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1 Overview 
There are two main pieces to using the OpenGL Shading language in an 
application, the language itself, and the portions of the OpenGL API that 
control that language. The language is similar in many respects to the 
other real-time shading languages presented here, Cg and HLSL, though 
we will highlight some of the similarities and differences. It is in the API 
that the difference is most evident.  
2 The OpenGL API 
As of OpenGL 2.0, the shading language features are a required part of 
the core API. If you have OpenGL 2.0, you need not worry about whether 
your particular card and driver support the shading language — they 
must. In OpenGL 1.5, the shading language features were an ARB-
approved optional extension. The OpenGL ARB is the standards body that 
determines what is officially part of OpenGL, as compared to vendor-
defined extensions that don't need ARB approval. As an ARB-approved 
extension, you know that anyone who does support it will support the 
same interface and language [Lichtenbelt and Rost 2004]. You can check 
if an OpenGL 1.5 driver supports the shading language by checking for 
the GL_ARB_shader_objects extension string in the glGetString() 
results. 

We will present the OpenGL 2.0 versions of the calls. In most cases, the 
ARB_shader_object versions just add an ARB extension, so functions 
like glCreateShaderObject() become glCreateShaderObjectARB() 
and symbols like GL_VERTEX_SHADER become GL_VERTEX_SHADER_ARB. 
The definitive source for the OpenGL 2.0 API is the specification [Segal 
and Akeley 2004]. The OpenGL specification used to be a rather difficult 
document to use for all but the most determined, but as a searchable 
PDF, it is actually not too difficult to use it directly as a reference. 

The main difference between OpenGL and the other languages is that 
the OpenGL shading language and compiler are built directly into the 
OpenGL API and provided by the graphics card vendor as part of their 
driver. There is no intermediate low-level code to get from the compiler 
and hand to the API. This has some potential hidden advantages as well. 
The instruction sets actually executed by the graphics hardware already 
different from the standard instructions sets. For example, even if the 
hardware can execute up to four independent arithmetic operations in a 
single 'instruction', the low-level instruction sets only support executing 
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the same operation on the same data. A final optimization on the low-
level code can find and fix these, but the high-level language compiler is 
left to try to match a pattern that the low-level optimizer will recognize 
and fix. There's some chance this will work if both come from your 
hardware vendor, but it's easy to get non-optimal code. By hiding any 
low-level translation, the shading compiler built into OpenGL is free to 
target whatever the hardware really does, and the hardware vendors are 
more free to change it later to improve their hardware without worrying 
about matching that hardware to the language. Note that Direct3D is 
moving to this model as well [Blythe 2004]. 
2.1 The Interface 
The OpenGL shading interface has two important concepts, shader 
objects and program objects. Shader objects hold a single high-level 
(vertex or fragment) shader, while program objects contain the collection 
of shader objects used to render an object. Shader types for other future 
kinds of shaders have not yet been defined (e.g. for geometry shaders 
[Blythe 2004]), but would fit cleanly into this interface. 

To create, load from a single C-style string, and compile a vertex and 
fragment shader object, you could use code like this: 
 
vert = glCreateShaderObject(GL_VERTEX_SHADER); 
glShaderSource(vert, 1,(const GLcharARB**)&vString,NULL); 
glCompileShader(vert); 
 
frag = glCreateShaderObject(GL_FRAGMENT_SHADER); 
glShaderSource(frag, 1,(const GLcharARB**)&fString,NULL); 
glCompileShader(frag); 
 

These two can be joined into a single program object like this: 
 
prog = glCreateProgramObject(); 
glAttachObject(prog,vert); 
glAttachObject(prog,frag); 
glLinkProgramObject(prog); 
 

Whenever you want to use this set of shaders on an object, you just tell 
OpenGL that you want to start using it. 
 
glUseProgramObject(prog); 

4 - 2



2.2 Alternatives for Loading 
The interface for loading shader source is quite flexible, allowing many 
variations for how your program handles its shaders. The actual 
parameters are 
 
glShaderSource(object,segments,stringArray,lengthArray) 

 
The arrays (containing segments entries; one in the example above) allow 
shaders to be stored as a set of lines or code segments, which need not 
be null-terminated. If any length is -1, OpenGL assumes that segment is 
a null-terminated string and computes the length. If the pointer to the 
length array is NULL, OpenGL assumes every segment in the array is null-
terminated. 

Having an array of lengths means the segments need not be null-
terminated if that isn't convenient. In particular, if you have the ability to 
map a file directly to memory, you could use code similar to this: 
 
fd = open(vsname.c_str(), O_RDONLY, 0); 
fstat(fd,&sb); 
sh = (char*)mmap(0,sb.st_size,PROT_READ,MAP_FILE,fd,0); 
glShaderSource(vert, 1, (const GLcharARB**)&sh,  
    (const GLint*)&sb.st_size); 
 

This code relies on fstat(), which reports information on a file, 
including its size, and mmap(), which maps a file directly into memory, 
potentially more efficiently than reading it in. 
2.3 Compile Errors 
The above code may be fine for production use, once the shaders are 
known to be error-free, but no one is capable of writing error-free code 
every time. After the glCompileShader(), you can find out if the shader 
compiled successfully with 
 
glGetShaderiv(vert, GL_COMPILE_STATUS, &result); 
 

result will be true (non-zero) if the shader compiled successfully. To 
find out what is wrong with a shader that didn’t compile, check the info 
log: 
 
glGetShaderInfoLog(vert, bufsize, NULL, buffer); 
 

Similarly, glGetProgramiv() and glGetProgramInfoLog() can tell you 
about the success (or failure) of the progam linking step. 
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2.4 Shading Parameters 
Of course, once you can load and use a shader, you still need a means to 
control it. Since the OpenGL shading language is built into OpenGL, every 
vertex shader has access to all of the usual OpenGL vertex attributes 
(position, color, normal, etc.), and all shaders have access to the built-in 
OpenGL state (light positions, matrices, etc.). Shaders access all of these 
using special pre-defined names in the shading language. However, any 
shader can also define additional attributes and state that it would like to 
use. You can find out the index for a per-vertex attribute with 
 
index = glGetAttribLocation(prog, "vertexAttribute"); 
 

and set a value using one of the glVertexAttrib*() functions. For 
example 
 
glVertexAttrib3f(index, 0,.5,1); 
 

All vertex attributes, whether built-in ones like glColor or user-defined 
must be set before the corresponding glVertex call. 

A similar set of functions exist for any user-defined uniform state. The 
uniform state affects the current program, so switch programs before you 
start setting the state. 
 
index = glGetUniformLocation(prog, "uniformVariable"); 
glUniform4f(index, .2,.4,.6,1); 
 

The string name used to identify a variable can be more than the variable 
name alone. It can include array indexing and structure dereferencing 
operations to allow you to set a single element. For example, 
 
index = glGetUniformLocation(prog, 
 "structArray[2].element"); 
glUniformMatrix4fv(index, 1,0, matrix); 
 

3 Shading Language 
Many excellent references exist for the OpenGL Shading Language exist, 
so this document will not attempt to exhaustively list every feature. For 
more details, refer to one of the other sources [Kessenich et al. 2004; 
Rost 2004]. Many of the features of the OpenGL shading language, are 
similar if not identical to the other shading language options. All have 
you write vertex and fragment/pixel shaders (as opposed to the 
RenderMan model of displacement, surface, light, volume and imager). 
All inherit many syntactic features from C, including if, while, for, the 

4 - 4



use of "{", "}", and ";", and the existence of structs and arrays for 
grouping data. They also share certain features of all shading languages 
(even non-real-time languages like RenderMan), in having small vectors 
and matrices as built-in types, and a common set of math and shading 
functions. Like other real-time languages, screen-space derivatives are 
available (through the dFdx() and dFdy() functions), a struct-like 
notation is used for swizzling vector components and writing to only 
specific vector components. For example 
 
vec2.xzw = vec1.yyw; 
 

assigns vec1's y value to vec2's x and z component and vec1's w value 
to vec2's w component. vec2's z component keeps whatever value it had 
before the assignment. 
3.1 Notable Differences 
Probably the first difference you'd notice between the OpenGL Shading 
Language and either Cg or HLSL is the important part that virtualization 
plays in the OpenGL language philosophy. If all of the programs running 
on your CPU exceed the available physical memory, the operating system 
can make it seem as if you have a much larger pool of virtual memory by 
swapping some stuff off to disk. It's not as fast switching between 
applications as if you had a larger pool of physical memory, but in most 
instances it's much better than crashing or not letting you switch back 
and forth between two applications. 

Similarly, the OpenGL shading language defines some minimum 
features (and some features like instruction count for which there are no 
defined limits). A working OpenGL Shading Language implementation is 
required to make it seem as if you're running on that ideal hardware. It 
may switch to running multiple passes, it may run some things in 
software, but they will always run. This means one code base may run in 
a two passes on one machine, in three on another, or in one on a future 
machine that didn't even exist when you wrote the shader. Splitting 
shaders into multiple passes is hard to do by hand, especially when you 
are writing high-level code, so it makes much more sense to let the 
shading compiler use one of the multi-passing compilation techniques 
[Foley et al. 2004; Riffel et al. 2004] than for you to try to do it twelve 
different ways by hand. 

The second notable difference is that in the OpenGL Shading Language, 
vertex to fragment communication is determined by the vertex shader 
writing to a varying variable and the fragment shader using it. The 
compiler chooses the interpolator to use. From the language standpoint, 
it's just data. 
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There are other minor differences in the names of some of the data 
types (OpenGL's vec4 vs. Cg or HLSL's float4). Those are usually pretty 
obvious and easy to translate from one to the other. One that may catch 
more users is that in OpenGL, matrix*vector is a matrix/vector product 
and matrix*matrix is a linear algebraic matrix product, as compared to 
Cg where you use the mul() function and matrix*matrix gives a 
component-wise multiply (there's a function for that in OpenGL). They're 
the same operations, just with syntax that differs in a way that may 
surprise the unsuspecting. 
4 Example 
This example shows a simple single-light diffuse shading computed per 
vertex and applied to a 3D noise fragment shader 

Vertex shader: 
// noise input to fragment shader 
varying vec3 Nin; 
 
void main() 
{ 
    // transform vertices into projection space 
    gl_Position = gl_ModelViewProjectionMatrix*gl_Vertex; 
     
    // vertex in view space for lighting 

vec4 viewPos = gl_ModelViewMatrix*gl_Vertex; 
 
// normalized normal, also in view space 

    vec3 nn = normalize(gl_NormalMatrix*gl_Normal); 
 
    // handle directional and point lights together 
    vec3 nl =  
        normalize(gl_LightSource[0].position.xyz*viewPos.w  
            - viewPos.xyz*gl_LightSource[0].position.w); 
 
    // add ambient and diffuse lighting 
    gl_FrontColor =  
        gl_FrontMaterial.ambient*gl_LightSource[0].ambient 
    +gl_FrontMaterial.diffuse*gl_LightSource[0].diffuse 
            * max(0,dot(nn,nl)); 
 
    // compute scaled noise input 
    Nin = gl_Vertex.xyz/10; 
}  
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Fragment Shader: 
// vertex to fragment communication for noise shaders 
varying vec3 Nin; 
 
// 2D noise texture 
uniform sampler2D ntex; 
 
// modulus for random hash 
const float modulus = 61; 
 
void 
main() 
{ 
    // integer and fractional components of input 
    float fracArg = fract(modulus*Nin.z); 
    float intArg = floor(modulus*Nin.z); 
 
    // hash z & z+1 to get offsets for noise slices 
    vec2 hash = mod(intArg,modulus); 
    hash.y = hash.y+1; 
    hash = mod(hash*hash,modulus); 
    hash = hash/modulus; 
 
    // look up noise and blend slices 
    vec2 g0, g1; 
    g0 = texture2D(ntex, vec2(Nin.x,Nin.y+hash.x)).ra*2-1; 
    g1 = texture2D(ntex, vec2(Nin.x,Nin.y+hash.y)).ra*2-1; 
    float noise = mix( g0.x+g0.y*fracArg, 

 g1.x+g1.y*(fracArg-1), 
 smoothstep(0,1,fracArg)); 
 
    // combine with lighting 
    gl_FragColor = (noise*.5+.5)*gl_Color; 
} 
 

The results of this vertex and fragment shader is shown in Figure 1. 

   
 a b c 
Figure 1. a) red component of texture. b) alpha component of texture. 
c) Teapot rendered with resulting appearance 
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