

Chapter 4. OpenGL Shading Language

Marc Olano

A Brief OpenGL Shading Tutorial
Marc Olano

University of Maryland, Baltimore County

1 Overview
There are two main pieces to using the OpenGL Shading language in an
application, the language itself, and the portions of the OpenGL API that
control that language. The language is similar in many respects to the
other real-time shading languages presented here, Cg and HLSL, though
we will highlight some of the similarities and differences. It is in the API
that the difference is most evident.
2 The OpenGL API
As of OpenGL 2.0, the shading language features are a required part of
the core API. If you have OpenGL 2.0, you need not worry about whether
your particular card and driver support the shading language — they
must. In OpenGL 1.5, the shading language features were an ARB-
approved optional extension. The OpenGL ARB is the standards body that
determines what is officially part of OpenGL, as compared to vendor-
defined extensions that don't need ARB approval. As an ARB-approved
extension, you know that anyone who does support it will support the
same interface and language [Lichtenbelt and Rost 2004]. You can check
if an OpenGL 1.5 driver supports the shading language by checking for
the GL_ARB_shader_objects extension string in the glGetString()
results.

We will present the OpenGL 2.0 versions of the calls. In most cases, the
ARB_shader_object versions just add an ARB extension, so functions
like glCreateShaderObject() become glCreateShaderObjectARB()
and symbols like GL_VERTEX_SHADER become GL_VERTEX_SHADER_ARB.
The definitive source for the OpenGL 2.0 API is the specification [Segal
and Akeley 2004]. The OpenGL specification used to be a rather difficult
document to use for all but the most determined, but as a searchable
PDF, it is actually not too difficult to use it directly as a reference.

The main difference between OpenGL and the other languages is that
the OpenGL shading language and compiler are built directly into the
OpenGL API and provided by the graphics card vendor as part of their
driver. There is no intermediate low-level code to get from the compiler
and hand to the API. This has some potential hidden advantages as well.
The instruction sets actually executed by the graphics hardware already
different from the standard instructions sets. For example, even if the
hardware can execute up to four independent arithmetic operations in a
single 'instruction', the low-level instruction sets only support executing

4 - 1

the same operation on the same data. A final optimization on the low-
level code can find and fix these, but the high-level language compiler is
left to try to match a pattern that the low-level optimizer will recognize
and fix. There's some chance this will work if both come from your
hardware vendor, but it's easy to get non-optimal code. By hiding any
low-level translation, the shading compiler built into OpenGL is free to
target whatever the hardware really does, and the hardware vendors are
more free to change it later to improve their hardware without worrying
about matching that hardware to the language. Note that Direct3D is
moving to this model as well [Blythe 2004].
2.1 The Interface
The OpenGL shading interface has two important concepts, shader
objects and program objects. Shader objects hold a single high-level
(vertex or fragment) shader, while program objects contain the collection
of shader objects used to render an object. Shader types for other future
kinds of shaders have not yet been defined (e.g. for geometry shaders
[Blythe 2004]), but would fit cleanly into this interface.

To create, load from a single C-style string, and compile a vertex and
fragment shader object, you could use code like this:

vert = glCreateShaderObject(GL_VERTEX_SHADER);
glShaderSource(vert, 1,(const GLcharARB**)&vString,NULL);
glCompileShader(vert);

frag = glCreateShaderObject(GL_FRAGMENT_SHADER);
glShaderSource(frag, 1,(const GLcharARB**)&fString,NULL);
glCompileShader(frag);

These two can be joined into a single program object like this:

prog = glCreateProgramObject();
glAttachObject(prog,vert);
glAttachObject(prog,frag);
glLinkProgramObject(prog);

Whenever you want to use this set of shaders on an object, you just tell
OpenGL that you want to start using it.

glUseProgramObject(prog);

4 - 2

2.2 Alternatives for Loading
The interface for loading shader source is quite flexible, allowing many
variations for how your program handles its shaders. The actual
parameters are

glShaderSource(object,segments,stringArray,lengthArray)

The arrays (containing segments entries; one in the example above) allow
shaders to be stored as a set of lines or code segments, which need not
be null-terminated. If any length is -1, OpenGL assumes that segment is
a null-terminated string and computes the length. If the pointer to the
length array is NULL, OpenGL assumes every segment in the array is null-
terminated.

Having an array of lengths means the segments need not be null-
terminated if that isn't convenient. In particular, if you have the ability to
map a file directly to memory, you could use code similar to this:

fd = open(vsname.c_str(), O_RDONLY, 0);
fstat(fd,&sb);
sh = (char*)mmap(0,sb.st_size,PROT_READ,MAP_FILE,fd,0);
glShaderSource(vert, 1, (const GLcharARB**)&sh,
 (const GLint*)&sb.st_size);

This code relies on fstat(), which reports information on a file,
including its size, and mmap(), which maps a file directly into memory,
potentially more efficiently than reading it in.
2.3 Compile Errors
The above code may be fine for production use, once the shaders are
known to be error-free, but no one is capable of writing error-free code
every time. After the glCompileShader(), you can find out if the shader
compiled successfully with

glGetShaderiv(vert, GL_COMPILE_STATUS, &result);

result will be true (non-zero) if the shader compiled successfully. To
find out what is wrong with a shader that didn’t compile, check the info
log:

glGetShaderInfoLog(vert, bufsize, NULL, buffer);

Similarly, glGetProgramiv() and glGetProgramInfoLog() can tell you
about the success (or failure) of the progam linking step.

4 - 3

2.4 Shading Parameters
Of course, once you can load and use a shader, you still need a means to
control it. Since the OpenGL shading language is built into OpenGL, every
vertex shader has access to all of the usual OpenGL vertex attributes
(position, color, normal, etc.), and all shaders have access to the built-in
OpenGL state (light positions, matrices, etc.). Shaders access all of these
using special pre-defined names in the shading language. However, any
shader can also define additional attributes and state that it would like to
use. You can find out the index for a per-vertex attribute with

index = glGetAttribLocation(prog, "vertexAttribute");

and set a value using one of the glVertexAttrib*() functions. For
example

glVertexAttrib3f(index, 0,.5,1);

All vertex attributes, whether built-in ones like glColor or user-defined
must be set before the corresponding glVertex call.

A similar set of functions exist for any user-defined uniform state. The
uniform state affects the current program, so switch programs before you
start setting the state.

index = glGetUniformLocation(prog, "uniformVariable");
glUniform4f(index, .2,.4,.6,1);

The string name used to identify a variable can be more than the variable
name alone. It can include array indexing and structure dereferencing
operations to allow you to set a single element. For example,

index = glGetUniformLocation(prog,
 "structArray[2].element");
glUniformMatrix4fv(index, 1,0, matrix);

3 Shading Language
Many excellent references exist for the OpenGL Shading Language exist,
so this document will not attempt to exhaustively list every feature. For
more details, refer to one of the other sources [Kessenich et al. 2004;
Rost 2004]. Many of the features of the OpenGL shading language, are
similar if not identical to the other shading language options. All have
you write vertex and fragment/pixel shaders (as opposed to the
RenderMan model of displacement, surface, light, volume and imager).
All inherit many syntactic features from C, including if, while, for, the

4 - 4

use of "{", "}", and ";", and the existence of structs and arrays for
grouping data. They also share certain features of all shading languages
(even non-real-time languages like RenderMan), in having small vectors
and matrices as built-in types, and a common set of math and shading
functions. Like other real-time languages, screen-space derivatives are
available (through the dFdx() and dFdy() functions), a struct-like
notation is used for swizzling vector components and writing to only
specific vector components. For example

vec2.xzw = vec1.yyw;

assigns vec1's y value to vec2's x and z component and vec1's w value
to vec2's w component. vec2's z component keeps whatever value it had
before the assignment.
3.1 Notable Differences
Probably the first difference you'd notice between the OpenGL Shading
Language and either Cg or HLSL is the important part that virtualization
plays in the OpenGL language philosophy. If all of the programs running
on your CPU exceed the available physical memory, the operating system
can make it seem as if you have a much larger pool of virtual memory by
swapping some stuff off to disk. It's not as fast switching between
applications as if you had a larger pool of physical memory, but in most
instances it's much better than crashing or not letting you switch back
and forth between two applications.

Similarly, the OpenGL shading language defines some minimum
features (and some features like instruction count for which there are no
defined limits). A working OpenGL Shading Language implementation is
required to make it seem as if you're running on that ideal hardware. It
may switch to running multiple passes, it may run some things in
software, but they will always run. This means one code base may run in
a two passes on one machine, in three on another, or in one on a future
machine that didn't even exist when you wrote the shader. Splitting
shaders into multiple passes is hard to do by hand, especially when you
are writing high-level code, so it makes much more sense to let the
shading compiler use one of the multi-passing compilation techniques
[Foley et al. 2004; Riffel et al. 2004] than for you to try to do it twelve
different ways by hand.

The second notable difference is that in the OpenGL Shading Language,
vertex to fragment communication is determined by the vertex shader
writing to a varying variable and the fragment shader using it. The
compiler chooses the interpolator to use. From the language standpoint,
it's just data.

4 - 5

There are other minor differences in the names of some of the data
types (OpenGL's vec4 vs. Cg or HLSL's float4). Those are usually pretty
obvious and easy to translate from one to the other. One that may catch
more users is that in OpenGL, matrix*vector is a matrix/vector product
and matrix*matrix is a linear algebraic matrix product, as compared to
Cg where you use the mul() function and matrix*matrix gives a
component-wise multiply (there's a function for that in OpenGL). They're
the same operations, just with syntax that differs in a way that may
surprise the unsuspecting.
4 Example
This example shows a simple single-light diffuse shading computed per
vertex and applied to a 3D noise fragment shader

Vertex shader:
// noise input to fragment shader
varying vec3 Nin;

void main()
{
 // transform vertices into projection space
 gl_Position = gl_ModelViewProjectionMatrix*gl_Vertex;

 // vertex in view space for lighting

vec4 viewPos = gl_ModelViewMatrix*gl_Vertex;

// normalized normal, also in view space

 vec3 nn = normalize(gl_NormalMatrix*gl_Normal);

 // handle directional and point lights together
 vec3 nl =
 normalize(gl_LightSource[0].position.xyz*viewPos.w
 - viewPos.xyz*gl_LightSource[0].position.w);

 // add ambient and diffuse lighting
 gl_FrontColor =
 gl_FrontMaterial.ambient*gl_LightSource[0].ambient
 +gl_FrontMaterial.diffuse*gl_LightSource[0].diffuse
 * max(0,dot(nn,nl));

 // compute scaled noise input
 Nin = gl_Vertex.xyz/10;
}

4 - 6

Fragment Shader:
// vertex to fragment communication for noise shaders
varying vec3 Nin;

// 2D noise texture
uniform sampler2D ntex;

// modulus for random hash
const float modulus = 61;

void
main()
{
 // integer and fractional components of input
 float fracArg = fract(modulus*Nin.z);
 float intArg = floor(modulus*Nin.z);

 // hash z & z+1 to get offsets for noise slices
 vec2 hash = mod(intArg,modulus);
 hash.y = hash.y+1;
 hash = mod(hash*hash,modulus);
 hash = hash/modulus;

 // look up noise and blend slices
 vec2 g0, g1;
 g0 = texture2D(ntex, vec2(Nin.x,Nin.y+hash.x)).ra*2-1;
 g1 = texture2D(ntex, vec2(Nin.x,Nin.y+hash.y)).ra*2-1;
 float noise = mix(g0.x+g0.y*fracArg,

 g1.x+g1.y*(fracArg-1),
 smoothstep(0,1,fracArg));

 // combine with lighting
 gl_FragColor = (noise*.5+.5)*gl_Color;
}

The results of this vertex and fragment shader is shown in Figure 1.

 a b c
Figure 1. a) red component of texture. b) alpha component of texture.
c) Teapot rendered with resulting appearance

4 - 7

References
[Blythe 2004] David Blythe, "Windows Graphics Foundation", WinHEC 2004
presentation, May 2004.
[Foley et al. 2004] Tim Foley, Mike Houston and Pat Hanrahan, "Efficient Partitioning of
Fragment Shaders for Multiple-Output Hardware", Proceedings of
Eurographics/SIGGRAPH Graphics Hardware 2004, July 2004.
[Kessenich et al. 2004] John Kessenich, Dave Baldwin and Randi Rost, The OpenGL
Shading Language, Language Version 1.10, OpenGL ARB, April 2004.
[Lichtenbelt and Rost 2004] Barthold Lichtenbelt and Randi Rost,
"ARB_shader_objects", OpenGL extension document, OpenGL ARB, June 2004.
[Riffel et al. 2004] Andrew T. Riffel, Aaron E. Lefohn, Kiril Vidimce, Mark Leone and
John D. Owens, "Mio: Fast Multipass Partitioning via Priority-Based Instruction
Scheduling", Proceedings of Eurographics/SIGGRAPH Graphics Hardware 2004, July
2004.
[Rost 2004] Randi Rost, OpenGL Shading Language, Addison Wesley, 2004.

[Segal and Akeley 2004] Mark Segal and Kurt Akeley, The OpenGL® Graphics System:
A Specification, Version 2.0, Editors Jon Leech and Pat Brown, OpenGL ARB, October
2004.

4 - 8

	Chapter 4: OpenGL Shading Language
	A Brief OpenGL Shading Tutorial

