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One of the great promises of real-time shading is the potential to have 
a single shading program that can run across a wide range of graphics 
hardware. While we don’t yet have a single cross-platform shading 
language to satisfy everyone, there is ample evidence that it is possible. 
In this chapter, we discuss what is necessary to create a cross-platform 
shading language, how shading languages allow us to ignore hardware 
differences, what range of hardware can reasonably be represented by a 
single shading language, and what evidence exists now that it will really 
work. 

The key to cross-platform shading 

The key to a cross-platform shading language is to work with a common 
model of shading hardware rather than specifics of the hardware itself. 
The model is a mental picture of what’s going on that shader-writers use 
to make sense of the code they write. The further you get into hardware 
specifics, the less general your model becomes.  

Designing a good model for shading is the balance of three competing 
goals. The model should be simple enough for novice users to 
understand. It should be a good model of the problem domain, accurately 
describing what the shader is trying to do rather than exactly how to do 
it. This will allow the shading language compiler to map the shader onto 
the hardware in the way that is best for the specific hardware platform. 
Of course, it should also be possible to map it efficiently onto all the 
desired platforms. 

The second goal is particularly important — the purpose of shading 
code (or any code) is to describe what you want done. The compiler can 
and will made different choices about how (within limits — it can’t 
change the algorithms you use, but it can rearrange the execution order, 
unroll loops, decide if a certain operation should be computed or looked 
up in a texture, etc.).  

Single Program, Multiple Data 

Shading is inherently a very parallel task. Whether we are talking about 
vertices in an object, a surface diced into micropolygons, ray-traced 
intersection points, or screen pixels, there is always some relatively 
common set of operations being applied to a set of samples on the 
surface. It is this parallel nature that makes shading so approachable by 
hardware and allows us to even consider real-time shading.  
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The model that almost every shading system adopts is Single 
Program/Multiple Data (SPMD), with no processor-to-processor 
communication. You write a shader to describe what happens to a single 
sample on the surface (single program). That same single program is run 
at every sample on the surface (multiple data). SPMD is closely related to 
the Single Instruction/Multiple Data (SIMD) model of parallel 
computation, but SIMD implies more about how the program will be 
executed. With SIMD, a set of parallel processors will runs the same set of 
instructions in lockstep, but with different data at each processor. SPMD 
runs the same program, but without any implication of whether the same 
path through the program must be taken by all processors. On a pure 
SIMD array of processors, conditional code is handled by disabling a 
subset of the processors, who must wait while the others process the 
conditional instructions. Contrast this with the Multiple 
Instruction/Multiple Data (MIMD) model, where every processor can be 
running a completely different program. 

SPMD is sometimes referred to as “SIMD on MIMD” or “effective SIMD”, 
as it is uses a SIMD style of programming, but can include programs to 
run on a single processor, MIMD machine or SIMD machine. 

No communication 

One of the aspects of shading that has allowed the explosion of fast 
shading hardware is the independence of each shading sample from 
every other shading sample. One of the most difficult and expensive 
aspect of general-purpose parallel machines is the communication 
network allowing the processors or nodes to communicate with each 
other. If the need for this communication is removed, the need for 
synchronization between the processors disappears, as does the need for 
physical connections between processors. The processors can be packed 
much more densely and are free to execute on batches of samples, 
samples in a pipeline, samples one at a time — whatever is most efficient. 

Communication costs are also generally so high relative to 
computational costs, and so dependent on the machine architecture, that 
introducing processor to processor communication into a SPMD model 
greatly reduces the kinds of hardware a program can use effectively. The 
longer we can avoid communication, the more general our shaders will 
be.  

Shaders don’t need sample to sample communication because shaders 
are typically restricted to computing only local lighting models. Anything 
that makes the appearance of one point on the surface depend on points 
elsewhere on the surface introduces the need a sample to sample 
communication. Shadows, global illumination and subsurface scattering 
are all on the list of effects that break the model to some degree if they 
are allowed in a shader. 
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General purpose computations, on the other hand, often require 
significant processor to processor communication. As graphics hardware 
becomes more powerful and flexible, there is an increasing desire to use 
it for other general purpose parallel computation. This comes at a cost in 
flexibility of the resulting code. I would argue that we need two 
computational models. A model including communication for general 
purpose computation on NVIDIA and ATI-style hardware, and a model for 
shading (possibly targeting the general model on hardware that supports 
it) that is task oriented and unifies vertex and fragment computations. 

In the mean time, many people have succeeded in creating general 
purpose algorithms on GPUs with inter-processor communication. They 
achieve this feat through the use of multiple passes. On one pass, you 
write data into textures or buffers in the graphics card. On the following 
pass, any processor can read any data from this texture, not just its own. 
Even if you are willing to accept multiple passes through the hardware, 
this communication method isn’t perfect for all uses. The reader decides 
what other processor’s data to read, and can read at most a handful of 
data per pass. Some computational algorithms map well to this model, 
while others would prefer to have the writer decide where the data should 
go. All of that will be covered in more depth later – for now, we’ll restrict 
the discussion to shading. 

Languages for hardware abstraction 

One of the best examples of a shading language for hardware 
abstraction is the RenderMan shading language. Shaders written in this 
language have been successfully targeted to a huge range of different 
hardware. Pixar’s PhotoRealistic RenderMan targets a single processor 
running each step of the shader in a loop over the micropolygons in a 
diced-up surface as generated by the REYES algorithm [Cook 1987]. 
BMRT also targeted a single processor, but as a ray-tracer it ran each 
shader in its entirety on one ray-intersection sample before moving on to 
the next sample [Gritz and Hahn 1996]. SGI created a RenderMan 
implementation targeting multiple rendering passes on graphics 
hardware, assuming hardware with a fast render-to-texture/read-from-
texture or copy framebuffer-to-famebuffer [Peercy et al. 2000]. ATI has 
created a RenderMan language compiler targeting current shading 
hardware as part of their ASHLI toolkit. 

RenderMan may not turn out to be the best language for hardware 
shading, but it has done an admirable job at being adaptable to a wide 
range of hardware. In the model presented by RenderMan, the shader 
writer tags data as being either uniform or varying. Uniform data is the 
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same across a set of samples being shaded at once1. Varying data may 
change from sample to sample.  

For compilation of RenderMan shaders, the most important uniform and 
varying designations are for the inputs to the shader. The shading 
compiler must derive for itself which intermediate results within an 
expression are uniform and which are varying. Expressions using only 
uniform arguments will have uniform results; expressions with any 
varying arguments will have a varying result. The compiler can use similar 
logic to decide whether any local variable in a shader is really uniform or 
varying regardless of how it was specified in the shading code. 

Given an accurate idea of exactly which quantities vary across the 
shaded surface and which don’t, the shading compiler can make several 
choices for actual execution. It can decide to still evaluate every 
computation at every sample (not using the uniform/varying distinction). 
It can evaluate the uniform computations once for a set of samples and 
for each varying computation, loop over the samples to evaluate it. It can 
execute the varying computations as SIMD instructions across a parallel 
array of processors. It can execute the entire shader or just the varying 
computations across a set of MIMD processors. It can create a pipeline of 
stream processors, each executing one or a few varying instructions on 
one sample before passing that sample on to the next. 

Where should we break the portability? 

There are several facets of the RenderMan shading language that are 
not well suited for graphics hardware. We can expect several of these to 
be the foundation of differences between real-time languages and the 
RenderMan shading language, or limitations of hardware-accelerated 
RenderMan implementations. 

Since PRMan version 3.8, the RenderMan shading language has included 
the ability to call arbitrary code from within a shader. This code can do 
anything, from compute a specialized noise function to spawn a different 
style of renderer to download an image from a live camera on the south 
pole. Until graphics hardware has the ability to run arbitrary code, this 
won’t really be an option for real-time shading. 

RenderMan’s has just one scalar data type, float. Graphics hardware 
supporting floating point data is now ubiquitous, but the size and 
precision of the floating point numbers vary. Fixed point or reduced-
precision floating point numbers are also provided on some hardware as 
a faster option than pure 32-bit floating point. With no way to indicate 

                                                 
1 One RenderMan trick that will tell you something about how many samples are shaded 

at once, breaking the illusion that all hardware is the same, is to assign a random color 

into a uniform variable in a RenderMan shader. 
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the range or precision of computations, a RenderMan compiler cannot 
know when to use these faster operations. Many of the candidates for a 
real-time shading language include some reduced precision types for 
efficiency: the OpenGL Shading Language [Kessenich et al. 2003], 
Direct3D HLSL [Microsoft 2002], and Cg [Mark et al. 2003]. 

RenderMan shaders have two computational frequencies (how often a 
computation happens), uniform and varying. Shading hardware has at 
least three — compute on the CPU, compute per vertex and compute per 
fragment, with no interleaving of computation between the levels. All of 
the languages mentioned above have chosen to break shading 
computation into separate procedures executing at each of these levels. 
That choice makes those shaders a poor fit to any hardware or software 
rendering system that does not follow the CPU/Vertex/Fragment 
breakdown. However, any alternative language that targeted all three 
stages must include new types for the new types of computation 
[Proudfoot et al. 2001]. 

The RenderMan shading language also includes no real means of 
communication from sample to sample. This is one of the strengths that 
allow RenderMan shaders to run on such a wide range of rendering 
systems, but is a serious restriction for the general computations that are 
becoming popular on graphics hardware. Communication between 
processors in current hardware seems best supported by rendering 
partial results to a texture then using the random access provided by the 
texturing hardware to find values from other processors in a later pass.  

This form of communication is currently limited to fragment shaders 
and comes at a very high price of communication to instructions. Similar 
communication at the vertex shader level is possible, though 
considerably more complicated. The all but the final vertex shader pass 
can operate on a regular grid of vertices, allowing all vertex and fragment 
operations to be used (including any vertex and fragment texturing and 
rendering to texture for communication). In the next-to-last vertex 
shader pass, the vertex locations (or data necessary to do the final 
computation) can be rendered in to a vertex array for use in a final vertex 
shader pass. If multiple passes of fragment shading are needed, they 
must follow after all vertex shading passes, but need not repeat the 
multi-pass vertex shading computation. 

Obviously, stretching the hardware beyond its intended limits like this 
introduces a significant burden on the shader developer!  Because users 
want to write algorithms that use communication, better facilities will 
appear in real-time shading languages, but as they do they will limit the 
applicability of those shaders to the class of similar hardware. 
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Abstract
In this paper, we introduce a new graphics hardware architecture based on XMT (Explicit-Multithreading), a
fine-grained PRAM (Parallel Random Access Model) design. We demonstrate the advantage of XMT architecture
in graphics hardware applications. Compared with the stream architecture, the XMT-based graphics hardware
provides higher flexibility, a more friendly programming interface and can achieve similar performance. With
an XMT-based GPU architecture, it would be much easier to migrate most general-purpose computation tasks
onto the GPU. This capability may increase the utilization of GPU and enhance the performance of the whole
computer system. We base our conclusion on architectural analysis, simulation of code segments and example
programs.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Hardware Architecture-
Graphics processors

1. Introduction

The progress of VLSI technology allows us to put more tran-
sistors into one chip. What is the best way to use these tran-
sistors? For graphics hardware designers, it is a balance be-
tween performance and fidelity.

Most current and recent graphics hardware have adopted
programmable stream processors to execute vertex and
pixel shading programs. Compared with fixed or micro-
programmable processing pipeline, this evolution empha-
sized better rendering effects instead of higher performance.

Current stream-based graphics architectures still have
many constraints. They are unable to execute programs with
complex control flows efficiently. They have limited mem-
ory access. Although we can simulate branching and loop-
ing by multi-pass processing, a significant number of stalls
is inevitable. There are also several areas where predictable
memory accesses are hard to achieve. These include the

† e-mail: yiwang1@umbc.edu
‡ e-mail: olano@umbc.edu
§ e-mail: rkuper@glue.umd.edu
¶ e-mail: vishkin@umiacs.umd.edu

visibility problem and its various manifestations (radios-
ity, ray-tracing, photon mapping), view-dependent render-
ing, physically-realistic graphics (collision detection and re-
sponse) and rendering of dynamic scenes with moving ob-
jects. To solve this problem, we need an architecture that
does not block one computation while another concurrent
computation is delayed.

On the other hand, as GPUs have become more flexi-
ble, people have begun the research to do general-purpose
computation using graphics hardware. This is tempting be-
cause we want to make full use of GPU even we are not
playing 3D games. Some problems have been proved to be
solvable on GPU [KSW04,MA03,JBSL03,GHLM05]. But
the GPU algorithms to solve these problems are far from
direct. Programmers need to have a deep understanding of
the graphics processing pipeline of the GPU. They also need
to grasp many GPU programming techniques. For example,
OCCLUSION_QUERY is often used to test loop conditions.
Moreover, the GPU algorithms usually contain some limita-
tions, e.g. preprocessing data on CPU, limited scale of the
problem, limited precision, etc.. To easily migrate CPU tasks
to GPU, a direct idea is to have GPU architectures as simi-
lar as possible to the CPU. But this change may reduce the
graphics processing speed of GPU.

submitted toGraphics Hardware (2005)
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In this paper we introduce XMT (Explicit-
Multithreading), a fine-grained PRAM (Parallel Random
Access Model) computing model that has the potential to
solve these problems. The XMT framework is well-suited
for the features of graphics computations: it supports
high parallelism both on the data level and the instruction
level; it provides high computation rates and optimized
local data access. Moreover, the XMT has the ability to
support complex programs with random memory access and
arbitrary branching and looping. So, most CPU programs
can be easily mapped to XMT programs. The stalls caused
by logical dependence and memory access can be well
hidden by the highly paralleled processing.

In the following sections, we observe recent trends in
graphics hardware. We then introduce the XMT framework
and its programming model in Section3. We show its appli-
cation in graphics field and compare with the stream archi-
tecture. In Section4, we analyze the use of XMT for just the
fragment processing portion of the pipeline. In the last sec-
tion, we conclude our discussion and point our future work.

2. GPU Trends

The GPU has experienced fast evolution since its first ap-
pearance. It’s function has also changed over time, from sup-
porting only 2D operations, to 3D transforming and lighting,
to fragment and vertex shading programs.

The OpenGL and DirectX organizations [SA04, Mic02]
have been the standards for most graphics hardware in the
last two decades. OpenGL defined a simplified and effi-
cient rendering pipeline that can be implemented on hard-
ware. Most current graphics hardware systems implement
OpenGL as a streaming pipeline architecture in which the
data are processed in different pipeline stages. Each stage
is finely tuned to take approximately equal time to keep the
pipeline load-balanced. Within each stage, synchronizations
between parallel computations is minimized in part to ensure
predictable memory accesses.

This organization enabled interactive 3D graphics on PCs.
However the built-in shading model is too simple to achieve
realistic lighting effects. With the advantage of VLSI tech-
nology, programmable shading hardware were added to en-
able more flexible shading models.

Procedural shading is a technique that uses a shader, a pro-
cedure written in a high-level shading language, to calculate
object appearance from a set of parameters, including the
surface position, surface normal, texture coordinates, tex-
ture maps, light direction and colors, etc.. The RenderMan
Shading Language [HL90] is the standard for offline proce-
dural shading and is supported by many rendering software
packages, e.g. Pixar’s PhotoRealistic RenderMan software
[Ups90]. Procedural shading is very powerful technique for
rendering feature films and commercials in the production
industry.

The graphics community has made significant efforts to
approach shaders as powerful as RenderMan’s in real-time
graphics engines. The PixelPlanes 4 and PixelFlow systems
use an array of general purpose processors to execute arbi-
trary shading code on every pixel [RTB∗92, OL98]. Peercy
et al. used a multi-pass rendering approach to support com-
plex RenderMan shaders [POAU00]. Lindholm et al. were
the first to add programmable stream processing for vertex
programming to PC graphics hardware [LKM01].

Several real-time shading languages have been proposed
to provide a RenderMan like interface for hardware shader
writers. The most widely used shading languages include
GLSlang [KBR04], Cg [NVD03] and HLSL [Mic05]. The
appearance of these C-like shading languages has a series
of effects. Programmers can compose shaders more conve-
niently and they are more likely to create new shaders that
are beyond the hardware limitation. Graphics hardware are
pushed to become more flexible and evolve toward a direc-
tion of general-purpose computation model.

Currently the requirement of general-purpose computa-
tions on GPU has little effect on GPU design. But the GPU
is a powerful computation resource we would like to be
able to use even we are not playing 3D games. GPUs have
been proven to be able to perform many other computations
than their intended traditional rendering [KSW04, MA03,
JBSL03,GHLM05]. They are evolving toward computation
intensive coprocessors on the PC system. NVIDIA has pub-
lished a non-graphics computation model for the GeForce 6
series GPU [PF05].

3. XMT Based GPU

3.1. XMT Framework

The question of how to think algorithmically in parallel
has been a fundamental problem for which past general-
purpose parallel architectures did not have an adequate an-
swer. A computational model, the Parallel Random Access
Model (PRAM), was developed by numerous algorithm re-
searchers to address this question during the 1980s and
1990s, and was even put into standard algorithm textbooks
[Baa88,Man89,CLR90]. However, despite the broad interest
PRAM generated, it had not been possible to build parallel
machines that adequately support it using multi-chip multi-
processors, the only multiprocessors that were buildable in
the 1990s. The main insight behind the XMT framework is
that this is becoming possible with the increasing amounts
of hardware that can be placed on a single chip.

The XMT (Explicit-Multi-Threading) framework cur-
rently envisions a 64 bit architecture that supports
PRAM-like programming through inter-thread parallelism
[VDBN98, NNTV00, NNTV03]. Diagram 1 shows the
framework of XMT.

The XMT machine comprises multiple TCUs (Thread
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Figure 1: The XMT framework

Control Unit) and multiple memory modules. The TCUs are
divided into clusters. Every TCU is a pipeline with a local
set of registers. In addition there is a set of global registers
that every TCU can access. All TCUs in the same cluster
share a set of functional units. A high throughput highly-
pipelined interconnection network between the clusters and
the memory modules allows access from every TCU to every
memory module.

The interconnection network topology is based on a mesh
of binary trees [Lei92]. (i) For every cluster there is a binary
fan-out tree and for every memory module there is a binary
fan-in tree; each such fan-out tree has one common leaf with
each such fan-in-tree. (ii) For every memory module there is
a binary fan-out tree and for every cluster there is a binary
fan-in tree; each such fan-out tree has one common leaf with
each such fan-in-tree.

Among the TCUs there is one MASTER TCU, which is
a general purpose super scalar processor that is competitive
with today’s advanced serial processors. All the other REG-
ULAR TCUs are simple general purpose processors that
have the basic functionality to execute general purpose ma-
chine code.

An XMT machine code is composed of serial segments
and parallel segments alternately. The XMT machine exe-
cutes in serial mode and in parallel mode, respectively. In
serial mode, the MASTER TCU executes serial code seg-
ments. Each parallel segment requires the execution of some
number of virtual XMT threads. This number can be differ-
ent from one parallel segment to another. In parallel mode,
the REGULAR TCUs execute all the virtual threads of one
segment. Aspawnmachine instruction is used to switch

from serial mode to parallel mode and ajoin machine in-
struction is used to switch from parallel mode to serial mode.
Spawn and join instructions bound every parallel code seg-
ment.

On switching from serial mode to parallel mode, the par-
allel code segment is broadcasted to the TCUs through a
broadcast bus. The parallel code might also include shared
data to be used by the TCUs. Concurrent reads from the
same memory address are queued. This provides a way to
avoid performance penalty due to queuing. Once the first
instruction of the parallel code arrives to a TCU, the TCU
starts an execution of an XMT virtual thread. Every TCU
executes the same code on different data (SPMD) for all the
virtual threads on the current segment it implements.

In parallel mode, every TCU executes a virtual thread at
its own speed until it reaches a join instruction. A TCU might
stall its execution due to a data memory access delay or in-
struction memory access delay. In any case in the execution
of a single virtual thread, a TCU does not depend on the ex-
ecution of other TCUS. Upon reaching a join, the TCU be-
come available to execute another virtual thread. The hard-
ware uses a low-overhead mechanism to automatically as-
sign a new virtual thread to the available TCU.

In addition to spawn and join, there are three unique
instructions in the XMT architecture:prefix-sum, prefix-
sum-to-memoryandsingle-spawn(calledfork in [NNTV00,
NNTV03]). The prefix-sum instruction operates on a local
register, L, as an incremental variable and a global register,
G, as a base variable. The result of prefix-sum (similar to an
atomic fetch-and-increment) is that the global register gets
the value L+G, while L gets the original value of G. For the
case where L is a single bit, prefix sum is an atomic oper-
ation, whose concurrent application by several TCUs is im-
plemented in hardware in essentially the same time as a sin-
gle prefix-sum instruction. Each TCU gets a unique value in
its local register L. To prevent concurrent writes to a global
register, read or write access to the global register is allowed
only by using a prefix sum instruction.

A common use of the prefix sum instruction is for count-
ing. Before prefix-sum, the global register G is assigned the
integer value 0 and the L register in every threads gets the
integer value 1. After prefix-sum, every thread’s L register
contains a unique integer between 1 to the number of par-
ticipating threads. The global register G records the count
of threads that executed the prefix-sum. The program seg-
ment in Subsection3.2 shows such a usage. Another usage
in graphics applications is the occlusion query.

The outcome ofprefix sum to memoryis similar to the pre-
fix sum instruction, but is not as efficiently implemented. In-
stead of a global register, it uses a memory address as a base
variable. Prefix-sum-to-memory operations are used when
several TCUs write to the same memory address. These
multiple prefix-sum-to-memory operations are queued at the
memory to prevent concurrent write.

submitted toGraphics Hardware (2005)
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Nesting spawn instructions is not allowed. In parallel
mode, nesting can be achieved by thesingle spawninstruc-
tion which creates a new XMT virtual thread to be executed
by a TCU. This instruction also allows greater flexibility for
dynamically extracting inter-thread parallelism during exe-
cution time. In the future, the compiler should be able to
translate nested spawn instructions to nested single spawn
instructions.

3.2. XMT-C Programming

XMT-C is a high level language that is an extension of the
ANSI C language. It adds four unique XMT-C instructions:
spawn, prefix sum, prefix sum to memory and single spawn.
It also includes a new typepsBaseRegthat is used to declare
a global register variable. The XMT-C program is compiled
into XMT assembly and run on the XMT hardware or simu-
lator.

The XMT-C programmer (explicitly) provides the parallel
segments. Every parallel segment is encapsulated within a
spawn block that begins with a spawn instruction. The para-
meters of the spawn instruction are: (i)low–the lowest XMT
virtual thread ID to be executed, (ii) high–the highest XMT
virtual thread ID, and (iii) a varied number of values to be
passed (broadcasted in hardware) to the virtual threads. The
spawn instruction starts a parallel execution during which
high-low+1 virtual threads with different IDs in the range
[low, high] are executed by the TCUs. Inside a spawn block,
"$" represents the thread ID (TID) of a virtual thread and is
the only difference among virtual threads, who all execute
the same parallel segment.

The following is a simple XMT program segment that per-
forms the back-face culling task of the graphics pipeline. The
input is an array of trianglesT1[n], an array of triangle nor-
malsN1[n] and the front directionFront. This program culls
the back-facing triangles and compacts the front-facing ones
into two new arraysT2[n] andN2[n] in an arbitrary order.

psBaseReg m= 0;
spawn(0,n−1);
{

int T ID;
i f (dot(N[TID],Front) > 0)
{ registerint k= 1;

ps(&k,&m);
B[k] = A[TID];
M[k] = N[TID];

}
}

In the above program,n threads are spawned with TIDs in
the range[0..n−1], and executed in arbitrary order. One (ex-
plicit) prefix sum operationpsensures that the TID numbers
are unique.

3.3. Comparing XMT and Stream Architecture

XMT and stream architecture have important similarity and
significant differences. We summarize them in three aspects.

Design Philosophy:Both architectures achieve fine-grained
on-chip parallelism. They take the benefit of VLSI technol-
ogy and provide large number of arithmetic units (AUs) and
registers. However, they follow different philosophy in or-
ganizing these resources. The stream architecture sacrifices
random memory access and arbitrary looping and branching
for performance. XMT keeps these very useful capabilities
and reduces performance lost by other mechanisms.

The stream architecture doesn’t encourage frequent mem-
ory access and branching. Random memory access and arbi-
trary branching is not supported inside a kernel, which is
a program segment executed on the arithmetic units. The
stream architecture instead uses input/output streams to load
data from memory to the stream register file (SRF). An arith-
metic unit can only randomly access a stream register file
which is faster and smaller than the L1 cache. Branching are
usually supported only between kernels through some mech-
anisms like conditional streams in [Owe02].

This feature allows very fast kernel executions with short
clock cycle time and without stalls. But it limits the effi-
ciency of global data access which is frequently used in tex-
ture lookup, in realistic global lighting effect calculation or
any form of interaction between objects.

To support arbitrary looping and branching, the XMT
architecture inherently has more logic control units than
the stream architecture. In the XMT processor discussed
in [NNTV03], each cluster contains two branch units. To
support fast random memory access, the XMT architecture
needs a significant amount of interconnection between clus-
ters and memory banks. It uses a memory address hash-
ing table to keep memory access balanced. Compared with
the stream architecture, XMT sacrifices more chip space for
functional flexibility.

XMT works efficiently for tasks with heterogeneous data
streams. For example the output of the rasterization process
may contain zero to hundreds of fragments for each triangle.
XMT begins to rasterize one of the triangles on each TCU. If
a triangle is small and finishes earlier than others, the TCU
will automatically rasterize one of the remaining triangles.

XMT tries to hide memory access latency and branch-
ing delay by switching to execute on another virtual thread
whose data is already cached on its host TCU.

Programming Model: Both architectures provide a instruc-
tion set that requires the programmer or the compiler to de-
sign and specify parallelism explicitly. They differ in how
the parallelism is specified.

Many difficulties arise when mapping CPU algorithms
to stream algorithms. This is complicated by the graphics
hardware implementation of stream architectures, with many

submitted toGraphics Hardware (2005)

2 -10



Yi Wang, Marc Olano, Ronny Kupershtok & Uzi Vishkin / XMT: A PRAM Architecture for Graphics Hardware 5

short kernels in a system that can write globally accessi-
ble memory (in the form of texture) only between render-
ing passes. Algorithms with global data access and com-
plex branching patterns require creative mapping to multiple
passes, textures, and other aspects of the graphics pipeline
[KSW04,MA03,JBSL03,GHLM05].

XMT-based architecture provides a clear and easy map-
ping from CPU program to XMT program. Though all the
threads share the same code, at run-time different threads
may have different lengths, based on control flow decisions
made at run time. The gobal memory access and branching
operations are much more similar, in use and performance,
to what we have learned to expect from serial CPUs.

Hardware Organization: Both architectures group func-
tional units into clusters. Each cluster contains an identi-
cal set of functional units. Clusters provide data level par-
allelism in both architectures. But the XMT and stream
processors have different structure within a cluster. In stream
processors, functional units provide instruction level paral-
lelism. They operate on the same set of data and may have
to stall to avoid data dependencies. No memory access la-
tency exists unless texture lookup is needed. In XMT, how-
ever, functional units executes on the data of different TCUs.
XMT stores the execution context of several virtual threads
on several TCUs of each cluster. When a memory fetch or
branching is needed, the functional units switch to process
another thread whose context is stored in a TCU. So mem-
ory access latency is hidden by data level parallelism.

4. Evaluation and Applications

We evaluate the XMT-based architecture in four aspects:
computation capability, programming difficulty, perfor-
mance and hardware utilization.

4.1. Implement Fragment Processor With XMT

The XMT-based fragment processing architecture is shown
in Figure2. The vertex processor could also be replaced with
XMT, or with a chain of vertex and geometry processing
XMT processors.

To evaluate XMT’s fragment processing capability, we
built a test bed based on Mesa, a software implementation of
OpenGL. We replaced the fragment processing part of Mesa
with XMT-C programs. The shaders written in XMT-C are
processed by the XMT compiler and assembler, for execu-
tion on an XMT simulator.

In current implementation, we specify 8 TCUs in each
TCU cluster. Each cluster contains 4 integer ALUs, 2 integer
multiply/divide units, 2 floating point adders, 2 floating point
multiply/divide units and 2 branch units. All functional unit
latencies are set to the SimpleScalar sim-outorder defaults:
integer divide, multiply and ALU ops take 20, 3 and 1 cycles
respectively, floating point divide, multiply and addition ops

Figure 2: GPU Architecture with XMT-Based Fragment
Processor

take 12, 4 and 2 cycles respectively, and square root takes 24
cycles. Each cluster has a L1 cache of 8 KB. The L2 cache
is composed of shared independent banks which total 1 MB.
The number of banks is chosen to be twice the number of
clusters. The L2 cache latency within each cache bank is
6 cycles and memory latency is 25 cycles. A penalty of 4
cycles is charged each way for every one-way traversal of
the interconnection network. Each cluster can issue a single
memory request per cycle, but multiple requests may be in-
flight at once. For example, a single cluster may have 8 loads
from 8 different threads being serviced at once.

4.2. Computation Capability

Even with some degree of programmability, current graph-
ics hardware still can’t render scenes with as good fidelity
as CPUs do. Users either render their scene on graphics
hardware and lose some interesting effects or render fully-
effected image on the CPU with much longer time. For ex-
ample, most animation products are still rendered totally on
the CPU. The random memory access and arbitrary looping
and branching capability enables the XMT-based architec-
ture as a powerful graphics engine.
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When implementing the fragment operations with XMT-
C, we spawn a thread for the operations for each fragment
and join the operations that are common for fragments on a
whole span (one scan line of a primitive) or on a whole prim-
itive. We implemented several more complex fragment shad-
ing programs in XMT-C. Here we discuss how they mapped
to XMT.

(1) Figure3 shows the sketch of a subsurface scattering or
volume ray-tracing shader. Notice the scatter write operation
in the parallel program segment. This shading program is
hard to implement on current fragment processors even in
multiple rendering passes.

Figure 3: Sketch of the Subsurface Scattering Example

(2) Figure4 shows the sketch of a shading program that
uses varying materials over a surface. The execution length
of each thread is only as long as the branches taken.

Figure 4: Sketch of the Varying Material Example

(3) Subdivision surfaces. Other than fragment shading op-
erations, XMT can supports more operations efficiently. One
example is subdivision surfaces. Users can specify high-
level smooth surfaces with a small number of control points.
The GPU subdivides these surfaces into pixel-sized subsur-
faces [CC78,Loo87,HDD∗94]. The stream processors can-
not control the subdivision steps adaptively because they
lack branching units. Recent graphics hardware [PF05] can
branch in vertex shader, but they are unable to add new
vertices inside the shader. It is also difficult for the stream

processors to access global information of other surfaces to
prevent surface cracks.

4.3. Programming Difficulty

Since XMT provides a compatible programming model with
a serial CPU’s, programming in XMT is not hard. The only
extra work is to find the parallelism between data and specify
it by the spawn instruction instead of loop. Failing to specify
parallelism will lead to lower performance, not error.

Yet there are two constraints to be considered in XMT
programming: the TCU register count and parallel instruc-
tion count. Parallel program segments still run correctly if
they use more registers than TCU’s local ones, but the per-
formance will drop significantly, since the XMT-C compiler
will assign global memory space to store intermediate re-
sults.

In the current XMT-C implementation, parallel instruc-
tion count (that portion between each spawn and its corre-
sponding join) is not allowed to exceed a limit. We expect
future versions of the XMT-C compiler to automatically split
long parallel segments into shorter ones. This differs sig-
nificantly from automated splitting into multiple rendering
passes [FHH04,RLV∗04]; the program never leaves the frag-
ment portion of the pipeline, conserving other pipeline re-
sources, and there is no arbitrary limit on the number of tem-
poraries used to communicate between parallel segments.

4.4. Performance Evaluation

Some useful algorithms have been implemented in XMT-C
and run on a XMT simulator. [NNTV03] analyzed the XMT
performance in detail. We briefly discuss the experiment re-
sult in this paper.

Using the XMT architecture introduced in Subsection4.1,
we have experimented with 1, 4, 16, 64 and 256 TCUs. Our
conclusion is that XMT can achieve significant speedup on
both regular and irregular computations. XMT is especially
fast on regular computations with predictable access pat-
terns.

Graphics applications contain a significant amount regu-
lar computations with predictable memory accesses. These
computations do the same amount of work on a set of in-
dependent elements. Figure5 shows the speedup of regular
computations to a serial CPU.

We often meet some irregular computation problems in
graphics applications. One example is ray-tracing. The ray
shot from a pixel may be bounced zero to a large number of
times. Figure6 shows the speedup of irregular computations
to a serial CPU.

Part of the performance drop of irregular computations
comes from thread managing overhead. We break down
this overhead into three parts: 1) Spawn-Setup: setting up
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Figure 5: XMT Performance on Regular Computations.

Figure 6: XMT Performance on Irregular Computations.

the parallel execution environment and broadcasting data to
TCUs. 2) TCU-Init: initializing the TCUs context. 3) Load-
Imbalance: idling at the end of a spawn until all threads com-
plete, then transitioning back to serial mode. In our proto-
type machine, a single Spawn-Setup needs 6 instructions and
costs 150-300 cycles. A typical TCU-Init is 25 instructions
and costs 150-260 cycles. The Spawn-Setup cost and TCU-
Init cost are generally insignificant ( typically less than 10%
of total execution time) according to our experiment results.
The effect of Load-Imbalancing depends on the number of
threads and the number of synchronizations. Applications
with large number of threads and few synchronizations have
small penalty.

Memory stall is an important performance factor. Figure7
shows the Memory/CPU ratio of several applications. Our
experiment also shows that the ratio of time spent on waiting
memory to time spent on processing is largely constant as we
increase the number of TCUs from 1 to 256.

In an XMT-based architecture, when TCU local registers
can’t hold all the intermediate data of a virtual thread, a large
array is allocated in memory. Each array element is used to
hold a virtual thread. Saturated memory access will lead to
more than 5 times longer execution time.

4.5. Hardware Utilization

Because XMT’s instruction set is compatible with current
CPU’s serial computation model, XMT-based GPU has big
potential to support general-purpose computation. Compu-
tation intensive CPU tasks, e.g. matrix multiplication, FFT,
sorting etc., can be migrated onto the GPU when the GPU
is idle. Since in most non-graphics applications the GPU is

Figure 7: Memory/CPU Time Ratio

less busy than the CPU, an XMT-based GPU has the poten-
tial to be used more often and more effectively for general
computation.

5. Conclusion and Future Work

The XMT-based architecture shares a similar design philos-
ophy as the stream computing model. In addition, it pro-
vides random memory access and arbitrary branching capa-
bility. Because of its flexibility, it can support more pow-
erful shaders than current graphics hardware. XMT-C pro-
gramming language is compatible with the programming
language of serial CPUs. Compared with stream computing
languages, it is easier to write complex programs and easier
to compile.

In XMT-based architecture, the parallelism is limited by
two factors: the TCU register count and parallel instruction
count, though both could be hidden from the programmers
by compilers.

In the next phase of our research, we will compare the ren-
dering performance as well as fidelity between XMT-based
fragment processor and other graphics hardware.

We dump the OpenGL context and the fragment data be-
fore they arrive at the programmable part (i.e. texturing and
fogging etc. [KBR04]) of the fragment processing pipeline.
These data are used as the input of XMT-C shaders. After
XMT-C shaders process these data, we will feed them back
to Mesa’s fragment processing pipeline and render out final
image.

We would also like to explore the use of XMT for the full
graphics pipeline. This may lead to an attractive alternative
to the fixed pipeline layout of current graphics hardware and
allow users to balance between performance and fidelity.
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