentProgram, "ambient");

checkForCgError("getting ambient parameter");

myCgFragmentParam_LMd =
cgGetNamedParameter(myCgFragmentProgram, "LMd");

checkForCgError("getting LMd parameter");

myCgFragmentParam_LMs =
cgGetNamedParameter(myCgFragmentProgram, "LMs");

checkForCgError("getting LMs parameter");

myCgFragmentParam_normalMap =
cgGetNamedParameter(myCgFragmentProgram, "normalMap");

checkForCgError("getting normalMap parameter");

myCgFragmentParam_normalizeCube =
cgGetNamedParameter(myCgFragmentProgram, "normalizeCube");

checkForCgError("getting normalizeCube parameter");
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myCgFragmentParam_normalizeCube2 =
cgGetNamedParameter(myCgFragmentProgram, "normalizeCube2");

checkForCgError("getting normalizeCube2 parameter");

We initialize input parameter handles in the same manner as done for vertex parameter 
handles. 

Setting OpenGL Texture Objects for Sampler Parameters 

cgGLSetTextureParameter(myCgFragmentParam_normalMap,
TO_NORMAL_MAP);

checkForCgError("setting normal map 2D texture");

cgGLSetTextureParameter(myCgFragmentParam_normalizeCube,
TO_NORMALIZE_VECTOR_CUBE_MAP);

checkForCgError("setting 1st normalize vector cube map");

cgGLSetTextureParameter(myCgFragmentParam_normalizeCube2,
TO_NORMALIZE_VECTOR_CUBE_MAP);

checkForCgError("setting 2nd normalize vector cube map");

Parameter handles for sampler parameters need to be associated with OpenGL texture 
objects.  The first cgGLSetTextureParameter call associates the TO_NORMAL_MAP texture 
object with the myCgFragmentParam_normalMap parameter handle. 

Notice how the TO_NORMALIZE_VECTOR_CUBE_MAP texture object is associated with the 
two distinct sampler parameters, normalizeCube and normalizeCube2.  The reason this 
is done is to support older DirectX 8-class hardware such as the GeForce3 and GeForce4 
Ti.  These older DirectX 8-class GPUs must sample the texture associated with a given 
texture unit and that unit’s corresponding texture coordinate set (and only that texture 
coordinate set).  In order to support DirectX 8-class profiles (namely, fp20), the 
C8E4f_specSurf fragment program is written in such a way that the texture units 
associated with the two 3D vectors to be normalized (lightDirection and halfAngle) 
are each bound to the same “normalization vector” cube map.  If there was no desire to 
support older DirectX 8-class hardware, fragment programs targeting the more general 
DirectX 9-class profiles (namely, arbfp1 and fp30) could simply sample a single 
“normalization vector” texture unit. 

Alternatively, the Cg fragment program could normalize the 3D lighting vectors with the 
normalize Cg standard library routine (see Exercise 5 at the end of this article), but for a 
lot of current hardware, a “normalization vector” cube map is faster and the extra 
precision for a mathematical normalize function is not crucial for lighting. 
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Start Event Processing 

glutMainLoop();
return 0; /* Avoid a compiler warning. */

}

GLUT, OpenGL, and Cg are all initialized now so we can start GLUT event processing.  
This routine never returns.  When a redisplay of the GLUT window created earlier is 
needed, the display callback is called.  When a key press occurs in the window, the 
keyboard callback is called. 

Displaying the Window 

Earlier in the code, we forward declared the display callback.  Now it’s time to discuss 
what the display routine does and how exactly we render our bump-mapped torus using 
the textures and Cg vertex and fragment programs we’ve loaded. 

Rendering a 2D Mesh to Generate a Torus 

In the course of updating the window, the display callback invokes the drawFlatPatch 
subroutine.  This subroutine renders a flat 2D mesh with immediate-mode OpenGL 
commands. 

/* Draw a flat 2D patch that can be "rolled & bent" into a 3D torus by
a vertex program. */

void
drawFlatPatch(float rows, float columns)
{

const float m = 1.0f/columns;
const float n = 1.0f/rows;
int i, j;

for (i=0; i<columns; i++) {
glBegin(GL_QUAD_STRIP);
for (j=0; j<=rows; j++) {

glVertex2f(i*m, j*n);
glVertex2f((i+1)*m, j*n);

}
glVertex2f(i*m, 0);
glVertex2f((i+1)*m, 0);
glEnd();

}
}

The mesh consists of a number of adjacent quad strips.  The C8E6v_torus vertex 
program will take these 2D vertex coordinates and use them as parametric coordinates for 
evaluating the position of vertices on a torus. 

Nowadays it’s much faster to use OpenGL vertex arrays, particularly with vertex buffer 
objects, to render geometry, but for this simple demo, immediate mode rendering is 
easier. 
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Figure 8-7 from The Cg Tutorial is replicated to illustrate how a 2D mesh could be 
procedurally “rolled and bent” into a torus by a vertex program. 

The Display Callback 

static void display(void)
{

const float outerRadius = 6, innerRadius = 2;
const int sides = 20, rings = 40;
const float eyeRadius = 18.0;
const float eyeElevationRange = 8.0;
float eyePosition[3];

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

The display callback has a number of constants that control the torus size and 
tessellation and how the torus is viewed. 

eyePosition[0] = eyeRadius * sin(myEyeAngle);
eyePosition[1] = eyeElevationRange * sin(myEyeAngle);
eyePosition[2] = eyeRadius * cos(myEyeAngle);

glLoadIdentity();
gluLookAt(

eyePosition[0], eyePosition[1], eyePosition[2],
0.0 ,0.0, 0.0, /* XYZ view center */
0.0, 1.0, 0.0); /* Up is in positive Y direction */

The viewing transform is re-specified each frame.  The eye position is a function of 
myEyeAngle.  By animating this variable, the viewer rotates around the torus with a 
sinusoidally varying elevation.  Because specular bump mapping is view-dependent, the 
specular lighting varies over the torus as the viewer rotates around. 
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Binding, Configuring, and Enabling the Vertex Program 

cgGLBindProgram(myCgVertexProgram);
checkForCgError("binding vertex program");

cgGLSetStateMatrixParameter(myCgVertexParam_modelViewProj,
CG_GL_MODELVIEW_PROJECTION_MATRIX,
CG_GL_MATRIX_IDENTITY);

checkForCgError("setting modelview-projection matrix");
cgGLSetParameter3f(myCgVertexParam_lightPosition, -8, 0, 15);
checkForCgError("setting light position");
cgGLSetParameter3fv(myCgVertexParam_eyePosition, eyePosition);
checkForCgError("setting eye position");
cgGLSetParameter2f(myCgVertexParam_torusInfo, outerRadius, innerRadius);
checkForCgError("setting torus information");

cgGLEnableProfile(myCgVertexProfile);
checkForCgError("enabling vertex profile");

Prior to rendering the 2D mesh, we must bind to the vertex program, set the various input 
parameters used by the program with the parameter handles, and then enable the 
particular profile.  Underneath the covers of these OpenGL-specific Cg routines, the 
necessary OpenGL commands are invoked to configure the vertex program with its 
intended parameter values. 

Rather than specifying the parameter value explicitly as with the cgGLSetParameter 
routines, the cgGLSetStateMatrixParameter call binds the current composition of the 
modelview and projection matrices (specified earlier by gluLookAt and 
gluPerspective commands respectively) to the modelViewProj parameter. 

One of the really nice things about the CgGL runtime is it saves you from having to know 
the details of what OpenGL routines are called to configure use of your Cg vertex and 
fragment programs.  Indeed, the required OpenGL commands can very considerably 
between different profiles. 
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Binding, Configuring, and Enabling the Fragment Program 

cgGLBindProgram(myCgFragmentProgram);
checkForCgError("binding fragment program");

cgGLSetParameter4fv(myCgFragmentParam_ambient, myAmbient);
checkForCgError("setting ambient");
cgGLSetParameter4fv(myCgFragmentParam_LMd, myLMd);
checkForCgError("setting diffuse material");
cgGLSetParameter4fv(myCgFragmentParam_LMs, myLMs);
checkForCgError("setting specular material");

cgGLEnableTextureParameter(myCgFragmentParam_normalMap);
checkForCgError("enable texture normal map");
cgGLEnableTextureParameter(myCgFragmentParam_normalizeCube);
checkForCgError("enable 1st normalize vector cube map");
cgGLEnableTextureParameter(myCgFragmentParam_normalizeCube2);
checkForCgError("enable 2nd normalize vector cube map");

cgGLEnableProfile(myCgFragmentProfile);
checkForCgError("enabling fragment profile");

The fragment program is bound, configured, and enabled in much the same manner with 
the additional task of enabling texture parameters with cgGLEnableTextureParameter 
to ensure the indicated texture objects are bound to the proper texture units.   

Without you having to know the details, cgGLEnableTextureParameter calls 
glActiveTexture and glBindTexture to bind the correct texture object (specified 
earlier with cgGLSetTextureParameter) into the compiled fragment program’s 
appropriate texture unit in the manner required for the given profile. 

Render the 2D Mesh 

drawFlatPatch(sides, rings);

With the vertex and fragment program each configured properly, now render the flat 2D 
mesh that will be formed into a torus and illuminated with specular and diffuse bump 
mapping. 

Disable the Profiles and Swap 

cgGLDisableProfile(myCgVertexProfile);
checkForCgError("disabling vertex profile");

cgGLDisableProfile(myCgFragmentProfile);
checkForCgError("disabling fragment profile");

glutSwapBuffers();
}

While not strictly necessary for this demo because just one object is rendered per frame, 
after rendering the 2D mesh, the profiles associated with the vertex program and 
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fragment program are each disabled.  This way you could perform conventional OpenGL 
rendering.  After using the OpenGL-specific Cg runtime, be careful not to assume how 
OpenGL state such as what texture objects are bound to what texture units. 

Keyboard Processing 

Along with the display callback, we also forward declared and registered the keyboard 
callback.  Now it’s time to see how the demo responses to simple keyboard input. 

Animating the Eye Position 

static void advanceAnimation(void)
{

myEyeAngle += 0.05f;
if (myEyeAngle > 2*3.14159)

myEyeAngle -= 2*3.14159;
glutPostRedisplay();

}

In order to animate the changing eye position so the view varies, the advanceAnimation 
callback is registered as the GLUT idle function.  The routine advances myEyeAngle and 
posts a request for GLUT to redraw the window with glutPostRedisplay.  GLUT calls 
the idle function repeatedly when there are no other events to process. 

The Keyboard Callback 

static void keyboard(unsigned char c, int x, int y)
{

static int animating = 0;

switch (c) {
case ' ':

animating = !animating; /* Toggle */
glutIdleFunc(animating ? advanceAnimation : NULL);
break;

The space bar toggles animation of the scene by registering and de-registering the 
advanceAnimation routine as the idle function. 

case 27: /* Esc key */
cgDestroyProgram(myCgVertexProgram);
cgDestroyProgram(myCgFragmentProgram);
cgDestroyContext(myCgContext);
exit(0);
break;

}
}

The Esc key exits the demo.  While it is not necessary to do so, the calls to 
cgDestroyProgram and cgDestroyContext deallocate the Cg runtime objects, along 
with their associated OpenGL state. 
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The Demo in Action 

The images below show the rendered bump-mapped torus initially (left) and while 
animating (right). 

   

Conclusions 

This tutorial presents a complete Cg bump mapping demo written in ANSI C and 
rendering with OpenGL, relying on two of the actual Cg vertex and fragment programs 
detailed in The Cg Tutorial.  I hope this tutorial “fills in the gaps” for those intrepid Cg 
Tutorial readers now inspired to integrate Cg technology into their graphics application.  
The cg_bumpdemo demo works on ATI and NVIDIA GPUs (and GPUs from any other 
vendor that support the standard, multi-vendor vertex and fragment program extensions).  
The demo is cross-platform as well, supporting Windows, OS X, and Linux systems. 

The time you invest integrating the Cg runtime to your graphics application is time well 
spent because of the productivity and cross-platform support you unleash by writing 
shaders in Cg rather than resorting to low-level 3D rendering commands or a high-level 
shading language tied to a particular 3D API.  With Cg, you can write shaders that work 
with two implementations of the same basic language (Cg & HLSL), two 3D rendering 
programming interfaces (OpenGL & Direct3D), three operating systems (Windows, OS 
X, and Linux), and the two major GPU vendors (ATI & NVIDIA—and any other vendors 
supporting DirectX 9-level graphics functionality).  

Finally, Cg has evolved considerably since Randy and I wrote The Cg Tutorial.  Cg 1.2 
introduced a “sub-shader” facility allowing you to write shaders in Cg in a more modular 
fashion.  And be sure to explore Cg 1.4’s updated implementation of the CgFX meta-
shader format (compatible with Microsoft’s DirectX 9 FX format) to encapsulate non-
programmable state, semantics, hardware-dependent rendering techniques, and support 
for multiple passes. 
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Exercises 

Just as The Cg Tutorial provides exercises at the end of each chapter, here are some 
exercises to help you expand on what you’ve learned. 

Improving the Shading 

1. Support two lights.  You'll need a second light position uniform parameter and 
your updated vertex program must output a second tangent-space light position.  
Example 5-4 in The Cg Tutorial will give you some ideas for supporting multiple 
lights.  However, Example 5-4 is for two per-vertex lights; for this exercise, you 
want two per-fragment lights combined with bump mapping.  Hint: If you add 
multiple lights, you might want to adjust down the values of ambient, LMd, and 
LMs to avoid an “over bright” scene. 

2. Support a positional light (the current light is directional).  Add controls so you 
can interactively position the light in the “hole” of the torus.  Section 5.5 of The 
Cg Tutorial briefly explains the distinction between directional and positional 
lights. 

3. Add geometric self-shadowing to the fragment program. 

a. Clamp the specular to zero if the z component of the tangent-space light 
direction is non-positive to better simulate self-shadowing (this is a 
situation where the light is “below” the horizon of the torus surface).  See 
section 8.5.3 of The Cg Tutorial for details about geometric self-
shadowing. 

b. Further tweak the geometric self-shadowing.  Instead of clamping, 
modulate with saturate(8*lightDirection.z)  so specular highlights 
don't “wink off” when self-shadowing occurs but rather drop off.  When 
the scene animates, which approach looks better? 

4. Change the specular exponent computation to use the pow standard library 
function instead of successive multiplication (you'll find pow is only available on 
more recent DirectX 9-class profiles such as arbfp1 and fp30, not fp20).  
Provide the specular exponent as a uniform parameter to the fragment program. 

5. Instead of using normalization cube maps, use the normalize standard library 
routine?  Does the lighting change much?  Does the performance change? 

6. Rather than compute the tangent-space half-angle vector at each vertex and 
interpolate the half-angle for each fragment, compute the view vector at each 
vertex; then compute the half-angle at each fragment (by normalizing the sum of 
the interpolated normalized light vector and the interpolated normalized view 
vector).  Does the lighting change much?  Does the performance change? 

7. Advanced:  Read section 8.4 of The Cg Tutorial and implement bump mapping 
on an arbitrary textured polygonal mesh.  Implement this approach to bump map 
an arbitrary textured model. 
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8. Advanced:  Read section 9.4 of The Cg Tutorial and combine bump mapping 
with shadow mapping. 

Improving the Cg Runtime Usage 

9. Provide command line options to specify what file names contain the vertex and 
fragment programs. 

10. Provide better diagnostic messages when errors occur. 

11. Use the Cg runtime to query the uniform parameter names and then prompt the 
user for values for the various parameters (rather than having the parameter names 
and values hard coded in the program itself). 

12. Rather than using global variables for each vertex and fragment program object, 
support loading a set of vertex and fragment programs and allow the user to select 
the current vertex and current fragment program from an interactive menu.  
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Appendix A: C8E6v_torus.cg Vertex Program 
void C8E6v_torus(float2 parametric : POSITION,

out float4 position : POSITION,
out float2 oTexCoord : TEXCOORD0,
out float3 lightDirection : TEXCOORD1,
out float3 halfAngle : TEXCOORD2,

uniform float3 lightPosition, // Object-space
uniform float3 eyePosition, // Object-space
uniform float4x4 modelViewProj,
uniform float2 torusInfo)

{
const float pi2 = 6.28318530; // 2 times Pi
// Stetch texture coordinates counterclockwise
// over torus to repeat normal map in 6 by 2 pattern
float M = torusInfo[0];
float N = torusInfo[1];
oTexCoord = parametric * float2(-6, 2);
// Compute torus position from its parameteric equation
float cosS, sinS;
sincos(pi2 * parametric.x, sinS, cosS);
float cosT, sinT;
sincos(pi2 * parametric.y, sinT, cosT);
float3 torusPosition = float3((M + N * cosT) * cosS,

(M + N * cosT) * sinS,
N * sinT);

position = mul(modelViewProj, float4(torusPosition, 1));
// Compute per-vertex rotation matrix
float3 dPds = float3(-sinS*(M+N*cosT), cosS*(M+N*cosT), 0);
float3 norm_dPds = normalize(dPds);
float3 normal = float3(cosS * cosT, sinS * cosT, sinT);
float3 dPdt = cross(normal, norm_dPds);
float3x3 rotation = float3x3(norm_dPds,

dPdt,
normal);

// Rotate object-space vectors to texture space
float3 eyeDirection = eyePosition - torusPosition;
lightDirection = lightPosition - torusPosition;
lightDirection = mul(rotation, lightDirection);
eyeDirection = mul(rotation, eyeDirection);
halfAngle = normalize(normalize(lightDirection) +

normalize(eyeDirection));
}
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Appendix B: C8E4f_specSurf.cg Fragment Program 
float3 expand(float3 v) { return (v-0.5)*2; }

void C8E4f_specSurf(float2 normalMapTexCoord : TEXCOORD0,
float3 lightDirection : TEXCOORD1,
float3 halfAngle : TEXCOORD2,

out float4 color : COLOR,

uniform float ambient,
uniform float4 LMd, // Light-material diffuse
uniform float4 LMs, // Light-material specular
uniform sampler2D normalMap,
uniform samplerCUBE normalizeCube,
uniform samplerCUBE normalizeCube2)

{
// Fetch and expand range-compressed normal
float3 normalTex = tex2D(normalMap, normalMapTexCoord).xyz;
float3 normal = expand(normalTex);
// Fetch and expand normalized light vector
float3 normLightDirTex = texCUBE(normalizeCube,

lightDirection).xyz;
float3 normLightDir = expand(normLightDirTex);
// Fetch and expand normalized half-angle vector
float3 normHalfAngleTex = texCUBE(normalizeCube2,

halfAngle).xyz;
float3 normHalfAngle = expand(normHalfAngleTex);

// Compute diffuse and specular lighting dot products
float diffuse = saturate(dot(normal, normLightDir));
float specular = saturate(dot(normal, normHalfAngle));
// Successive multiplies to raise specular to 8th power
float specular2 = specular*specular;
float specular4 = specular2*specular2;
float specular8 = specular4*specular4;

color = LMd*(ambient+diffuse) + LMs*specular8;
}
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Comparison Tables for 
HLSL, OpenGL Shading Language, and Cg 

 
April 2005 

 
 

DirectX 9 HLSL 

OpenGL 
Shading 
Language 

Cg 
Toolkit 

 
Availability 

   

Available today  Yes Yes Yes 
Installation/upgrade 
requirements 

Part of DirectX 9; 
comes with XP or 
a free Windows 
updated 

May need driver 
update from 
hardware 
vendor for  
ARB extensions 
or OpenGL 2.0 

User level libraries 
so no driver 
upgrade typically 
required 

Time of first release March 2003, 
DirectX 9 ship 

June 2003, ARB 
standards 
approved; 
implementation
s in late 2003 

December 2002, 
1.0 release 

Current version DirectX 9.0c 1.10 Cg 1.4 
Standard maker Microsoft OpenGL 

Architectural 
Review Board 

NVIDIA 

Implementer Microsoft Each OpenGL 
driver vendor 

NVIDIA 

 
3D Graphics API 
Support  

   

OpenGL No Yes Yes 
Direct3D Yes No Yes 
One shader can compile for 
either API 

No No Yes 
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DirectX 9 HLSL 

OpenGL 
Shading 
Language 

Cg 
Toolkit 

 
OpenGL Specifics 

   

OpenGL 1.x support n/a Needs ARB 
GLSL 
extensions 

Needs ARB or NV 
low-level assembly 
extensions 

Multi-vendor 
ARB_vertex_program support 

n/a No Yes 

Multi-vendor 
ARB_fragment_program support 

n/a No Yes 

NVIDIA OpenGL extension 
support 

n/a No Yes, profiles for 
fp20, vp20, fp30, 
vp30, fp40, and 
vp40 

Relationship to OpenGL 
standard 

n/a Part of core 
OpenGL 2.0 
standard 

Layered upon 
ARB-approved 
assembly 
extensions 

Access to OpenGL state settings n/a Yes Yes 
Open Source OpenGL rendering 
support (via Mesa) 

n/a No Mesa 
support yet 

Yes, no changes 
required 

Language tied to OpenGL n/a Yes No, API-
independent 

 
Direct3D Specifics 

   

DirectX 8 support 
  

Requires DirectX 
9 upgrade but 
supports DirectX 
8-class hardware 
profiles 

n/a Yes 

DirectX 9 support Yes n/a Yes 
 
GPU Hardware 
Support 

   

NVIDIA DirectX 9-class GPUs Yes Yes Yes 
ATI DirectX 9-class GPUs Yes Yes Yes 
3Dlabs DirectX 9-class GPUs Yes Yes  Yes 
DirectX 8-class GPUs Yes, with ps1.x 

and vs1.1 profiles 
No Yes, fp20 and vp20 

profiles 
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DirectX 9 HLSL 

OpenGL 
Shading 
Language 

Cg 
Toolkit 

 
Graphics Hardware 
Feature Support 

   

Vertex textures Yes, if hardware 
supports vs3.0 
profile 

Yes, if hardware 
supports 

Yes, if hardware 
supports vp40 
profile 

Dynamic vertex branching Yes, if hardware 
supports vs2.0 
profile 

Yes, if hardware 
supports 

Yes, if hardware 
supports vp30 or 
vp40 profiles 

Dynamic fragment branching Yes, if hardware 
supports ps3.0 
profile 

Yes, if hardware 
supports 

Yes, if hardware 
supports fp40 
profile 

Fragment depth output Yes Yes Yes 
Multiple render targets Yes, if hardware 

supports 
Yes, if hardware 
supports 

Yes, if hardware 
supports fp40 
profile 

1D, 2D, 3D, and cube map 
texture support 

Yes Yes Yes 

Shadow mapping Yes Yes, but needs 
special shadow 
texture fetch 
routines to be 
well-defined 

Yes 

Point size output Yes Yes Yes 
Clipping support Output clip 

coordinate(s)  
Output clip 
position 

Output clip 
coordinate(s) 

Texture rectangles No Yes, when 
ARB_texture_recta
ngle is supported 

Yes, when 
ARB_texture_rectangle 
is supported 

Access to fragment derivatives Yes, when 
supported by the 
fragment profile 

Yes Yes, when 
supported by the 
fragment profile 

Front and back vertex color 
outputs for two-sided lighting  

No Yes Yes, for OpenGL 

Front facing fragment shader 
input 

Yes Yes Yes, for fp40 
profile 

Window position fragment 
shader input 

Yes, for ps2 and 
ps3 profiles 

Yes Yes, for all but 
fp20 profile 
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DirectX 9 HLSL 

OpenGL 
Shading 
Language 

Cg 
Toolkit 

 
Language Details 

   

C-like languages Yes Yes Yes 
Language compatibility with 
Microsoft’s DirectX 9 HLSL 

Yes No Yes 

Vertex and fragment shaders 
written as separate programs 

Yes Yes Yes 

C operators with C precedence Yes Yes Yes 
C control flow (if, else, for, do 
while) 

Yes Yes Yes 

Vector data types  Yes Yes Yes 
Fixed-point data type No No. has fixed 

reserved word 
Yes, fixed 

Matrix arrangement Column major  
by default 

Column major Row major by 
default 

Non-square matrices Yes No Yes 
Data type constructors Yes Yes Yes 
Structures and arrays Yes Yes Yes 
Function overloading Yes Yes Yes 
Function parameter qualifiers: 
in, out, and inout 

Yes Yes Yes 

Type qualifiers: uniform, const Yes Yes Yes 
Shader outputs readable Yes No Yes 
Texture samplers Yes Yes Yes 
Keyword discard to discard a 
fragment 

Yes Yes Yes 

C and C++ style comments Yes Yes Yes 
C preprocessor support Yes Yes Yes 
Vector write masking Yes No Yes 
Vector component and matrix 
swizzling 

Yes No Yes 

Vector ?: operator Yes No, Boolean 
only 

Yes 

Vector comparison operators Yes No, must use 
lessThan, etc. 
standard library 
routines 

Yes 

Semantic qualifiers Yes No Yes 
Array dimensionality Multi-

dimensional 
1D only Multi-dimensional 

Un-sized arrays (dynamic 
sizing) 

No No Yes 
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DirectX 9 HLSL 

OpenGL 
Shading 
Language 

Cg 
Toolkit 

 
Shader Linking 
Support 

   

Sub-shader support via interface 
mechanism 

No No, but 
keyword 
reserved 

Yes, in Cg 2.0 

Separate compilation and 
linking 

D3DX utility 
library: Fragment 
Linker 

Yes No, but interfaces 
provide a structured 
form of program 
reconfiguration 

Cross domain linking by 
varying name 

No Yes No 

 
Standard Library 

   

Standard function library Yes Yes Yes 
Standard function library 
compatibility with Microsoft’s 
DirectX 9 HLSL 

Yes No Yes 

 
Operating System 
Support 

   

Windows support (98/2000/XP) Yes Yes Yes 
Legacy Windows 95 support No Yes Yes 
Legacy Windows NT 4.0 
support 

No Yes Yes 

Linux No Yes Yes 
Mac OS X No Yes Yes (since 1.2) 
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DirectX 9 HLSL 

OpenGL 
Shading 
Language 

Cg 
Toolkit 

 
Shader Meta File 
Format Support 

   

Standard shader meta file 
format 

Yes (FX) No Yes (CgFX) 

Shader meta file format 
compatible with DirectX 9 
Effects format 

Yes n/a Yes 
 

Specification of multiple 
techniques for an effect 

Yes n/a Yes 

Virtual machine for CPU shader 
execution 

Yes No Yes 

Annotations Yes n/a Yes 
State assignments Yes n/a Yes 
Run-time API Yes n/a Yes 
Direct3D loader Yes n/a Yes 
OpenGL loader n/a n/a Yes 
Free shader meta file viewer 
available 

FX Composer n/a FX Composer 

 
Debugging 

   

Interactive shader debugger Visual Studio 
.NET Shader 
Debugger 

No No 

 
Documentation 

   

Specification or definitive 
documentation 

MSDN Direct3D 
9 documentation 

The OpenGL 
Shading 
Language 
specification 

The Cg Language 
Specification 

Tutorial book 
 

Various books OpenGL 
Shading 
Language 
(Rost) 

The Cg Tutorial 
(Fernando & 
Kilgard) 

User’s manual MSDN Direct3D 
9 documentation 

No Cg User’s Manual 

Japanese documentation 
available 

Yes No Yes 

5 -47



 

DirectX 9 HLSL 

OpenGL 
Shading 
Language 

Cg 
Toolkit 

 
Example Code 

   

Sources of example code 
 

Microsoft 
DirectX 9 SDK 
examples 

ATI, 3Dlabs, 
NVIDIA SDK 
examples 

Cg Tutorial 
examples, NVIDIA 
SDK examples 

 
Miscellaneous 

   

Standalone command line 
compiler 

Yes (fxc) No Yes (cgc) 

Generates human-readable 
intermediate assembly code 

Yes No Yes 

Supports ILM’s OpenEXR half-
precision data type 

Yes Reserved word 
for half; 
NVIDIA 
supports it 

Yes 

Open source language parser 
available 

No Yes Yes 

Compiler tied into graphics 
driver 

No Yes, compiled 
result depends 
on end-user 
hardware and 
driver version 

No 

Multi-vendor extension 
mechanism 

No Yes No 

No-fee redistributable library Yes, Windows 
only 

n/a Yes, all platforms 

What its name stands for High Level 
Shader Language 

OpenGL 
Shading 
Language 

C for Graphics 

 
n/a = Not available or not applicable. 
 
Based on available knowledge circa April 2005. 
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